
AWS Marketplace
Seller Guide

AWS Marketplace Seller Guide

AWS Marketplace: Seller Guide
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

AWS Marketplace Seller Guide

Table of Contents
What is AWS Marketplace? 1

Using AWS Marketplace as a seller ... 1
Pricing 2

Getting started as a seller ... 4
Seller requirements for publishing free software products ... 4
Additional seller requirements for paid products ... 4

Eligible jurisdictions for paid products ... 5
AWS Marketplace Management Portal ... 5
Seller registration process 6

Creating your public profile 7
Providing tax information 7
Providing US bank account information 7
Completing the Know Your Customer process 8
Completing bank account verification process 9
(Optional) Add secondary users for the Know Your Customer procedure 10
Enrolling in the AWS Marketplace Tax Calculation Service 11
Disbursement and buyer billing 12
Already a seller? ... 12
Complaints handling policy – Amazon Payments Europe 13

Seller toolkit ... 14
AWS Marketplace Commerce Analytics Service 14
AWS Marketplace Field Demonstration Program 25
Product Support Connection 25
More resources in AWS Marketplace Management Portal ... 34

Preparing your product 35
Product delivery 35
Product pricing 37

Pricing models ... 38
Changing pricing models ... 40
Changing prices 41
Private offers 41
Refunds 41

Regions and countries ... 43
AWS Regions 43
Countries ... 43

Private offers 44
How private offers work 44
Private offers through consulting partners ... 45
Notes about private offers 45
Supported product types 45
Offer submission process 46
Reporting for private offers 47
Flexible payment scheduler ... 48
Consulting partner private offers 49
Private offer upgrades and renewals ... 52

Standardized license terms 54
Standard Contract for AWS Marketplace (SCMP) 54
Enterprise Contract for AWS Marketplace (ECMP) 55

Categories and metadata 56
Naming and describing your product 56
Choosing categories and keywords 57

Search engine optimization for products ... 58
Keywords 58
Software categories ... 59

iii

AWS Marketplace Seller Guide

Highlights section 59
Short description 59

AWS Marketplace for Desktop Applications (AMDA) 60
Starting the onboarding process 60
Product submission and packaging 60
Application packaging types 61
Building the AMDA package 61
Application metadata 62
Ingestion and new version updates 62

AMI-based products ... 63
AMI-based product delivery methods 63
Understanding AMI-based products ... 63

Product lifecycle 64
AMI product codes 65
Change requests ... 65
Product Load Forms 66

Single-AMI products ... 66
Prerequisites ... 66
Creating your product 67
Creating a change request ... 68
Getting status of a request ... 69
Updating product information 69
Updating version information 70
Adding a new version 70
Giving AWS Marketplace access to your AMI 71
Restricting a version 72
Removing a product from AWS Marketplace 73
Common errors when submitting change requests ... 74

AMI-based Delivery Using CloudFormation 74
Building your product listing 75
Preparing your AWS CloudFormation template 75
Getting the cost estimate for your template infrastructure 77
Topology diagram 77
Meeting the submission requirements 77
Submitting your product request ... 78
Adding serverless application components 79

Private images 84
Package group requirements 85
Submitting your package group 86
Scan status 86
Submitting your product to AWS Marketplace 87

Best practices for building AMIs 88
Verifying your AMI 88
Securing resell rights ... 88
Building an AMI 88
Verifying your software is running on your AWS Marketplace AMI 89
Securing an AMI 90

AMI product pricing 91
AMI pricing models ... 91
AWS charges and software charges 93
Contract pricing for AMI products ... 94

AWS Marketplace Metering Service integration 96
Metering service concepts 96
Pricing your software 98
Adding your product to AWS Marketplace 98
Modifying your software to use the Metering Service 100
Call AWS Marketplace Metering Service 101

iv

AWS Marketplace Seller Guide

Failure handling 102
Limitations 102
Vendor-metered tagging (Optional) ... 103
Code example 104

AWS License Manager integration 105
License models ... 106
Integration workflow 109
License Manager integration prerequisites ... 109
Integrating an AMI product with License Manager 110
License renewals and upgrades 110

Amazon SNS notifications for AMI products ... 111
Amazon SNS topic: aws-mp-subscription-notification . 111
Subscribing an Amazon SQS queue to the Amazon SNS topic ... 111

AMI product checklist ... 112
AMI security policies ... 113

Security policies ... 113
Access policies ... 113
Customer information policies ... 114
Product usage policies ... 114
Architecture policies ... 115

Container-based products ... 116
Getting help 116
Getting started with container products ... 116

Prerequisites ... 117
Creating a container product 117
Creating the product ID for your container product 118
Creating or updating pricing details for container products ... 118
Integrating AWS Marketplace Metering Service for your container product 119
Integrating AWS License Manager for your container product 119
Adding a new version of your product 119
Updating version information 124
Creating or updating product information for your container product 125
Publishing container products ... 126
Container product scans for security issues 126

Container-based product requirements 126
Security requirements 127
Access requirements 127
Customer information requirements 127
Product usage requirements 127
Architecture requirements 128

Container product pricing 129
Container pricing models ... 129
Contract pricing for container products ... 131

Billing, metering, and licensing integrations 134
Hourly and custom metering with AWS Marketplace Metering Service 134
Contract pricing with AWS License Manager 135
Hourly metering with AWS Marketplace Metering Service 136
Custom metering with AWS Marketplace Metering Service 143
Contract pricing with AWS License Manager 152

Amazon SNS notifications for container products ... 174
Amazon SNS topic: aws-mp-subscription-notification . 174
Subscribing an Amazon SQS queue to the Amazon SNS topic ... 174

Machine learning products ... 176
Getting started with machine learning products ... 176

SageMaker model package 176
SageMaker algorithm 176
Deploying an inference model ... 176

v

AWS Marketplace Seller Guide

Security and intellectual property 177
Protecting intellectual property 177
No network access 177
Security of customer data 177

Machine learning product pricing 178
Infrastructure pricing 178
Software pricing 178

Prepare your product in SageMaker 180
Packaging your code into images 180
Uploading your images 194
Creating your Amazon SageMaker resource 196

Publishing your product in AWS Marketplace 200
Overview of publishing process 200
Permissions required 200
Creating your product listing 201
Testing your product 203
Updating your product 203

Requirements and best practices for creating machine learning products ... 204
Required assets ... 204
General best practices for ML products ... 205
Requirements for usage information 205
Requirements for inputs and outputs 205
Requirements for Jupyter notebook 206
Summary of requirements and recommendations for ML product listings 207

Service restrictions and quotas 209
Network isolation 209
Image size 209
Storage size 209
Instance size 210
Payload size for inference 210
Processing time for inference 210
Service quotas 210
Managed spot training 210
Docker images and AWS accounts 210
Publishing model packages from built-in algorithms or AWS Marketplace 210
Supported AWS Regions for publishing 211

Troubleshooting 211
Reporting 212

Daily business report ... 212
Monthly revenue report ... 212
Disbursement report ... 213
Other reports and analysis ... 213

Software as a service (SaaS)–based products ... 214
Getting started with SaaS products ... 214

Prerequisites ... 214
Creating a SaaS product 215
Create an initial SaaS product page 216
Integrate your SaaS subscription product 216
Integrate your SaaS contract product 219
Integrate your SaaS contract with pay-as-you-go product 221
Deploy a serverless SaaS integration solution 223

Plan your SaaS product 224
Plan your pricing 224
Plan your billing integration 225
Plan your Amazon SNS integration 225
Plan how customers will access your product 225

SaaS product guidelines 226

vi

AWS Marketplace Seller Guide

Product setup guidelines 226
Customer information requirements 226
Product usage guidelines 226
Architecture guidelines 227

SaaS product pricing 227
.... 228

Pricing for SaaS subscriptions 228
Pricing for SaaS contracts ... 229

SaaS customer onboarding 232
Configuring your SaaS product to accept new buyers ... 233

Amazon SNS notifications for SaaS products ... 234
Amazon SNS topic: aws-mp-entitlement-notification . 234
Amazon SNS topic: aws-mp-subscription-notification . 235
Subscribing an SQS queue to the SNS topic ... 236

Accessing the AWS Marketplace Metering and Entitlement Service APIs ... 236
Metering for usage 236
Checking entitlements 239
SaaS product integration checklist ... 240

Reporting 242
SaaS code examples 243

ResolveCustomer code example 243
GetEntitlement code example 244
BatchMeterUsage code example 245
BatchMeterUsage with usage allocation tagging code example (Optional) ... 246

Using AWS PrivateLink with AWS Marketplace 247
Introduction 247
Configuring your product 248
Submitting your product to AWS Marketplace 249
Buyer access to VPC endpoints ... 249
Appendix: Checklists ... 250

Professional services products ... 251
Getting help 251
Getting started with professional services products ... 251

Prerequisites ... 252
Creating a professional services product 252
Creating private offers 253
Editing product information 254
Editing product pricing 254
Editing product visibility ... 255
Removing a professional services product 255

Product details ... 256
Product descriptions 256
Additional resources 257
Support information 257
Pricing dimensions 257
Product visibility ... 258

Product requirements 258
Product setup guidelines 258
Customer information requirements 258
Product usage guidelines 259
Architecture guidelines 259

Professional services product pricing 259
Data products ... 260
Submitting your product 261

Using the Products tab 262
Company and product logo requirements 262
Requirements for submitting paid repackaged software 263

vii

AWS Marketplace Seller Guide

AWS CloudFormation-launched product (free or paid) or usage-based paid AMI product 263
Submitting your product 264
Updating your product 264

Product changes and updates 264
Timing and expectations 265
Submitting AMIs to AWS Marketplace 265

AMI self-service scanning 265
AMI cloning and product code assignment 266

Final checklist ... 266
Marketing your product 268

180-day GTM Academy 268
Announcing your product's availability ... 268
AWS Marketplace messaging 268
Reviews on AWS Marketplace 269
Linking to AWS Marketplace 270
Using the AWS Marketplace logo 270
Linking directly to your product on AWS Marketplace 270
Press releases 270
AWS Marketplace trademark usage guidelines 271

Seller reports and data feeds 273
Seller reports ... 273

Accessing reports ... 273
Daily business report ... 274
Daily customer subscriber report ... 281
Disbursement report ... 283
Monthly billed revenue report ... 288
Sales compensation report ... 294
US sales and use tax report ... 296

Data feeds 299
Storage and structure of data feeds 299
Accessing data feeds 301
Using data feeds 303
Data feed tables overview 303
Data feed query examples 310
Account data feed 320
Address data feed 321
Billing event data feed 323
Legacy mapping data feed 332
Offer data feed 332
Offer product data feed 333
Offer target data feed 334
Product data feed 335
Tax item data feed 336

Security ... 113
IAM for AWS Marketplace 343

Creating users ... 343
Creating or using groups 344
Signing in as an IAM user ... 345

Policies and permissions for AWS Marketplace sellers ... 346
Policies ... 346
Permissions 346

AWS managed policies ... 349
AWSMarketplaceAmiIngestion 350
AWSMarketplaceFullAccess 350
AWSMarketplaceGetEntitlements 352
AWSMarketplaceMeteringFullAccess 352
AWSMarketplaceMeteringRegisterUsage 353

viii

AWS Marketplace Seller Guide

AWSMarketplaceSellerFullAccess 353
AWSMarketplaceSellerProductsFullAccess 354
AWSMarketplaceSellerProductsReadOnly 355
Policy updates 356

AWS Marketplace Commerce Analytics Service account permissions 356
AWS Marketplace Product Support Connection account permissions 357
Amazon SQS permissions 357
AWS Marketplace metering and entitlement API permissions 358

IAM policy for SaaS products ... 358
IAM policy for AMI products ... 359
IAM policy for container products ... 359

Logging AWS Marketplace API calls with AWS CloudTrail .. 359
AWS Marketplace log file entry examples 360
Related Topics ... 363

Document history 364
AWS glossary 370

ix

AWS Marketplace Seller Guide
Using AWS Marketplace as a seller

What is AWS Marketplace?
AWS Marketplace is a curated digital catalog that customers can use to find, buy, deploy, and manage
third-party software, data, and services to build solutions and run their businesses. AWS Marketplace
includes thousands of software listings from popular categories such as security, business applications,
machine learning, and data products across specific industries, such as healthcare, financial services,
and telecommunications. Customers can quickly launch preconfigured software, and choose software
solutions in Amazon Machine Images (AMIs), software as a service (SaaS), and other formats. Professional
services are also available to help customers configure, deploy, and manage third-party software. For a
complete list of delivery methods, see Product delivery.

You can use AWS Marketplace as a buyer (subscriber), seller (provider), or both. Anyone with an AWS
account can use AWS Marketplace as a buyer, and can register to become a seller. A seller can be an
independent software vendor (ISV), consulting partner, managed services provider (MSP), or individual
who has something to offer that works with AWS products and services.

Note
Data product providers must meet the AWS Data Exchange eligibility requirements. For more
information, see Providing data products on AWS Data Exchange in the AWS Data Exchange User
Guide.

Eligible partners can programmatically list AWS Marketplace products outside of AWS Marketplace.
For more information about becoming an eligible partner, contact your AWS Marketplace business
development partner.

The following video explains more about selling on AWS Marketplace.

Introduction to AWS Marketplace

Using AWS Marketplace as a seller
The following diagram shows the process for selling a software product on AWS Marketplace.

Seller process

Step Action Description

1 Register (p. 6) As a seller, you start by registering for the AWS Marketplace
Management Portal (AMMP). We recommend that you implement a
new dedicated AWS account that can be easily linked with an existing
AWS organization. Verify that the AWS Partner’s tax information
meets the jurisdictional eligibility criteria. For AWS Partners without
an existing U.S. bank account, you can create one at no additional cost
by using Hyperwallet.

2 Decide product
type

Decide on the type of product that you want to sell. For more
information about creating the product types in AWS Marketplace, see
the following:

1

https://docs.aws.amazon.com/marketplace/latest/userguide/product-preparation.html#product-delivery
https://docs.aws.amazon.com/data-exchange/latest/userguide/providing-data-sets.html
https://www.youtube.com/embed/UjD-kMiVs0c
https://wssellers.hyperwallet.com/hw2web/consumer/page/contact.xhtml

AWS Marketplace Seller Guide
Pricing

Step Action Description

• AWS Marketplace for Desktop Applications (AMDA) (p. 60)
• AMI-based products (p. 63)
• Container-based products (p. 116)
• Machine learning products (p. 176)
• Software as a service (SaaS)–based products (p. 214)
• Professional services products (p. 251)
• Data products (For more information about data products, see What

is AWS Data Exchange? in the AWS Data Exchange User Guide.)

3 Prepare
product (p. 35)

Configure your package, set a pricing scheme, determine the relevant
categories in which to list your product, and add keywords so your
product appears in relevant searches. To simplify the procurement
process, you can use standardized license terms for both public
product listings and private offers.

4 Submit
product (p. 261)

Use the product submission process to make your products available
on AWS Marketplace. Products can be simple, for example, a
single Amazon Machine Image (AMI) that has one price structure.
Or, products can be complicated, with multiple AMIs, AWS
CloudFormation templates, and complex pricing options and payment
schedules.

5 Market
product (p. 268)

Contribute to the success of your product by driving awareness of
AWS Marketplace and by driving traffic directly to your product pages
on AWS Marketplace.

6 View reports
and data
feeds (p. 273)

After you're registered as a seller, use the AWS Marketplace
Management Portal to access usage reports for your products. AWS
Marketplace provides tools for collecting and analyzing information
about your product sales.

7 Manage products Use the AWS Marketplace Management Portal to manage your
account and product pages.

As a seller, go to the AWS Marketplace Management Portal to register. If you're charging for use of your
product, you must also provide tax and banking information as part of your registration. When you
register, you create a profile for your company or for yourself that is discoverable on AWS Marketplace.
You also use the AWS Marketplace Management Portal to create and manage product pages for your
products.

Pricing
Products can be free to use or can have associated charges. The charge becomes part of the buyer's AWS
bill, and after the buyer pays, AWS pays the seller. Products can take many forms. For example, a product
can be offered as an Amazon Machine Image (AMI) that is instantiated using a buyer's AWS account.
Products can also be configured to use CloudFormation templates for delivery to the buyer. Products can
also be SaaS offerings from an ISV, web access control lists (web ACL), sets of rules, or conditions for AWS
WAF. Products can also be professional services from an ISV, consulting partners, or MSP.

Flexible pricing options include free trial, hourly, monthly, annual, multi-year, and Bring Your Own
License model (BYOL), and being billed from one source. AWS handles billing and payments, and charges
appear on customers’ AWS bill.

2

https://docs.aws.amazon.com/data-exchange/latest/userguide/what-is.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/what-is.html
https://docs.aws.amazon.com/marketplace/latest/userguide/standardized-license-terms.html
https://aws.amazon.com/marketplace/management
https://aws.amazon.com/marketplace/management
https://aws.amazon.com/marketplace/management

AWS Marketplace Seller Guide
Pricing

Software products can be purchased at the listed price using the ISV’s standard end user license
agreement (EULA). In addition, software products can be offered with custom pricing and EULA through
private offers. Products can also be purchased under a contract with specified time or usage boundaries.
After subscribing to a product, the buyer can copy the product to their AWS Service Catalog to manage
how the product is accessed and used in the buyer's organization. For more information about pricing,
see the section called “Product pricing” (p. 37).

3

AWS Marketplace Seller Guide
Seller requirements for publishing free software products

Getting started as a seller
If you want to sell your software in AWS Marketplace, review the requirements and then follow the
steps to register as a seller. There are different registration requirements based on where you reside and
what type of products you're selling. To register as a seller in AWS Marketplace, you can use an existing
AWS account or create a new account. All AWS Marketplace interactions are tied to the account that you
choose.

Notes

• Registering as an AWS Marketplace seller is a prerequisite to listing data products on AWS
Data Exchange and making them available on AWS Marketplace. For more information about
these requirements, see Providing Data Products on AWS Data Exchange in the AWS Data
Exchange User Guide.

• For information about the permissions that AWS Marketplace sellers need, see Policies and
permissions for AWS Marketplace sellers (p. 346).

Seller requirements for publishing free software
products

Regardless of whether you charge for your product when you offer it in AWS Marketplace, you're selling
that product. The cost to the customer is $0.00, but you and the customer agree to a mutual contract for
use of the product. If you offer only free products, you don't have to provide banking information to AWS
Marketplace. To create and offer free products in AWS Marketplace, you must:

• Sell publicly available, full-feature production-ready software.
• Have a defined customer support process and support organization.
• Provide a means to keep software regularly updated and free of vulnerabilities.
• Follow best practices and guidelines when marketing your product in AWS Marketplace.
• Be an AWS customer in good standing and meet the requirements in the terms and conditions for AWS

Marketplace sellers.

Additional seller requirements for paid products
If you charge for your products or offer Bring Your Own License model (BYOL) products, you must also
meet the following requirements and provide this additional information:

• You must be a permanent resident or citizen in an eligible jurisdiction (p. 5), or a business entity
organized or incorporated in one of those areas.

• You must provide tax and bank account information. For US-based entities, a W-9 form and a banking
account from a US-based bank are required.

• Non-US sellers are required to provide a (i) W-8 form, value-added tax (VAT) or goods and services tax
(GST) registration number, and (ii) US bank information. If you don't have a US bank account, you can
register for a virtual US bank account from Hyperwallet.

• To provide data products, you must also request on-boarding through the Create case wizard for AWS
Support.

• To sell products to customers whose AWS accounts are based in countries and territories in Europe,
the Middle East, and Africa (EMEA) (excluding Turkey and South Africa) through Amazon Web Services
EMEA SARL, you must complete the Know Your Customer process (p. 8). In addition:

4

https://docs.aws.amazon.com/data-exchange/latest/userguide/providing-data-sets.html
https://wssellers.hyperwallet.com/
https://console.aws.amazon.com/support/cases?#/create?issueType=customer-service

AWS Marketplace Seller Guide
Eligible jurisdictions for paid products

• You receive up to two disbursements (for transactions through AWS Inc. and Amazon Web Services
EMEA SARL).

• You may be taxed on the listing fee for certain transactions, depending on location. For more
information about taxes, see the AWS Marketplace Sellers Tax help page. If value-added tax (VAT) on
your listing fee is assessed, AWS Marketplace will provide a tax-compliant invoice.

• For more information about Amazon Web Services EMEA SARL, see AWS EMEA Marketplace - Sellers
on the Amazon Web Services Europe FAQs website.

To sell into the AWS GovCloud (US) Region, sellers must have an AWS GovCloud (US) account. For details
on ITAR requirements, see the AWS GovCloud (US) User Guide.

For questions about AWS Marketplace seller requirements or the registration process, contact the AWS
Marketplace Seller Operations team.

Eligible jurisdictions for paid products
To sell paid software in AWS Marketplace, you must be a permanent resident or citizen in one of the
following countries or SARs, or a business entity organized or incorporated therein:

• Australia¹
• Bahrain¹ ²
• European Union (EU) member state¹
• Hong Kong SAR
• Japan² ³
• New Zealand¹
• Norway¹ ²
• Qatar
• Switzerland¹ ²
• United Arab Emirates (UAE)¹ ²
• United Kingdom (UK)¹
• United States (US)

¹ Sellers of paid products in these countries must provide VAT registration information in country of
establishment.

² If you as a seller are located in the same country as the buyer, you may be responsible for tax invoicing,
collections, and remittances. Please consult with your tax advisor.

³ Sellers based in Japan have an obligation to self-account for the Japanese Consumption Tax (JCT) on
the listing fee charges. Sellers based in other jurisdictions may have similar obligations. Please consult
with your tax advisor.

For more information about VAT, invoicing, and your tax obligations as a seller, see AWS Marketplace
Sellers on Amazon Web Service Tax Help.

AWS Marketplace Management Portal
The AWS Marketplace Management Portal is the tool that you use to register as an AWS Marketplace
seller. Then, you can use the portal to manage the products that you sell in AWS Marketplace. You can
complete the following tasks on the portal:

• Register as an AWS Marketplace seller.

5

https://aws.amazon.com/tax-help/marketplace/
https://aws.amazon.com/legal/aws-emea/
https://aws.amazon.com/govcloud-us/getting-started/
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/getting-started-sign-up.html
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/tax-help/marketplace/
https://aws.amazon.com/tax-help/marketplace/
https://aws.amazon.com/tax-help/
https://aws.amazon.com/marketplace/management/tour

AWS Marketplace Seller Guide
Seller registration process

• Use the Products page to submit new software products and update existing software products.
• Monitor the status of your requests.
• Upload files needed to create and manage your new software products.
• Manage your software products into incremental channel revenue by taking advantage of the go-to-

market activities.
• Measure the results of your marketing efforts within hours of launch, including the usage and revenue

driven by your campaigns.
• Enable customer service representatives to retrieve customer data in real time.
• Initiate an automatic Amazon Machine Image (AMI) scan to detect vulnerabilities.

Note
Data products are published and managed from the AWS Data Exchange console. AWS Data
Exchange providers can use the AWS Marketplace Management Portal to register as a seller,
request AWS Data Exchange on-boarding, access seller reports, and submit refund requests.

All registered sellers can access the AWS Marketplace Management Portal using their AWS credentials for
the account that they used to create their products. The account that you use is defined as the seller of
record when a customer subscribes to your product. If you need help determining the specific account
that is the seller of record for your products, contact the AWS Marketplace Seller Operations team.

AWS Marketplace strongly recommends using AWS Identity and Access Management (IAM) roles to sign
in to the AWS Marketplace Management Portal rather than using your root account credentials. For more
information, see IAM Users in the IAM User Guide.

To enable people in your company to sign in to the AWS Marketplace Management Portal, create an IAM
user for each person you want to have access and define access permissions to the AWS Marketplace
Management Portal. We also recommend creating an AWS account root user role to use for access. For
more information, see AWS account root user credentials and IAM user credentials in the AWS General
Reference.

Seller registration process
By registering as a seller for AWS Marketplace, you can sell your products and services to other AWS
Marketplace customers.

Registering as a seller requires the following steps:

1. Create your public profile – You provide the information that is displayed in AWS Marketplace to
buyers that tells them about your company, such as your company name and logo. After you complete
this process, you can sell products for free. To sell paid products, you must complete steps two and
three.

2. Provide your tax information – To appropriately assess, report, and (where applicable) withhold taxes
on your paid sales, you must provide your tax and value added tax (VAT) information.

3. Provide your banking information – You provide your US bank information so that AWS Marketplace
can pay you for your sales.

4. (Optional) Enroll in the US tax calculation service – You can optionally enroll in this service to
calculate your US state sales and use tax for products you sell on AWS Marketplace.

These steps are described in more detail in the following sections.

After you have completed registering your account as a seller, you can create products to sell to buyers
through AWS Marketplace. For more information, see Preparing your product (p. 35).

6

https://aws.amazon.com/marketplace/management/contact-us/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_identity-management.html#intro-identity-users
https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html

AWS Marketplace Seller Guide
Creating your public profile

You can use AWS Identity and Access Management (IAM) to configure your primary AWS account to allow
multiple users with various permissions to access the AWS Marketplace Management Portal. For more
information, visit the section called “IAM for AWS Marketplace” (p. 343).

Creating your public profile
The first step to register is to select the AWS account to use as your primary AWS Marketplace account,
and provide the information that is displayed to potential buyers in the AWS Marketplace console.

Note
Once you use an AWS account to list a product on AWS Marketplace, you can't change the
account associated with the product. You can use an existing account or register a new account.
This account will be the seller of record for your products in AWS Marketplace and will be used
for reporting, disbursement, and communication from AWS Marketplace to you.

To create your public profile

1. From the AWS Marketplace Management Portal (AMMP), choose Register now and then sign in to
your chosen seller AWS account.

2. Select Add public profile to provide your seller information.

After you have completed the public profile, you can publish and sell free products. To sell paid products,
you must provide your tax and banking information.

Providing tax information
You must provide your tax, and value added tax (VAT) where applicable, information so that AWS
Marketplace can accurately report and withhold taxes on your product sales.

To provide your tax information

1. Sign in to the AWS Marketplace Management Portal, and choose Settings.

2. Select Complete tax information in the Payment Information section.

3. After you have completed the tax information, return to the Settings page and select Complete VAT
information, if it is available.

Note
The VAT information section is only available if you are in an AWS Region that supports VAT.

Providing US bank account information
A US bank account is required for all sellers who want to sell paid products in AWS Marketplace. AWS
Marketplace only disburses to US bank accounts.

Note
For a list of countries where you can offer paid products in AWS Marketplace, see Eligible
jurisdictions for paid products (p. 5).

To provide US bank information

1. Sign in to the AWS Marketplace Management Portal, and choose Settings.

2. Select Complete banking information in the Payment Information section.

3. Provide the required information about your US bank account.

7

https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/
https://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Completing the Know Your Customer process

Note
If you have not yet provided your tax information (and value added tax information, where
applicable), you will not be able to provide your banking information.

If you do not already have a US bank account, you may be able to obtain one through Hyperwallet.
Hyperwallet can provide you with a US account, which you can provide to AWS Marketplace for your AWS
Marketplace disbursements.

Hyperwallet is an independent service provider that may enable you to transfer funds to another bank
account in a supported currency. For a limited time, you will not be required to pay certain Hyperwallet
service fees in connection with AWS Marketplace disbursements.

• By adding your Hyperwallet account details to your AWS Marketplace seller account, you agree and
acknowledge that AWS Marketplace will share your name, email address, and account number with
Hyperwallet to confirm your status as an AWS Marketplace seller.

• Additional fees may apply to your use of Hyperwallet services (including transfer fees and foreign
exchange fees required to transfer funds into your local currency), as well as foreign exchange rates.
Hyperwallet’s service fee will be waived for a limited time, and only with respect to AWS Marketplace
disbursements of the proceeds from your Paid products into your Hyperwallet account. Consult the
Fees section of the Hyperwallet site or contact Hyperwallet for more information and to review
applicable fees. Visit the Hyperwallet support site to learn more about their services.

To begin registration with Hyperwallet and obtain your US bank account information

1. Sign in to the AWS Marketplace Management Portal, and choose Settings, then select Complete
banking information in the Payment Information section.

2. If you do not have a Hyperwallet account, and need one for use in AWS Marketplace, choose No in
response to Do you have a US bank account? and Are you registered with Hyperwallet? You will be
provided with a personal identification number (PIN) and link to sign up for Hyperwallet.

3. After you have activated your Hyperwallet account, follow the steps described on the Hyperwallet
registration portal to complete registration and receive your deposit account information.

4. When you have obtained an account from Hyperwallet, add your Hyperwallet account information
to your AWS account by signing in to the AWS Marketplace Management Portal. Then, choose
Settings, then select Complete banking information in the Payment Information section.

Completing the Know Your Customer process
Know Your Customer (KYC) is a compliance requirement used by financial institutions and online
businesses to verify the identity of their customers. This requirement is due to the revised Payment
Services Directive (PSD 2) and European Union anti-money laundering Directives that govern financial
institutions such as banks and other payment institutions.

AWS Marketplace transactions through Amazon Web Services EMEA SARL are processed through Amazon
Payments Europe, S.C.A. (APE), a licensed electronic money institution in Luxembourg which requires
verification of your identity in order to use the payment service.

For you as a seller to transact through Amazon Web Services EMEA SARL, you are required to complete
the KYC process. This process involves providing additional information about your company, key points
of contact, beneficial ownership, and supporting documentation.

To complete the KYC process

1. On the AWS Marketplace Management Portal, choose Settings.

2. In the Account Summary section, confirm that the Country that is shown is correct.

8

https://wssellers.hyperwallet.com/hw2web/consumer/page/contact.xhtml
https://aws.amazon.com/marketplace/management/
https://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Completing bank account verification process

Note
Choose the Info link to see how to change your country.

3. Choose Go to KYC information or select the Know your customer (KYC) tab and then choose Start
KYC Compliance and you will be re-directed to the KYC registration portal.

For more information about how information is used and shared by AWS Marketplace, see the
Amazon Payments Europe Privacy Notice.

4. Choose Go to KYC overview.
5. On the Know Your Customer (KYC) Overview, read through the list of required information and

documentation and gather the required documentation (if you haven't yet done so). Then choose
Continue to KYC compliance.

6. Enter the Basic details as directed. After you review the Amazon Payments Europe Terms &
Conditions, choose Agree and continue.

When you continue to the next page or next step in the KYC process, that action indicates that you
accept the Amazon Payments Europe Terms & Conditions.

If you have questions, refer to Frequently Asked Questions (FAQ) located on the right side of the
console.

7. Enter the required Business information as directed, and then choose Next.

Note
Your information is saved every time you chose Next to go to the next step.

8. Enter the required Point of contact information as directed, and then choose Next.
9. Choose whether the Beneficial owner is the same as the point of contact, add beneficial owners (up

to four) if necessary, confirm your additions, and then choose Next.
10. For Additional documents, upload your business license, identity document, and letter of

authorization (if applicable).
11. On Review and Submit, review and verify all of the information that you have entered.

You can select Edit to return to any previous section if necessary.
12. Choose Submit for verification.

The status of your KYC compliance will be reviewed (typically within 24 hours). You will be notified
through an email message after the review is complete. The entire KYC process typically takes
approximately 2 weeks.

You can return to the Settings tab to view the status of your KYC compliance on the Account Summary
card. For more information about your KYC status, choose the Know your customer (KYC) tab under the
Account Summary card. It will display Under review until the review has been completed.

After your KYC is verified, you must provide a bank statement on the Payment information tab before
you can receive disbursements through APE.

Completing bank account verification process
To receive disbursements from Amazon Payments Europe (APE), you must provide additional information
to verify your disbursement bank account that is listed in the Payment Information tab in the AWS
Marketplace Management Portal.

Providing additional bank information
To provide additional bank information

1. Sign in to the AWS Marketplace Management Portal, and then choose Settings.

9

https://sellercentral-europe.amazon.com/gp/help/external/201190420?language=en_GB&ref=efph_201190420_cont_201200780

AWS Marketplace Seller Guide
(Optional) Add secondary users for
the Know Your Customer procedure

2. Select Update banking information in the Payment Information section.
3. Select the appropriate disbursement account.

The Verification status displays Not Verified.
4. Choose Verify.
5. You will be re-directed to the Bank Account Verification registration portal where you can upload and

submit your bank statement.

If you use Hyperwallet's virtual bank account solution, see the section called “Downloading your bank
statement from Hyperwallet” (p. 10).

6. In the portal, choose Upload bank document and then choose Submit.

Downloading your bank statement from Hyperwallet
For sellers who use Hyperwallet's virtual bank account solution, you can download the Hyperwallet bank
statement by using the following procedure. Then, you can upload the bank document as directed in
Completing bank account verification process (p. 9).

To download your bank statement from Hyperwallet

1. Sign into your Hyperwallet account.
2. Go to the Deposit Account Information page.
3. Download your Bank Account Validation Statement.

(Optional) Add secondary users for the Know Your
Customer procedure
Secondary users (IAM users) are individuals who can amend KYC information, control the flow of funds or
refunds, and change financial information such as bank account details.

Only secondary users that are KYC verified can make the aforementioned updates. These secondary users
are subject to the same ongoing screening controls as the root account owner.

To become KYC verified, secondary users must complete the procedure in Completing the Know Your
Customer process (p. 8).

To add secondary users for the Know Your Customer procedure

1. Ask the IAM user to sign in to the AWS Marketplace Management Portal.
2. Navigate to the Settings tab.
3. Choose the Know Your Customer (KYC) tab and see the section for Secondary user information.
4. Choose Complete secondary user information.

You are re-directed to the Secondary User registration portal.
5. In the Secondary User registration portal, complete the required fields, and then choose Next.
6. On the Review and Submit page, upload a copy of the identity document (Upload Passport) and

proof of address (Upload Document).
7. Choose Submit for Verification.

The status of your KYC compliance will be reviewed (typically within 24 hours). You will be notified
through an email message after the review is complete. The entire KYC process typically takes
approximately 2 weeks.

10

https://docs.aws.amazon.com/marketplace/latest/userguide/seller-registration-process.html#us-bank-account-for-eu-sellers
https://wssellers.hyperwallet.com/hw2web/landing.xhtml?faces-redirect=true&refreshme=true
https://wssellers.hyperwallet.com/hw2web/nonExistentConversation.xhtml?faces-redirect=true

AWS Marketplace Seller Guide
Enrolling in the AWS Marketplace Tax Calculation Service

Enrolling in the AWS Marketplace Tax Calculation
Service
AWS Marketplace Tax Calculation Service provides the ability to calculate and collect US sales and use
tax for existing and new products. Some states are not eligible for Tax Calculation Service because AWS
Marketplace is required by law to collect and remit applicable sales tax attributable to taxable sales of
your products to customers based in these states. To use the service, configure your tax nexus settings
for your seller profile, and then assign product tax codes to your products.

Note
We recommend that you review the AWS Marketplace Tax Methodology and AWS Marketplace
Product Tax Code Guidance in their entirety before completing this process.

To configure your tax nexus settings

1. Open the AWS Marketplace Management Portal
2. Under the Settings tab, configure the applicable tax nexus settings.
3. Assign product tax codes (PTCs) to your products through the AWS Marketplace Management Portal.
4. For product types not supported by the Products tab submission process, download a product load

form by choosing File Upload from the Assets tab. You must edit and upload the updated product
load form.

After you have completed these steps, US sales and use tax calculation will be enabled.

Note

• Activation of your tax nexus settings takes from 5–48 hours.
• Tax nexus settings must be configured before you can assign PTCs.
• PTC assignment happens 24 hours after the AWS Marketplace team approves and publishes

your product, which may take 3–5 days from the time you submit your product change
request.

• When tax calculation begins, estimated sales tax charges are included in customer invoices.
Sales tax is calculated based on factors including, but not limited to, the customer’s billing
address, the tax code of your product, and your tax nexus settings. The resulting sales
tax charge, if applicable, is included in the customer’s invoice and identified as a US sales
tax charge under the specific product sold by your company. Customer invoices show
your company's Legal Name, which you provided when you registered to become an AWS
Marketplace seller.

• The collected sales tax funds are sent with your monthly disbursement. The US Sales and
Use Tax Report is available to you on the fifteenth of the month, detailing what taxes were
collected. You are responsible for remitting your own taxes.

If you enroll for the AWS Marketplace Tax Calculation Service, we also recommend that you register
for the Amazon Tax Exemption Program (ATEP). You are not required to use this service. However, we
recommend that all AWS Marketplace sellers who use the Tax Calculation Service participate in ATEP.
Participation helps to reduce the number of tax-only refunds that will need to be processed to qualified
customers registered in ATEP.

You can edit or delete the tax nexus information on the Tax Calculation Service Settings page in the AWS
Marketplace Management Portal.

For more information, visit AWS Marketplace Sellers on Amazon Web Service Tax Help to learn more
about where AWS collects sales tax, VAT, or GST on your sales and remits such taxes to the local tax
authorities, in the name of AWS, Inc.

11

https://s3.amazonaws.com/aws-mp-seller-tax-terms/AWS_Marketplace_Tax_Methodology_Doc.pdf
https://s3.amazonaws.com/aws-mp-seller-tax-terms/Product_Tax_Codes_for_US_Sales_Tax.pdf
https://s3.amazonaws.com/aws-mp-seller-tax-terms/Product_Tax_Codes_for_US_Sales_Tax.pdf
https://aws.amazon.com/marketplace/management/settings
https://aws.amazon.com/marketplace/management/settings
https://aws.amazon.com/marketplace/management/settings
https://aws.amazon.com/marketplace/management/settings
https://aws.amazon.com/tax-help/marketplace/
https://aws.amazon.com/tax-help/

AWS Marketplace Seller Guide
Disbursement and buyer billing

Note
Your use of the Tax Calculation service is governed by the AWS Marketplace US Tax Collection
Support Terms and Conditions

Disbursement and buyer billing
AWS acts as the billing mechanism on your behalf. The two most common payment options available to
buyers are credit card and invoicing.

The following is information about the billing for AWS Marketplace subscriptions:

• Purchases with upfront payments are billed immediately upon subscription.
• Billing schedules for private offers are agreed upon between the buyer and seller.
• Invoice payment terms (including bill due date) are agreed upon between the buyer and AWS. The

terms are not disclosed to vendors.
• Private offers using the flexible payment scheduler are required to be on invoicing as the payment

option.
• You can validate the invoicing using the Monthly billed revenue report (p. 288). This report

summarizes invoicing by AWS on your behalf. This report contains a Transaction Reference key to
match and provide visibility to the invoice creation date and invoice due date.

The following is information about how you as the seller get your disbursement:

• A valid payment method, a registered US bank account, and a submitted W9 form are required for
disbursement.

• Sellers of paid products are required to provide a W-8, value added tax (VAT) or good and services
tax (GST) registration number, and a US bank account. Hyperwallet can provide you with a US bank
account, which you can provide to AWS Marketplace for your AWS Marketplace disbursements.

• AWS disburses payments monthly directly to the bank account associated with the seller account,
minus AWS Marketplace service fees.

• AWS disburses payment via ACH transfer after the buyer pays an invoice.
• AWS disbursements are made once a month between the 7th and 10th of the month. The date will be

the same for a seller each month. The Disbursement report (p. 283) will reflect your disbursement
date.

• AWS disbursements cover a rolling monthly period (starting when the seller account was created).
• Funds are disbursed only after they are collected from the customer.
• Payments take approximately 1–2 business days to arrive in the seller's bank following the

disbursement date. The exact timing is subject to the bank and the time zone.
• The disbursement report is updated in the AWS Marketplace Management Portal 3–5 days after the

disbursement.
• Details about disbursed funds and uncollected funds are available in the monthly disbursement report,

including any open account receivables.
• If you participate in the AWS Marketplace Tax Calculation Service, any US sales and use tax collected

from customers will be included in your monthly disbursement.

Already a seller?
Manage your products into incremental channel revenue by taking advantage of the go-to-market
activities made available in the AWS Marketplace Management Portal. Activities include the following:

• Measure the results of your marketing efforts within hours, including the usage and revenue driven by
your campaigns.

12

https://s3.amazonaws.com/aws-mp-seller-tax-terms/AWS_Marketplace_Tax_Support_Terms_and_Conditions.pdf?icmpid=docs_marketplace_helppane
https://s3.amazonaws.com/aws-mp-seller-tax-terms/AWS_Marketplace_Tax_Support_Terms_and_Conditions.pdf?icmpid=docs_marketplace_helppane
https://portal.aws.amazon.com/gp/aws/developer/account?ie=UTF8&action=payment-method
https://aws.amazon.com/marketplace/management/seller-settings/account/bank
https://wssellers.hyperwallet.com/
https://aws.amazon.com/marketplace/management/tour

AWS Marketplace Seller Guide
Complaints handling policy – Amazon Payments Europe

• Enable customer service representatives to retrieve customer data in real time.
• Upload files needed to create and manage your products, and monitor progress as we process them.

Complaints handling policy – Amazon Payments
Europe
If you have any issues with the services provided by Amazon Payments Europe (APE), let us know. Your
feedback helps us create a better experience for you and all of our buyers and sellers.

Note
Only complaints specific to AWS Marketplace will be addressed through the following
procedure. Services provided by Amazon Payments Europe S.C.A. include, among others,
processing of payment transactions, verifying the errors that may appear in the fee charges, and
disbursements of funds.

Submitting a complaint
If you have an AWS Marketplace account with Amazon Payments Europe S.C.A., your complaint will be
handled by Amazon Payments Europe S.C.A.

To submit a complaint

1. Sign in to your AWS Marketplace Seller account.
2. Go to Contact Us.
3. Select Commercial Marketplace, Seller Account, Registration.
4. Provide details about your complaint and choose Submit.

Amazon Payments Europe Complaint resolution time frames
Amazon Payments Europe S.C.A. (APE) will respond with an update to your complaint within 15 business
days following the day on which it received your complaint. In exceptional circumstances beyond the
control of APE, the resolution of the complaint may be extended up to 35 business days, following the
day on which APE first received that complaint.

Complaint escalation
If you aren't satisfied with our response, you may choose to escalate your complaint by contacting the
following:

• Amazon Payments Europe senior management

Submit your complaints by sending an email message to senior management at
<management-ape@amazon.lu>. We will consider your comments carefully and respond within 15
business days following the day on which senior management received your complaint. In exceptional
circumstances beyond the control of Amazon Payment Europe, the resolution of the complaint may
be extended up to 35 business days, following the day on which senior management first received the
complaint.

• Commission de Surveillance du Secteur Financier (CSSF)

The CSSF is the authority responsible for the prudential supervision of companies in the financial
sector in Luxembourg. You can contact the CSSF at 110 Route d’Arlon L-2991 Luxembourg or use the
Contact page at: https://www.cssf.lu/contacts/. To obtain further information regarding the CSSF and
how to contact them, see Customer complaints on the CSSF website.

• Online Dispute Resolution

13

https://aws.amazon.com/marketplace/login?ref_=header_user_signin_desktop
https://www.cssf.lu/contacts/
https://www.cssf.lu/customer-complaints/

AWS Marketplace Seller Guide
Seller toolkit

If you opened your account online in the EU, you may also have the option to refer your complaint to
the CSSF by using the Online Dispute Resolution platform. This option is available because Amazon
Payments Europe S.C.A. provides financial services and the CSSF is the authority responsible for
its licence. For more information, see the Online Dispute Resolution platform on the European
Commission website.

Seller toolkit
The AWS Marketplace Management Portal is your primary tool for selling products on AWS Marketplace.
The following additional tools can give you more insight into your customer base and help you better
understand your sales.

• AWS Marketplace Commerce Analytics Service (p. 14)
• AWS Marketplace Field Demonstration Program (p. 25)
• Product Support Connection (p. 25)
• Seller reports and data feeds (p. 273)
• More resources in AWS Marketplace Management Portal (p. 34)

AWS Marketplace Commerce Analytics Service
The AWS Marketplace Commerce Analytics Service lets you programmatically access product and
customer data through AWS Marketplace. After you enroll in the service, you can access your usage,
subscription, and billing reports through the AWS SDK.

The data you request using the SDK tools is delivered to your AWS account as datasets. Most of the
datasets correspond to the same data as the text-based reports available on the AWS Marketplace
Management Portal. You can request datasets for a specific date, and the data is delivered to the
provided Amazon S3 bucket. Notification of data delivery is provided by the Amazon Simple Notification
Service (Amazon SNS).

Terms and conditions
These AWS Marketplace Commerce Analytics Service Terms and Conditions (these "CAS Terms”) contain
the terms and conditions specific to your use of and access to the AWS Marketplace Commerce Analytics

14

https://ec.europa.eu/consumers/odr/
https://aws.amazon.com/marketplace/management/
https://aws.amazon.com/marketplace/management/tour
https://aws.amazon.com/marketplace/management/tour

AWS Marketplace Seller Guide
AWS Marketplace Commerce Analytics Service

Service ("CA Service”) and are effective as of the date you click an "I Accept” button or check box
presented with these CAS Terms or, if earlier, when you use any CA Service offerings. These CAS Terms
are an addendum to the Terms and Conditions for AWS Marketplace Sellers (the "AWS Marketplace
Seller Terms”) between you and Amazon Web Services, Inc. ("AWS,” "we,” "us” or "our”), the terms of
which are hereby incorporated herein. In the event of a conflict between these CAS Terms and the AWS
Marketplace Seller Terms, the terms and conditions of these CAS Terms apply, but only to the extent of
such conflict and solely with respect to your use of the CA Service. Capitalized terms used herein but not
defined herein shall have the meanings set forth in the AWS Marketplace Seller Terms.

1. CA Services and CAS Data. To qualify for access to the CA Service, you must be an AWS Marketplace
Seller bound by existing AWS Marketplace Seller Terms. Information and data you receive or have
access to in connection with the CA Service ("CAS Data”) constitutes Subscriber Information and
is subject to the restrictions and obligations set forth in the AWS Marketplace Seller Terms. You
may use CAS Data on a confidential basis to improve and target marketing and other promotional
activities related to Your AWS Marketplace Content provided that you do not (a) disclose CAS Data
to any third party; (b) use any CAS Data in any way inconsistent with applicable privacy policies
or law; (c) contact a subscriber to influence them to make an alternative purchase outside of the
AWS Marketplace; (d) disparage us, our affiliates, or any of their or our respective products; or (e)
target communications of any kind on the basis of the intended recipient being an AWS Marketplace
subscriber.

2. CA Service Limitations and Security. You will only access (or attempt to access) the CA Service
by the means described in the CA Service documentation. You will not misrepresent or mask
your identity or your client's identity when using the CA Service. We reserve the right, in our sole
discretion, to set and enforce limits on your use of the CA Service, including, without limitation, with
respect to the number of connections, calls and servers permitted to access the CA Service during
any period of time. You agree to, and will not attempt to circumvent such limitations. We reserve the
right to restrict, suspend or terminate your right to access the CA Service if we believe that you may
be in breach of these CAS Terms or are misusing the CA Service.

3. CA Service Credential Confidentiality and Security. CA Service credentials (such as passwords, keys
and client IDs) are intended to be used by you to identify your API client. You are solely responsible
for keeping your credentials confidential and will take all reasonable measures to avoid disclosure,
dissemination or unauthorized use of such credentials, including, at a minimum, those measures you
take to protect your own confidential information of a similar nature. CA Service credentials may not
be embedded on open source projects. You are solely responsible for any and all access to the CA
Service with your credentials.

4. Modification. We may modify these CAS Terms at any time by posting a revised version on the
AWS Site or providing you with notice in accordance with the AWS Marketplace Seller Terms.
The modified terms will become effective upon posting or, if we notify you by email, as stated
in the email message. By continuing use or access the CA Service after the effective date of any
modifications to these CAS Terms, you agree to be bound by the modified terms.

5. Termination. These CAS Terms and the rights to use CAS Data granted herein will terminate, with
or without notice to you upon termination of your AWS Marketplace Seller Terms for any reason. In
addition, we may stop providing the CA Services or terminate your access to the CA Services at any
time for any or no reason.

Onboarding guide
You must configure your AWS account and AWS services to use the AWS Marketplace Commerce
Analytics Service.

To use the AWS Marketplace Commerce Analytics Service

1. Set up your AWS account with permissions (p. 16).
2. Create a destination Amazon S3 bucket (p. 16).
3. Configure an Amazon SNS topic for response notifications (p. 16).

15

AWS Marketplace Seller Guide
AWS Marketplace Commerce Analytics Service

4. Enroll in the Commerce Analytics Service program (p. 16).
5. Verify your configuration (p. 16).

Set up your AWS account with permissions

AWS Marketplace strongly recommends using AWS Identity and Access Management (IAM) roles to
sign in to the AWS Marketplace Management Portal rather than using your root account credentials.
See the section called “Policies and permissions for AWS Marketplace sellers” (p. 346) for specific IAM
permissions for AWS Marketplace Commerce Analytics Service permissions. See Create IAM Users for
details. By creating individual IAM users for people accessing your account, you can give each IAM user a
unique set of security credentials. You can also grant different permissions to each IAM user. If necessary,
you can change or revoke an IAM user's permissions any time.

Create a destination Amazon S3 bucket

The Commerce Analytics Service delivers the data you request to an Amazon S3 bucket that you specify.
If you already have an Amazon S3 bucket to use, proceed to the next step.

If you don't have an Amazon S3 bucket or you want to create an Amazon S3 bucket specifically for this
data, see How do I Create an S3 Bucket.

Configure an Amazon SNS topic for response notifications

The Commerce Analytics Service delivers response notifications using Amazon SNS. The service publishes
messages to this topic to notify you when your datasets are available or if an error occurred. If you
already have an Amazon SNS topic for this purpose, proceed to the next step.

If you don't have an Amazon SNS topic configured for this service, configure one now. For instructions,
see Create a Topic.

Record the topic Amazon Resource Name (ARN) for the topic you created, because the ARN is required to
call the service.

Enroll in the Commerce Analytics Service program

The Commerce Analytics Service accesses the Amazon S3 bucket and Amazon SNS topic after you
configure the service with the ARN for the topic and name of the bucket.

To enable access

1. Log in to the AWS Marketplace Management Portal with the AWS account you use to manage your
AWS Marketplace products.

2. Navigate to the Commerce Analytics Service enrollment page.
3. Enter the Amazon S3 bucket name and Amazon SNS topic ARN, and choose Enroll.
4. On the permissions page, choose Allow.
5. On the AWS Marketplace Management Portal, record the Role Name ARN in the success message.

You need the ARN to call the service.

Note
Onboarding onto Commerce Analytics Service creates an IAM role in your AWS account that
allows AWS Marketplace to write to the Amazon S3 bucket and publish notifications to the
Amazon SNS Topic.

Verify your configuration

The last step is to verify that your configuration works as expected.

16

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_identity-management.html#intro-identity-users
https://docs.aws.amazon.com/AmazonS3/latest/UG/CreatingaBucket.html
https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://aws.amazon.com/marketplace/management/
https://aws.amazon.com/marketplace/management/cas/enroll

AWS Marketplace Seller Guide
AWS Marketplace Commerce Analytics Service

To test your configuration

1. Download, install, and configure the AWS Command Line Interface (AWS CLI).
2. Using the AWS CLI, run this command.

aws marketplacecommerceanalytics generate-data-set \
--data-set-type "customer_subscriber_hourly_monthly_subscriptions" \
--data-set-publication-date "{TODAY'S-DATE}" \
--role-name-arn "{YOUR-ROLE-NAME-ARN}" \
--destination-s3-bucket-name "{YOUR-S3-BUCKET}" \
--destination-s3-prefix "test-prefix" \
--sns-topic-arn "{YOUR-SNS-TOPIC-ARN}"

• For --data-set-publication-date, replace {TODAY'S DATE} with the current date using
ISO-8601 format, YYYY-MM-DDT00:00:00Z, where YYYY is the four-digit year, MM is the two-digit
month, and DD is the two-digit day.

• For --role-name-arn, replace {YOUR-ROLE-NAME-ARN} with the ARN of the role you received from
the enrollment process in Enroll in the Commerce Analytics Service program (p. 16).

• For --destination-s3-bucket-name, replace {YOUR-S3-BUCKET} with the Amazon S3 bucket you created
in Create a destination Amazon S3 bucket (p. 16).

• For –sns-topic-arn, replace {YOUR-SNS-TOPIC-ARN} with the Amazon SNS topic you created in
Configure an Amazon SNS topic for response notifications (p. 16).

If you receive a response including the dataSetRequestId response from the service, you've completed the
on-boarding process. A successful response looks like this:

{
 "dataSetRequestId": "646dd4ed-6806-11e5-a6d8-fd5dbcaa74ab"
}

Technical implementation guide
The AWS Marketplace Commerce Analytics Service is provided through the AWS SDK. This guide shows
you how to interact with the service using the AWS CLI and the AWS SDK for Java.

IAM policy for Commerce Analytics Service

To allow your IAM users to use the Commerce Analytics Service, attach the following inline policy to your
users.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "marketplacecommerceanalytics:GenerateDataSet",
 "Resource": "*"
 }
]
}

For more information, see Creating Policies in the IAM console in the IAM User Guide.

17

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

AWS Marketplace Seller Guide
AWS Marketplace Commerce Analytics Service

Making Requests with the AWS CLI

To get started, download the AWS CLI. The following AWS CLI example makes a request for the Hourly/
Monthly Subscriptions dataset for October 1, 2017. This dataset is published to the demo-bucket
Amazon S3 bucket using the prefix demo-prefix, and the notification message is delivered to the demo-
topic Amazon SNS topic.

aws marketplacecommerceanalytics generate-data-set \
--data-set-type "customer_subscriber_hourly_monthly_subscriptions" \
--data-set-publication-date "2017-10-01T00:00:00Z" \
--role-name-arn "arn:aws:iam::123412341234:role/MarketplaceCommerceAnalyticsRole" \
--destination-s3-bucket-name "demo-bucket" \
--destination-s3-prefix "demo-prefix" \
--sns-topic-arn "arn:aws:sns:us-west-2:123412341234:demo-topic"

This request returns an identifier that is unique for each request. You can use this identifier to correlate
requests with notifications published to your Amazon SNS topic. The following example is an example of
this identifier.

{
 "dataSetRequestId": "646dd4ed-6806-11e5-a6d8-fd5dbcaa74ab"
}

Making requests with the AWS SDK for Java

To start, download the AWS Java SDK. The following AWS SDK for Java example makes a request for
the Hourly/Monthly Subscriptions dataset for October 1, 2015. This dataset is published to the demo-
bucket Amazon S3 bucket using the prefix demo-prefix, and the notification message is delivered to the
demo-topic Amazon SNS topic.

/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.TimeZone;
import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;

18

https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-java/

AWS Marketplace Seller Guide
AWS Marketplace Commerce Analytics Service

import
 com.amazonaws.services.marketplacecommerceanalytics.AWSMarketplaceCommerceAnalyticsClient;
import com.amazonaws.services.marketplacecommerceanalytics.model.GenerateDataSetRequest;
import com.amazonaws.services.marketplacecommerceanalytics.model.GenerateDataSetResult;
/**
* This sample demonstrates how to make basic requests to the AWS Marketplace Commerce
* Analytics service using the AWS SDK for Java.
* <p>
* Prerequisites: Follow the on-boarding guide: {URL OR SOMETHING}
* <p>
* Fill in your AWS access credentials in the provided credentials file
* template, and be sure to move the file to the default location
* (~/.aws/credentials) where the sample code will load the credentials from.
* <p>
* WARNING: To avoid accidental leakage of your credentials, DO NOT keep
* the credentials file in your source directory.
* <p>
* http://aws.amazon.com/security-credentials
*/
public class MarketplaceCommerceAnalyticsSample {
public static void main(String[] args) throws ParseException {
/*
* The ProfileCredentialsProvider will return your [default]
* credential profile by reading from the credentials file located at
* (~/.aws/credentials).
*/
AWSCredentials credentials = null;
try {
credentials = new ProfileCredentialsProvider().getCredentials();
} catch (Exception e) {
throw new AmazonClientException("Cannot load the credentials from the credential profiles "
+ "file. Make sure that your credentials file is at the correct "
+ "location (~/.aws/credentials), and is in valid
format.", e);
}
AWSMarketplaceCommerceAnalyticsClient client = new
 AWSMarketplaceCommerceAnalyticsClient(credentials);
Region usEast1 = Region.getRegion(Regions.US_EAST_1);
client.setRegion(usEast1);
System.out.println("===");
System.out.println("Getting Started with AWS Marketplace Commerce Analytics Service");
System.out.println("===\n");
// Create a data set request with the desired parameters
GenerateDataSetRequest request = new GenerateDataSetRequest();
request.setDataSetType("customer_subscriber_hourly_monthly_subscriptions");
request.setDataSetPublicationDate(convertIso8601StringToDateUtc("2014-06-09T00:00:00Z"));
request.setRoleNameArn("arn:aws:iam::864545609859:role/MarketplaceCommerceAnalyticsRole");
request.setDestinationS3BucketName("awsmp-goldmine-seller");
request.setDestinationS3Prefix("java-sdk-test");
request.setSnsTopicArn("arn:aws:sns:us-west-2:864545609859:awsmp-goldmine-seller-topic");
System.out.println(
String.format("Creating a request for data set %s for publication date %s.",
request.getDataSetType(), request.getDataSetPublicationDate()));
try {
// Make the request to the service
GenerateDataSetResult result = client.generateDataSet(request);
// The Data Set Request ID is a unique identifier that you can use to correlate the
// request with responses on your Amazon SNS topic
System.out.println("Request successful, unique ID: " + result.getDataSetRequestId());
} catch (AmazonServiceException ase) {
System.out.println("Caught an AmazonServiceException, which means your request made it "
+ "to the AWS Marketplace Commerce Analytics service, but was rejected with an "
+ "error response for some reason.");
System.out.println("Error Message: " + ase.getMessage());
System.out.println("HTTP Status Code: " + ase.getStatusCode());
System.out.println("AWS Error Code: " + ase.getErrorCode());

19

AWS Marketplace Seller Guide
AWS Marketplace Commerce Analytics Service

System.out.println("Error Type: " + ase.getErrorType());
System.out.println("Request ID: " + ase.getRequestId());
} catch (AmazonClientException ace) {
System.out.println("Caught an AmazonClientException, which means the client encountered "
+ "a serious internal problem while trying to communicate with the AWS Marketplace"
+ "Commerce Analytics service, such as not being able to access the "
+ "network.");
System.out.println("Error Message: " + ace.getMessage());
}
}
private static Date convertIso8601StringToDateUtc(String dateIso8601) throws ParseException
 {
TimeZone utcTimeZone = TimeZone.getTimeZone("UTC");
DateFormat utcDateFormat = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ssX");
utcDateFormat.setTimeZone(utcTimeZone);
return utcDateFormat.parse(dateIso8601);
}
}

You should expect results similar to this example.

===
Getting Started with AWS Marketplace Commerce Analytics Service
===
Creating a request for data set customer_subscriber_hourly_monthly_subscriptions for
 publication
date Sun Jun 08 17:00:00 PDT 2014.
Request successful, unique ID: c59aff81-6875-11e5-a6d8-fd5dbcaa74ab

Technical documentation
The service exposes one method, GenerateDataSet, which enables you to request datasets to be
published to your Amazon S3 bucket. The following table lists the parameters for GenerateDataSet.

Dataset parameters

Field Description

Data Set Type This dataset will be returned as the result of the
request.

Data Set Publication Date The date a dataset was published.

For daily datasets, provide a date with day-level
granularity for the desired day.

For monthly datasets, provide a date with month-
level granularity for the desired month. The day
value is ignored.

Role Name ARN The ARN of the role with an attached permissions
policy that provides the service with access to
your resources.

Destination Amazon S3 Bucket Name The name (the friendly name, not the ARN) of the
destination Amazon S3 bucket. Your datasets are
published to this location.

20

AWS Marketplace Seller Guide
AWS Marketplace Commerce Analytics Service

Field Description

Destination Amazon S3 Prefix (Optional) The Amazon S3 prefix for the published
dataset, similar to a directory path in standard file
systems.

For example, if given the bucket name mybucket
and the prefix myprefix/mydatasets, the
output file is published to s3://DOC-EXAMPLE-
BUCKET/myprefix/mydatasets/outputfile.

If the prefix directory structure doesn't exist, it's
created.

If no prefix is provided, the dataset is published to
the Amazon S3 bucket root.

SNS Topic ARN The ARN for the Amazon SNS topic that is notified
when the dataset has been published or if an error
occurs.

Responses

The AWS Marketplace Commerce Analytics service returns two responses. The first is synchronous, which
is returned immediately, and the second is asynchronous, which is returned using the Amazon SNS. The
synchronous response is similar to this example.

Data set parameters

Field Description

Data Set Request ID A unique identifier representing a specific request
to the service. This identifier can be used to
correlate a request with notifications on the
Amazon SNS topic.

The asynchronous response is posted as a JSON-formatted document to your Amazon SNS topic and is
similar to this example.

Dataset parameters

Field Description

Data Set S3 Location The bucket name and key for the delivered
dataset.

Data Set Meta Data S3 Location The bucket name and key for the delivered
dataset metadata file.

Data Set Request ID A unique identifier representing a specific request
to the service. This identifier can be used to
correlate a request with notifications on the
Amazon SNS topic.

Success "True" if the operation succeeded; "false" if not.

21

AWS Marketplace Seller Guide
AWS Marketplace Commerce Analytics Service

Field Description

Message (Optional) If an error occurred (for example,
"Success” is "false”), this message contains
information about the failure.

Example JSON-formatted asynchronous response

 {
 "dataSetS3Location":{
 "bucketName":"demo-bucket",
 "key":"demo-prefix/customer_subscriber_hourly_monthly_subscriptions_2014-06-09.csv"
 },
 "dataSetMetaDataS3Location":{
 "bucketName":"demo-bucket",
 "key":"demo-prefix/
customer_subscriber_hourly_monthly_subscriptions_2014-06-09.meta.json"
 },
 "dataSetRequestId":"f65b7244-6862-11e5-80e2-c5127e17c023",
 "success":true
 }

Outputs

After a successful request, the requested dataset is delivered to your Amazon S3 bucket as a .csv file. A
JSON-formatted metadata file is published to the same location as the dataset file. The metadata file
provides useful information about the dataset and original request parameters. The metadata file has
the same name as the dataset file, but ends with the extension .meta.json. The following table lists the
metadata fields in the .csv file.

Metadata fields

Field Description

Data Set Request ID A unique identifier representing a specific request
to the service. This identifier can be used to
correlate a request with notifications on the
Amazon SNS topic.

Data Set Coverage Range Defines the start date/time and end date/time for
the data coverage range. These dates are in ISO
8601 format.

Data Set Request Parameters The original request parameters to the
GenerateDataSet method.

Data Set S3 Location The bucket name and key for the delivered
dataset.

Data Set Meta Data S3 Location The bucket name and key for the delivered
dataset metadata file.

Following is an example of JSON-formatted metadata contents.

{

22

AWS Marketplace Seller Guide
AWS Marketplace Commerce Analytics Service

"dataSetRequestId": "43d7137b-8a94-4042-a09d-c41e87f371c1",
"dataSetCoverageRange": {
"startDateTime": "2014-06-08T00:00:00.000Z",
"endDateTime": "2014-06-08T23:59:59.000Z"
},
"dataSetRequestParameters": {
"sellerAccountId": "123412341234",
"dataSetType": "customer_subscriber_hourly_monthly_subscriptions",
"dataSetPublicationDate": "2014-06-09T00:00:00.000Z",
"roleNameArn": "arn:aws:iam::123412341234:role/MarketplaceCommerceAnalyticsRole",
"destinationS3BucketName": "demo-bucket",
"destinationS3Prefix": "demo_prefix/customer_subscriber_hourly_monthly_subscriptions",
"snsTopicArn": "arn:aws:sns:us-west-2:123412341234:demo-topic"
},
"dataSetS3Location": {
"bucketName": "demo-bucket",
"key": "demo_prefix/customer_subscriber_hourly_monthly_subscriptions_2014-06-09.csv"
},
"dataSetMetaDataS3Location": {
"bucketName": "demo-bucket",
"key": "demo_prefix/customer_subscriber_hourly_monthly_subscriptions_2014-06-09.meta.json"
}
}

For a complete list of available datasets, including availability dates, refer to the AWS SDK
documentation.

Troubleshooting
This sections describes solutions to issues you may encounter with using the AWS Marketplace
Commerce Analytics Service.

I can't access the service because of an allow list issue.

If you're not yet registered as a seller on the AWS Marketplace, visit AWS Marketplace Management
Portal to register. If you have already registered as a seller on AWS Marketplace, contact the AWS
Marketplace Seller Operations team.

I can't request datasets for a date in the past, even though the SDK documentation says it should be
available for this date.

Even though datasets are listed as being available for certain dates in the past, we have data only
since the time that you joined AWS Marketplace. If you believe that this is in error, contact the AWS
Marketplace Seller Operations team.

When I call the service, I receive the error message "Could not connect to the endpoint URL: https://
marketplacecommerceanalytics.eu-central-1.amazonaws.com/”

The AWS Marketplace Commerce Analytics Service is available only in the US East (N. Virginia) Region.
You must make all calls to the Commerce Analytics Service to the us-east-1 endpoint.

If you're using the AWS CLI, add the "--region flag to each call and specify the AWS Region as us-
east-1, as shown in the following example.

aws marketplacecommerceanalytics generate-data-set \
--data-set-type "customer_subscriber_hourly_monthly_subscriptions" \
--data-set-publication-date "2016-04-21T00:00:00Z" \
--role-name-arn "arn:aws:iam::138136086619:role/MarketplaceCommerceAnalyticsRole" \
--destination-s3-bucket-name "marketplace-analytics-service" \
--destination-s3-prefix "test-prefix" \

23

https://docs.aws.amazon.com/cli/latest/reference/marketplacecommerceanalytics/generate-data-set.html#options
https://docs.aws.amazon.com/cli/latest/reference/marketplacecommerceanalytics/generate-data-set.html#options
https://aws.amazon.com/marketplace/management
https://aws.amazon.com/marketplace/management
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
AWS Marketplace Commerce Analytics Service

--sns-topic-arn "arn:aws:sns:eu-
central-1:138136086619:Marketplace_Analytics_Service_Notice" \
 --region us-east-1

I want to use a different Amazon S3 bucket or Amazon SNS topic than the ones I selected when I
went through the on-boarding process.

When enrolling in the AWS Marketplace Commerce Analytics Service, you specified an Amazon S3 bucket
and Amazon SNS topic. The onboarding process configures your IAM permissions to allow the service
access to only these specific resources. To use different resources, you need to modify your IAM policy:

1.
Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles on the left side of the IAM console.
3. Choose MarketplaceCommerceAnalyticsRole.
4. Expand the Inline Roles section, if not already expanded.
5. Locate the policy with a name that starts with oneClick_MarketplaceCommerceAnalyticsRole and

choose Edit Policy.
6. In the policy document, locate the section that specifies actions related to the service that you

want to modify. For example, to change your Amazon S3 bucket, locate the section that includes
the actions that start with s3: and change their respective Resource selection to specify your new
Amazon S3 bucket.

For additional information about IAM policies, see the following guide: https://docs.aws.amazon.com/
IAM/latest/UserGuide/access_policies.html

I get an AccessDeniedException error when I call the GenerateDataSet action

This can happen if your IAM user doesn't have the permissions necessary to call GenerateDataSet. The
following procedure outlines the steps needed to update an IAM policy with those permissions using the
IAM console.

To get the GenerateDataSet permissions

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. From the navigation pane on the right, choose Users.
3. Choose the IAM user whose credentials you want to use for the marketplacecommerceanalytics

AWS CLI commands to open the Summary page.
4. From the Permissions tab, choose Add inline policy
5. Open the JSON tab and paste the following code:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "marketplacecommerceanalytics:GenerateDataSet",
 "Resource": "*"
 }
]
}

6. Choose Review policy, provide the inline policy with a descriptive name, like GenerateDataSetPolicy,
and choose Create policy.

24

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Marketplace Seller Guide
AWS Marketplace Field Demonstration Program

After updating the permissions, run the AWS CLI command again with the same credentials as this IAM
user to complete the action.

For more information, see Creating Policies in the IAM console in the IAM User Guide.

My problem isn't listed here.

Contact the AWS Marketplace Seller Operations team.

AWS Marketplace Field Demonstration Program
The AWS Marketplace Field Demonstration Program (FDP) allows the AWS field team (internally
approved AWS employees) to use some products and solutions through AWS Marketplace at no charge.

Examples of approved AWS employees may include solutions architects and sales and marketing
professionals. The FDP allows these employees to demonstrate product capabilities for education and
potential inclusion in customer workloads.

The following product types are supported:

• Amazon Machine Images (AMIs) (p. 63)
• Containers (p. 116)
• Machine learning algorithms and model packages (SageMaker) (p. 176)
• Data sets (AWS Data Exchange)

Note
For AWS Data Exchange products, the FDP only applies to products with a public offer of $0
(free).
For AWS Data Exchange products that have subscription verification enabled, providers need
to approve the subscription request. For more information about subscription verification, see
Subscription verification for subscribers in the AWS Data Exchange User Guide.

You're automatically enrolled in the FDP program when you sign up as an AWS Marketplace seller. To opt
out, submit a support request to the Managed Catalog Operations (MCO) team.

To view information about product usage under this program, see the AWS field demonstration
usage (p. 293) section of the Monthly billed revenue report (p. 288).

Product Support Connection
AWS Marketplace Product Support Connection (PSC) is a feature that enables AWS Marketplace
customers to provide contact information in the AWS Marketplace website for the purposes of obtaining
and accessing product support from AWS Marketplace Sellers. AWS Marketplace shares the provided data
with participating Sellers via an API to enable a better support experience. Customers can choose to add
contact details during or after a purchase of PSC-enabled AWS Marketplace products, and Sellers can
retrieve the Customer contact data, along with relevant product subscription details, by calling a pull-
based API.

Your staff can use the Customer Support Eligibility tool to access near-real-time information about
a customer's subscription to your products and provide fast, personalized service. AWS Marketplace
Management Portal makes it easy to get started: Enter a customer's AWS account ID to retrieve
subscription and usage information from their account.

You also have the option to enroll your products in AWS Marketplace PSC. For products that are enrolled
in PSC, AWS Marketplace customers can choose to provide contact information (including name,
organization, email address, and phone number) through the AWS Marketplace website for the purposes
of obtaining and accessing product support. If you enroll in PSC, AWS Marketplace shares the provided
data with you through an API to help enable a more seamless support experience.

25

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://aws.amazon.com/marketplace/management/contact-us/
https://docs.aws.amazon.com/data-exchange/latest/userguide/what-is.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/subscription-verification-sub.html
http://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Product Support Connection

Note
Data products don't support this feature.

Technical implementation guide
This section covers API specification details and how to onboard with the PSC feature. The PSC start-
support-data-export API operation is part of the AWS Marketplace Commerce Analytics Service
(CAS). To integrate with the API for PSC, you must first enroll in CAS. If you are already enrolled in CAS,
use the same AWS Identity and Access Management (IAM) role that you created when you onboarded.

IAM policy for PSC

To allow your IAM users to access the AWS Marketplace PSC feature, you must attach the following inline
policy to your users.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "marketplacecommerceanalytics:StartSupportDataExport",
 "Resource": "*"
 },
]
}

For more information, see Creating Policies in the IAM console in the IAM User Guide.

Making requests with the AWS CLI

You can request an export of the PSC data using the AWS CLI or any of the AWS Software Development
Kits (SDKs).

If you have already been using CAS to call the generate-data-set operation, you must use the same
IAM role for both generate-data-set and start-support-data-export.

To ensure the security of the customer contact data available through the Product Support Connection
program, we recommend that the Amazon Simple Storage Service (Amazon S3) bucket you use for
start-support-data-export be separate from the S3 bucket you use for generate-data-set.
Verify the permissions on your IAM role allow access to all S3 buckets you intend to use.

 aws marketplacecommerceanalytics start-support-data-export
 --data-set-type "test_customer_support_contacts_data" \
 --from-date “{START-DATE}” \
 --role-name-arn "{YOUR-ROLE-NAME-ARN}” \
 --destination-s3-bucket-name “{YOUR-S3-BUCKET}” \
 --destination-s3-prefix “test-prefix” \
 --sns-topic-arn “{YOUR-SNS-TOPIC-ARN}”

A successful response from the service returns the dataSetRequestId of the request.

Example

{

"dataSetRequestId":

"646dd4ed-6806-11e5-a6d8-fd5dbcaa74ab"

26

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://aws.amazon.com/cli/
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/

AWS Marketplace Seller Guide
Product Support Connection

}

API request parameters and responses
StartSupportDataExport method

The StartSupportDataExport method allows you to request contact details that customers have
submitted for your PSC-enabled products. Data is exported from the start date specified in the request
up to 15 minutes prior to the time of the request. A successful request results in the dataset being
published to the Amazon Simple Storage Service(Amazon S3) bucket specified.

At this time, you can query the API to request the test_customer_support_contacts_data dataset.
This will export a static test dataset containing data that does not correspond to any real customer data.
You should use the test data for testing and integration. The customer_support_contacts_data
option, which will return the real customer contact data for your PSC-enabled products, will not be
available until after the General Availability of this feature later in 2016.

Request parameters

Input Description

Data Set Type The type of dataset requested to be exported.
Valid options for datasets are:

test_customer_support_contacts_data

customer_support_contacts_data

The test_customer_support_contacts_data
dataset provides sample data for testing and
integration purposes and is available immediately.
The customer_support_contacts_data dataset
is currently unavailable. This option will contain
actual customer data and be available upon
general availability of PSC.

From Date The earliest date of data to be exported. The
exported data will contain information from the
specified From Date to 15 minutes prior to the
time of the request.

The From Date must be expressed as an ISO 8601
date/time string.

If you would like to receive the full data set, as
opposed to a set of updates, specify any date
prior to the date when you onboarded to the
program. To receive only incremental data since
your last request, specify the endDateTime from
the dataSetCoverageRange from the metadata
JSON file resulting from your previous request.
See below for more information about the
metadata JSON file.

Role Name ARN The Amazon Resource Name (ARN) of the IAM
role with an attached permissions policy which
provides the service with access to your resources.

27

AWS Marketplace Seller Guide
Product Support Connection

Input Description

Destination S3 Bucket Name The name (friendly name, not ARN) of the
destination Amazon S3 bucket. Your datasets will
be published to this location.

Destination S3 Prefix (Optional) The desired Amazon S3 prefix for the
published dataset, similar to a directory path in
standard file systems.

For example, if given the bucket name "mybucket"
and the prefix "myprefix/mydatasets", the output
file "outputfile" would be published to "s3://DOC-
EXAMPLE-BUCKET/myprefix/mydatasets/
outputfile".

If the prefix directory structure does not exist, it
will be created.

If no prefix is provided, the data set will be
published to the Amazon S3 bucket root.

SNS Topic ARN The Amazon Resource Name (ARN) for the
Amazon SNS topic that will be notified when the
data set has been published, or if an error occurs.

Responses
Calls to the API will immediately return a response with the Data Set Request ID.

Field Description

Data Set Request ID A unique identifier representing a specific request
to the service. This identifier can be used to
correlate a request with notifications on the
Amazon SNS topic.

An additional response containing metadata will be posted to the Amazon Simple Notification Service
(Amazon SNS) topic specified in the original request. The contents of the post are detailed in the
following table.

Field Description

Data Set S3 Location The bucket name and key for the delivered
dataset.

Data Set Meta Data S3 Location The bucket name and key for the delivered
dataset meta data file.

Data Set Request ID A unique identifier representing a specific request
to the service. This identifier can be used to
correlate a request with notifications on the
Amazon SNS topic.

Success "True" if the operation succeeded; "false " if not.

28

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

AWS Marketplace Seller Guide
Product Support Connection

Field Description

Message (Optional) If an error occurred (for example,
“Success” is “false”), this message will contain
information about the failure.

The metadata file is JSON-formatted and contains the following fields.

Field Description

Data Set Request ID A unique identifier representing a specific request
to the service. This identifier can be used to
correlate a request with notifications on the
Amazon SNS topic.

Data Set Coverage Range Defines the start date / time and end date / time
for the data coverage range. These dates are in
ISO 8601 format.

Data Set Request Parameters The original request parameters to the
GenerateDataSet method.

Data Set S3 Location The bucket name and key for the delivered
dataset.

Data Set Meta Data S3 Location The bucket name and key for the delivered
dataset metadata file.

Request Received Date Time The date/time at which the request was received,
in ISO 8601 format.

Request Completed Date Time The date/time at which the request was
completed, in ISO 8601 format.

Example JSON-formatted metadata contents

{
 "dataSetRequestId": "c3c84ee0-5aba-11e6-8d9c-235dc080841d",
 "dataSetCoverageRange": {
 "startDateTime": "2016-08-18T00:00:00.000Z",
 "endDateTime": "2016-08-05T03:14:50.334Z"
 },
 "dataSetRequestParameters": {
 "fromDate": "2016-08-18T00:00:00.000Z",
 "dataSetType": "test_customer_support_contacts_data",
 "roleNameArn": "arn:aws:iam::123456789012:role/MarketplaceCommerceAnalyticsRole",
 "destinationS3BucketName": "mybucket",
 "destinationS3Prefix": "mydata",
 "snsTopicArn": "arn:aws:sns:us-west-2:123456789012:mynotification"
 },
 "dataSetS3Location": {
 "bucketName": "mybucket",
 "key": "mydata/
test_customer_support_contacts_data_2015-01-18T00-00-00Z_to_2016-08-05T03-14-50Z.csv"
 },
 "dataSetMetaDataS3Location": {
 "bucketName": "mybucket",
 "key": "mydata/
test_customer_support_contacts_data_2015-01-18T00-00-00Z_to_2016-08-05T03-14-50Z.meta.json"

29

AWS Marketplace Seller Guide
Product Support Connection

 },
 "requestReceivedDateTime": "2016-08-05T03:14:50.108Z",
 "requestCompletedDateTime": "2016-08-05T03:14:50.334Z"
}

Output data format
The output data contains customer contact records, product code, product ID, subscription start date,
and the AWS account ID of the customer. A summary of the fields is shown in the following table. Each
output file contains a comma-separated header, followed by the records containing customer data
and subscription information. Each record contains a “Create”, “Update”, or “Delete” operation type to
indicate whether the record is newly created, modified, or deleted since the “From Date” indicated in the
API request. The overall file format adheres to the RFC4180 standard.

If multiple operations have occurred on a record in the time frame specified by the “from-date”
parameter API request, only the most recent data will be reflected or exported. For example, if a
customer creates and then updates a record, the record returned will be different depending on the
specified “from-date”. If the “from-date” is prior to the date at which the record was created, only a
CREATE record will be passed in the output data set, and the record will reflect the most recently entered
details. If the “from-date” is after the record was created, but before it was updated, only an UPDATE
record will be passed in the output data set. If the from-date is after the record was updated, no record
will be passed. Likewise, if a customer creates and then deletes a record, only the “DELETE” will appear in
the output file.

If you would like to receive the full dataset, as opposed to a set of updates, specify any date prior to
the date when you onboarded to the program. To receive only incremental data since your last request,
specify the endDateTime from the dataSetCoverageRange from the metadata JSON file resulting
from your previous request.

Field Format Description

Product ID 36-character hexadecimal string Unique identifier for the product
in AWS Marketplace (GUID).

Required field; always appears in
every record.

Product Code 25-character alphanumeric
string

Unique identifier for the
product, associated with billing
and available in Amazon Elastic
Compute Cloud (Amazon EC2)
instance metadata.

Required field; always appears in
every record.

Customer Guid 36-character hexadecimal string Unique GUID identifying the
customer contact data record.
This will be unique for each
record that appears in the
output file.

Required field; always appears in
every record.

Subscription Guid 36-character hexadecimal string Unique GUID corresponding
to the customer’s product
subscription. A customer can

30

AWS Marketplace Seller Guide
Product Support Connection

Field Format Description

have multiple subscriptions to
the same product.

Required field; always appears in
every record.

Subscription Start Date ISO 8601 date/time, with UTC
time zone.

The format is YYYY-MM-
DDTHH:mm:ss.nnnZ, where
YYYY is year, MM is month, DD is
day, HH is hour from 00-23, mm
is minute of hour from 00-59,
ss is second of minute from
00-59, and nnn is millisecond of
second from 000-9999, such as
“2016-04-07T14:05:15.275Z”

Start date of the customer’s
product subscription.

Required field; always appears in
every record.

Organization String with a maximum length
of 255 characters

Organization name provided by
the customer.

Always appears in records with
operation type “Update” or
“Create.” Does not appear in
records with operation type
“Delete.”

AWS Customer Id 12-digit numeric string which
may include leading zeroes

The AWS customer ID for the
customer subscribed to the
product.

Required field; always appears in
every record.

Given Name String with a maximum length
of 100 characters

Given name or first name for the
point of contact provided by the
customer.

Always appears in records with
operation type “Update” or
“Create.” Does not appear in
records with operation type
“Delete.”

Surname String with a maximum length
of 100 characters

Surname (family name or last
name) for the point of contact
provided by the customer.

Always appears in records with
operation type “Update” or
“Create.” Does not appear in
records with operation type
“Delete.”

31

AWS Marketplace Seller Guide
Product Support Connection

Field Format Description

Telephone Number String with a maximum length
of 25 characters. May include
international phone numbers.

Telephone number provided by
the customer.

Always appears in records with
operation type “Update” or
“Create.” Does not appear in
records with operation type
“Delete.”

Email String with a maximum length
of 254 characters

Email address provided by the
customer.

Always appears in records with
operation type “Update” or
“Create.” Does not appear in
records with operation type
“Delete.”

Title String with a maximum length
of 255 characters

Job title provided by the
customer.

Optional field. Will sometimes
occur in records with operation
type “Update” or “Create.”
Does not appear in records with
operation type “Delete.”

Country Code 2-character ISO 3166 country
code

Country code provided by the
customer.

Optional field. Will sometimes
occur in records with operation
type “Update” or “Create.”
Does not appear in records with
operation type “Delete.”

ZIP Code 5-digit string Zip code provided by the
customer; applicable to USA
only.

Optional field. Will sometimes
occur in records with operation
type “Update” or “Create.”
Does not appear in records with
operation type “Delete.”

32

AWS Marketplace Seller Guide
Product Support Connection

Field Format Description

Operation Time ISO 8601 date/time, with
UTC time zone. The format is
YYYY-MM-DDTHH:mm:ss.nnnZ
(YYYY is year, MM is month,
DD is day of month, HH is
hour of day from 00-23, mm
is minute of hour from 00-59,
ss is second of minute from
00-59 and nnn is millisecond of
second from 000-9999), such as
“2016-04-07T14:05:15.275Z”

Indicates the date/time when
the record was most recently
created, updated, or deleted by
the customer.

Required field; always appears in
every record.

Operation Type String; possible values are
“CREATE”, “UPDATE”, or
“DELETE”

CREATE: Indicates that the
record has been newly created
since the from-date specified in
the API request.

UPDATE: Indicates that the
record has been updated since
the from-date specified in the
API request.

DELETE: Indicates that the
record has been deleted since
the from-date specified in the
API request.

Required field; always appears in
every record.

An example of the output file format is shown below.

Product Id,Product Code,Customer Guid,Subscription Guid,Subscription Start Date,Organization,AWS
Customer Id,Given Name,Surname,Telephone Number,Email,Title,Country Code,ZIP Code,Operation
Time,Operation Type

4b898955-84fa-4cfb-8f43-98287ad69c06,4gzp2symm0v9zidfrn9f854w6,ba1d75cc-d984-4f07-bb14-
ae04b952afbc,cad371fb-6f2c-4537-a054-1a7afc6312fd,2016-05-27T00:00:00.000Z,Example Inc --
Service
Division,000011112222,Eugene,Thietmar,555-947-8228,eugethi@example.org,,,,2016-05-12T03:54:46.143Z,CREATE

4b898955-84fa-4cfb-8f43-98287ad69c06,4gzp2symm0v9zidfrn9f854w6,1b4a2b5f-2c5d-4779-
b0c7-2878b0f45cfc,cad371fb-6f2c-4537-a054-1a7afc6312fd,2016-05-19T00:00:00.000Z,Example Inc
-- Service
Division,000011112222,Angela,Doe,555-294-4528,adoe@example.com,,US,02201,2016-05-19T18:21:06.834Z,CREATE

cade58ff-ff82-4770-b84b-0bd399bf1c6d,c0dcyyqczbk5uc62acmp6450t,6c83ff14-5167-43cc-
bb9f-24865a78db72,c2f40319-8fc2-409a-884b-2f85adf9e29c,2015-12-01T00:00:00.000Z,Example
Inc -- European Sales Division,111122223333,Ravi,Smith,555-111-1010,ravis@example.com,Head of
IT,ES,,2016-04-07T14:05:15.145Z,CREATE

4b898955-84fa-4cfb-8f43-98287ad69c06,4gzp2symm0v9zidfrn9f854w6,1b4a2b5f-2c5d-4779-
b0c7-2878b0f45cfc,cad371fb-6f2c-4537-
a054-1a7afc6312fd,2016-05-01T00:00:00.000Z,,000011112222,,,,,,,,2016-04-22T14:36:24.054Z,DELETE

33

AWS Marketplace Seller Guide
More resources in AWS Marketplace Management Portal

3f4300eb-bfa0-4610-8d68-
d8ba71baaa50,3qtu9xydxldrj8c5jyldy1lqo,91c72621-6cf4-4d69-8ebe-073ff4f8ab9e,d118eb96-55ce-4752-909c-
eedcfdcd6647,2015-11-30T00:00:00.000Z,Example Inc -- Design
Division,333344445555,Nathan,Zhenyuan,555-2222-1010,nathanz@example.com,Sr. Program
Manager,US,98109,2016-04-07T14:05:15.275Z,CREATE

3f4300eb-bfa0-4610-8d68-d8ba71baaa50,3qtu9xydxldrj8c5jyldy1lqo,2ae0be12-7397-4fdb-a1c7-
ead17967002c,d118eb96-55ce-4752-909c-eedcfdcd6647,2016-05-01T00:00:00.000Z,Example Inc --
Design
Division,333344445555,Abdul,Alves,555-676-8989,abdal@example.com,,,,2016-05-11T05:26:51.000Z,UPDATE

...

Note
When a customer deletes their contact information from the PSC program, you will see a record
in the output .csv file that indicates an operation type “DELETE.” After a customer deletes their
data, the API no longer transmits contact information such as name, telephone number, email,
and so forth. Each delete record consists of the data required to uniquely identify the record to
be deleted. Delete records contain product ID, product code, operation time, customer GUID,
subscription GUID, subscription start date, AWS Customer ID, operation time, and operation
type.
If a customer opts out of Product Support Connection by deleting their contact information, you
should also remove the contact information from your records. Because the customer contact
data will not be included in the DELETE record, you will need to look up the record in your
system by using the unique Customer GUID.
A delete record will also be sent if a customer terminates a subscription.

If you have questions or would like more information about participating in AWS Marketplace Product
Support Connection, contact the AWS Marketplace Seller Operations team.

More resources in AWS Marketplace Management
Portal
There are more resources available to you in the AWS Marketplace Management Portal. If you open the
AWS Marketplace Management Portal and sign in, you can see links to additional resources on the home
page, in the Marketplace Resources section.

For example, to get support for marketing your product in the 90 days leading up to launch and the
90 days after launch, you can see the 180-day GTM Academy (p. 268) that is linked from the AWS
Marketplace Management Portal home page under Marketplace Resources.

34

https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Product delivery

Preparing your product
Preparing to publish a product on AWS Marketplace includes configuring your package, setting a pricing
scheme, determining the relevant categories in which to list your product, and adding keywords so your
product appears in relevant searches.

Topics
• Product delivery (p. 35)
• Product pricing (p. 37)
• Regions and countries for your AWS Marketplace product (p. 43)
• Private offers (p. 44)
• Standardized license terms (p. 54)
• Categories and metadata (p. 56)
• Search engine optimization for products (p. 58)

Product delivery
Each product delivery method has several options for packaging, pricing, and delivery. Some methods
aren't available to you as a seller on AWS Marketplace until you register for the program supporting it.

You can create products with a standard list price and end user license agreement (EULA). You can
also create private offers for individual customers with custom pricing and EULAs. If you need to make
additional changes to the terms of the contract, you can work with the AWS Marketplace team to create
a custom private offer.

Tip
To simplify the procurement process, you can use standardized license terms (p. 54) for both
public product listings and private offers.

The following table lists the methods that you can use to deliver software products and how AWS
Marketplace buyers find each type of deliverable in the AWS Marketplace console.

Product delivery methods

Product delivery method Delivery Method filter on the
console

Description

Single AMI Amazon Machine Image (AMI) You deliver a single custom
Amazon Machine Image (AMI)
for your product. The AMI
provides the information
required to launch an Amazon
Elastic Compute Cloud (Amazon
EC2) instance.

Buyers can use the single AMI
to create Amazon EC2 instances
with your product already
installed and ready to use.

For more information, see AMI-
based products (p. 63).

35

AWS Marketplace Seller Guide
Product delivery

Product delivery method Delivery Method filter on the
console

Description

AMI delivered using AWS
CloudFormation templates

CloudFormation Template You can list AMI-based products
that are delivered to AWS
Marketplace buyers by using
CloudFormation templates.

Buyers can purchase a single
solution that entitles them to all
of the AMIs in that product.

For more information
about delivering AMIs as an
CloudFormation template, see
AMI-based delivery using AWS
CloudFormation.

For more information about
CloudFormation templates, see
AWS CloudFormation concepts
in the AWS CloudFormation User
Guide.

Private image build Private Image Build You offer products in a way that
lets buyers install your product
on a base gold image that meets
their internal standards for
operating system configuration.

For more information, see
Private images (p. 84).

Container-based product or
application

Container You deliver products packaged
in container images. Container
products consist of options,
which are a set of container
images and deployment
templates that work together.

For more information,
see Container-based
products (p. 116).

Data products AWS Data Exchange You use AWS Data Exchange to
create data products.

For information about
publishing and managing data
products and offers through
AWS Data Exchange, see
Providing data products on AWS
Data Exchange in the AWS Data
Exchange User Guide.

36

https://docs.aws.amazon.com/marketplace/latest/userguide/cloudformation.html
https://docs.aws.amazon.com/marketplace/latest/userguide/cloudformation.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/providing-data-sets.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/providing-data-sets.html

AWS Marketplace Seller Guide
Product pricing

Product delivery method Delivery Method filter on the
console

Description

Machine learning algorithms and
model packages

SageMaker Model You use Amazon SageMaker to
create the algorithm or model
package, and then publish it on
AWS Marketplace.

For more information about
delivering machine learning
algorithms and model
packages, see Machine learning
products (p. 176).

For information about
SageMaker, see What is
SageMaker? in the Amazon
SageMaker Developer Guide.

Software as a service (SaaS) SaaS You can offer SaaS products
with subscription- based,
contract-based, or contract with
consumption pricing models.

For more information, see
Software as a service (SaaS)–
based products (p. 214).

Professional services Professional Services You can offer professional
services that support or work
with other AWS Marketplace
products.

Product pricing
This topic provides general pricing information about software products in AWS Marketplace. All pricing
is based on US dollars (USD).

For paid products, AWS Marketplace collects software charges from the customer.

There is no service fee for free or open-source Software that is made available to customers without
charge.

For information about refunds, see Refunds (p. 41).

Topics

• Pricing models (p. 38)

• Changing pricing models (p. 40)

• Changing prices (p. 41)

• Private offers (p. 41)

• Refunds (p. 41)

37

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html

AWS Marketplace Seller Guide
Pricing models

Pricing models
The following topics provide general information about the pricing models available in AWS
Marketplace.

Topics

• Annual pricing (p. 38)

• Usage pricing (p. 39)

• Contract pricing (p. 40)

• Bring Your Own License pricing (p. 40)

For information about the pricing models for specific product delivery methods, see:

• AMI product pricing (p. 91)

• Container product pricing (p. 129)

• Machine learning product pricing (p. 178)

• SaaS product pricing (p. 227)

• Professional services product pricing (p. 259)

Annual pricing

An annual pricing model enables you to offer products to customers who can purchase a 12-month
subscription. The subscription pricing can provide up to 40 percent savings compared to running the
same product hourly for extended periods. The customer is invoiced for the full amount of the contract
at the time of subscription. For more information about how annual subscriptions are presented to
customers, see AMI Subscriptions.

Considerations when working with an annual subscription include the following:

• Annual pricing is defined per instance type. It can be the same for all Amazon Elastic Compute Cloud
(Amazon EC2) instance types or different for each instance type.

• All Annual instance types must also have an Hourly instance type defined. AWS Marketplace doesn't
offer Annual-only pricing or Hourly without Annual on the same product. For any product offering
Annual pricing, Hourly pricing also needs to be specified.

• A $0 Annual price is allowed on a specific instance type, if the Hourly price is also $0 and there are
other non-$0 Annual instance types defined.

• At the end of the annual subscription period, the customer will start being charged at the hourly price.

• If a customer buys X Annual subscriptions but is running Y software on Y instances, then the customer
is charged at Hourly software price for (Y-X) instances which are not covered by Annual subscriptions.
As such, an Hourly rate must be included for all Annual pricing instance types.

• Using seller private offers, you can offer a multi-year (up to 3 years) or custom duration AMI with
upfront payment, or a flexible payment schedule. For more information about multi-year and
custom duration contracts, see Private offers (p. 44) and the section called “Flexible payment
scheduler” (p. 48).

If you offer an Annual product in AWS Marketplace, you agree to the specific refund policies for Annual
products, located in the File Uploader documents section in the AWS Marketplace Management Portal.

38

https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-ami-subscriptions.html
https://aws.amazon.com/marketplace/management/tour

AWS Marketplace Seller Guide
Pricing models

Price change

You can change annual prices (the $ value, for example $1,000/year to $1,200/year) whenever you want.
However, you must give 90 days' notice to existing customers of annual pricing. The new price will apply
to new subscriptions but will have no impact on existing subscriptions.

Price changes will be effective for auto-renewals only if the price was changed at least 90 days before
the auto-renewal date. The customer will receive an email message prior to auto-renewal that includes
the new price.

End user license agreement

An AWS customer’s usage of software for 12 months under an annual subscription is covered by the
EULA that you provide on your product’s details page on AWS Marketplace.

Usage pricing
A usage pricing model, also known as pay as you go pricing, enables you to offer products to customers
who only pay for what they use.

As a seller, you can choose one of the following usage categories:

• Users
• Hosts
• Bandwidth
• Data
• Tiers
• Units (for custom categories)

You can also define up to 24 dimensions for the product. Charges are measured and reported when the
API is called by the software. We recommend that sellers configure the API to be called once per hour as
a best practice, depending on their use case. All usage is calculated monthly and billed monthly using the
same mechanism as existing AWS Marketplace software.

Using the AWS Marketplace Metering Service, you can handle several new pricing scenarios.

Example Charge by Host

If your software monitors hosts, you can charge for each host monitored and set different pricing based
on the host size.

Example Charge by User

If your software allows multiple users across an organization, you can charge by user. Each hour, the
customer is charged for the total number of provisioned users.

Note
In the Product Load Form (PLF), relevant columns are preceded with "FCP" (Flexible
Consumption Pricing). For example: FCP Category (Custom Pricing Category).

For AWS Marketplace Metering Service products, note the following:

• If your software is already on AWS Marketplace, you will need to create a product to enable an
alternate usage dimension. You can't convert a standard product to use the AWS Marketplace Metering
Service. After the new product is published, you can remove the old product or keep both on the
website.

• The AWS Marketplace Metering Service requires that your software reports usage every hour, recording
the customer usage for the hour. If there is a failure in the transmission or receipt of metering service

39

AWS Marketplace Seller Guide
Changing pricing models

records, AWS will be unable to bill for such usage. You are responsible for ensuring the successful
receipt of metering records.

• Products that use the AWS Marketplace Metering Service don't support 1-Click. Buyers are required
to launch your software with an AWS Identity and Access Management (IAM) role with specific
permissions and have an internet gateway.

• Free Trial and Annual Pricing aren't compatible with the AWS Marketplace Metering Service.
• Changing dimension (user, hosts, bandwidth, and data) or dimension name isn't supported. You will

need to create a new product.

Contract pricing
Using the contract pricing model, you can offer upfront pricing to customers that enables them to buy a
license for 1 month, 12 months, 24 months, or 36 months.

Contract pricing is available for the following products:

• Single AMI-based products and AMI with AWS CloudFormation template-based products. For more
information, see Contract pricing for AMI products (p. 94)

• Container-based products. For more information, see Contract pricing for container
products (p. 131).

• Software as a service (SaaS)-based products. For more information, see Pricing for SaaS
contracts (p. 229).

Note
Contract pricing for AMI and container-based products is only for new products.
If you have an existing AMI or container-based product and want to use contract pricing, create
a new listing and then apply the contract pricing model by using the Product Load Form (PLF)
to add different dimensions, integrate the AMI or container-based product with AWS License
Manager, and then publish the AMI or container-based product.
When a customer purchases a product with contract pricing, a license is created by AWS
Marketplace in the customer AWS account that your software can check using the License
Manager API. Customers will need an IAM role to launch an instance of the AMI or container-
based product.

Bring Your Own License pricing
There is no service fee for Bring Your Own License (BYOL) products on AWS Marketplace.

To deliver on our customer promise of selection, we require that all BYOL products also have a paid
option. This is so that customers who don’t have existing licenses have the option to purchase and use
the products.

For BYOL products, we realize that the online purchase of software is a departure from how some
companies do business. Therefore, for the first 90 days after launch, we will relax the requirement
that this software is accompanied by a version available for purchase on AWS Marketplace. During this
time, the AWS Marketplace account management teams will work with you to address challenges. The
team can help you to determine if and how the software can be made available for purchase on AWS
Marketplace.

Changing pricing models
Changes to pricing models must be reviewed and approved by AWS Marketplace to ensure a positive
customer experience and reduced risk to all parties. Discuss the pricing model changes you want to make
by contacting the AWS Marketplace Managed Catalog Operations (MCO) team.

40

https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Changing prices

All requests for pricing model changes can take 30–90 days to process and review.

Changing prices
You can update prices and metadata through the AWS Marketplace Management Portal.

To change prices

1. Sign in to the AWS Marketplace Management Portal.

2. In the Products tab, a list of current products that you created is available. In the table for your
current products, choose the Action column to edit your product.

Private offers
In the AWS Marketplace Seller Private Offer program, AWS Marketplace sellers can negotiate custom
pricing and EULAs with individual AWS Marketplace customers (buyers). For more information, see
Private offers (p. 44).

Refunds
All paid products, regardless of pricing model, must have a stated refund policy for software charges.
The policy must include the terms of the refund as well as a method of contacting the seller to request
a refund. Although the details of the refund policy are up to you, we encourage you to offer customers
some manner of refund for usage of the product. You must comply with your posted refund policies.

Refund request types
Customers can request different types of refunds for AWS Marketplace products. If a customer requests
a software refund directly from AWS, we instruct them to contact you using your posted support contact
information for the product in question. Refunds of any AWS infrastructure charges are up to the
discretion of AWS and are handled independently of software refunds.

If you use the AWS Marketplace Tax Calculation Service, customers might contact you to request a tax-
only refund. If a customer requests a tax-only refund, you can, at your discretion, grant either a tax-only
refund or a full software refund plus tax.

Refund policy and approvals
The following list outlines the AWS Marketplace refund policy and whether your approval is needed:

• Free trials

If you list your software as a free trial product, AWS can issue refunds on your behalf for software
charges accruing within seven days of a conversion from a free trial to a paid subscription. Refunds
issued in connection with free trial conversions require no action on your part. By enabling a free trial
on a product, you are agreeing to this policy.

• Private offers

All refunds for private offers must be authorized by you before AWS can process them.

• Software metering refunds

If you meter the usage of your software by using the AWS Marketplace Metering Service, AWS can
issue refunds on your behalf for software charges resulting from software metering errors. If these

41

https://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Refunds

errors are common across multiple customers, AWS reserves the right to determine an appropriate
refund for each customer and apply it directly to each customer. Refunds issued in connection with the
AWS Marketplace Metering Service must be confirmed with the seller one time, but does not require
the seller to confirm each individual refund. By using the AWS Marketplace Metering Service with a
product, you are agreeing to this policy.

• Subscription cancellation within 48 hours of purchase

If a buyer cancels their subscription within 48 hours of a non-private offer purchase, AWS will issue
a full refund (cancel with 100 percent refund). Refunds issued in connection with cancellation within
48 hours of purchase require no action on your part. After 48 hours, such buyer request is at your
discretion. By listing your product on AWS Marketplace, you are agreeing to this policy.

• Subscription upgrade

If a buyer replaces an existing non-private offer subscription with a more expensive subscription or a
subscription of equal value, AWS can issue refunds on your behalf for the lower-tier subscription. This
is a two-step process for the buyer: Buy a new subscription and then request cancellation of the old
subscription with a refund.

• Subscription downgrade

All downgrade subscription refund requests must be authorized by you before AWS can process them.

All AWS authorized refunds are processed automatically and require no action on your part.

Refund process
You can initiate refunds for your product software usage by submitting a Refund Request Form. Once
received by the AWS Marketplace Buyer Support Team, a related support case will be created in the
AWS Support Center Console, with the refund status noted in the subject line. Refund-related support is
facilitated directly through these cases. For more information, see Accessing AWS Support.

The following procedure outlines how to request a refund for an external customer or an internal testing
account.

To initiate a software refund for a customer

1. Gather the following information from the customer:

• The customer’s email address that is associated with their AWS account.

• The customer’s AWS account number of the account used to subscribe to your product. Remind
your customer that if they are the payer of an organization, they need to provide you with the
AWS account ID for the linked account subscribed to your product.

• The billing periods for which the customer would like a refund.

2. Sign in to your AWS account and then navigate to the Refund Request Form.

3. Enter the customer’s information in the form.

4. Enter the Product ID for the product that your customer is requesting a refund for. You can find the
Product ID in your daily customer subscriber report (p. 281).

5. For annual products where a customer is requesting a refund, upgrade, or downgrade, you must
perform the following tasks:

a. Verify the customer has purchased an annual subscription using your daily customer subscriber
report (there might be a 24-hour delay).

b. Provide a Subscription Cancellation Date in the comments field.

c. Provide a description of the change that you're authorizing (refund, upgrade, or downgrade) in
the comments field.

42

http://aws.amazon.com/marketplace/management/support/refund-request
https://console.aws.amazon.com/support/home?
https://docs.aws.amazon.com/awssupport/latest/user/getting-started.html#accessing-support
http://aws.amazon.com/marketplace/management/support/refund-request

AWS Marketplace Seller Guide
Regions and countries

6. Submit the form. We'll be notified and will begin to process the refund and issue it to the customer.

7. An outbound case will be created in the AWS Support Center Console with status information on the
refund request. The subject line will contain one of the following:

• Completed – The refund was processed and no further action is required.

• Pending – The refund will be processed once the current billing cycle ends.

• Action Required – The request could not be processed, and we need additional information from
you. You can respond directly to the support case; however, you will also need to submit a new
refund request form.

8. Once a refund is successfully processed, it will reflect on the customer’s account within 24–48 hours.
However, it can take up to five business days for the funds to appear in the customer’s financial
account.

Regions and countries for your AWS Marketplace
product

When you create a product in AWS Marketplace, you choose the AWS Regions where it is available.
You also choose the countries where buyers can purchase your product from. These two properties are
similar, but they are not the same. For example, a buyer might be located in, and purchasing from, the
United States but is installing your product in the Europe (Frankfurt) Region. In order for this buyer to
purchase your product, you must include both the United States in your list of countries, and the Europe
(Frankfurt) Region in your list of Regions.

AWS Regions
When creating or editing server or machine learning product information, you can limit your product to
specific AWS Regions where your users can install and use the product.

For server products, including Amazon Machine Image (AMI)-, container-, and AWS CloudFormation-
based products, you can select specific Regions where the product is available. You can also choose to
automatically make your product available in new US Regions, non-US Regions, or all Regions as they
become available.

For machine learning products, you can either select specific Regions, or all Regions including future
Regions as they become available.

For more information about AWS Regions, see AWS service endpoints in the AWS General Reference.

Countries
By default, your product is available to buyers in all countries where AWS Marketplace is available. For
new and existing server and software as a service (SaaS) products, you can control product availability in
specific countries for tax, compliance, support, or marketing purposes.

There are exceptions to this functionality:

• Previous purchases – After updating your product with a new list of countries, buyers that have
already subscribed to your product will still have access while their subscription is active.

• Private offers – When you limit your product to buyers in specific countries, it does not limit private
offers. When you create a private offer to a specific buyer, it is available to that buyer, even if they are
in a country that you did not include in your specified countries.

43

https://console.aws.amazon.com/support/home?
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Marketplace Seller Guide
Private offers

Note
Customer eligibility is determined at an AWS linked account level. For more information, see
How does AWS determine the Location of your account?
Customers that share their entitlement can only activate the entitlement in a region you have
allowed. For more information about managing entitlements, see Sharing subscriptions in an
organization in the AWS Marketplace Buyer Guide.

Private offers
Private offers are a purchasing program that allows sellers and buyers to negotiate custom prices and
end user licensing agreement (EULA) terms for software purchases in AWS Marketplace.

Tip
You can negotiate EULA terms for each private offer, or you can use or amend standardized
license terms (p. 54) to simplify the procurement process.

How private offers work
You can create and manage all of your private offers from the Offers page in the AWS Marketplace
Management Portal. You specify the product that the offer is being made for and the AWS account ID (or
IDs) for the buyer you're creating the offer for. AWS Marketplace Management Portal generates a unique
ID and URL for the offer. For instructions on creating private offers, see Consulting partner creates.

When you create a private offer, you can extend the offer to up to 25 accounts. The offer is visible only
to the accounts that you create the offer for. Buyers can't view the offer unless you extend the offer to
either their linked account or to their management account. You can't force service limits in the offer,
so the buyer can use as much of your product at the negotiated prices as they want, unless the product
already has a limit.

AWS Marketplace buyers can access third-party financing for private offers. For more information, see
Customer financing is now available in AWS Marketplace.

Note
The buyer isn't notified that you created a private offer. You can provide the URL for the custom
offer to the buyer, or they can navigate to your product through AWS Marketplace.

When the buyer navigates to your product's subscription page, a banner indicates that a private offer is
available. After the buyer accepts the offer, they're invoiced for the purchase using the same portal tools
used for all AWS Marketplace transactions. Accepted offers become agreements, and are also referred to
as contracts or subscriptions.

For software as a service (SaaS) contracts and SaaS contracts with consumption products, you can
offer upgrades and renewals on agreements that were made when buyers accepted private offers. For
example, you can do this to grant new entitlements, offer pricing discounts, adjust payment schedules, or
change the end user license agreement (EULA) to use standardized license terms. For more information,
see Private offer upgrades and renewals (p. 52).

Private offers are tracked in seller reports. For more information, see Reporting for private
offers (p. 47) and the Seller reports guide.

Private offer experience for buyer
After you create a private offer and notify the potential buyer, they will have steps they must perform to
accept the offer. For more information about the buyer experience for private offers, see Private offers in
the AWS Marketplace Buyer Guide.

44

https://aws.amazon.com/tax-help/location/
https://docs.aws.amazon.com/marketplace/latest/buyerguide/organizations-sharing.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/organizations-sharing.html
https://aws.amazon.com/marketplace/management
https://aws.amazon.com/marketplace/management
https://s3.us-west-2.amazonaws.com/external-mp-channel-partners/Consulting+Partner+Creates+(1).pdf
https://s3.us-west-2.amazonaws.com/external-mp-channel-partners/Financing+External+Briefing+Document+Customer+Facing.pdf
https://s3.us-west-2.amazonaws.com/external-mp-channel-partners/Seller+Reports+Guide.pdf
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-private-offers.html

AWS Marketplace Seller Guide
Private offers through consulting partners

To receive the terms of the offer, the buyer must accept the offer before the offer expiration date.
After the offer expires, the terms are no longer valid. You must re-create the private offer for the buyer
to accept the terms. As the seller, you can provide a URL to the fulfillment page for the offer, or the
customer can navigate to your product page on AWS Marketplace and choose the link in the banner to
view the private offer.

Private offers through consulting partners
If you are a consulting partner, you can negotiate special terms with an ISV to offer their products to
buyers. With this type of offer, you are listed as seller-of-record.

For more information, see Consulting partner private offers (p. 49).

Notes about private offers
When working with private offers, keep the following in mind:

• You can't create private offers for second party, Amazon Machine Image (AMI) monthly, or multi-AMI-
based delivery using AWS CloudFormation products, or for limiting customer usage.

• For private offers with the flexible payment scheduler, it is possible to break upfront payments into
multiple payments over time if buyers are on invoicing terms with AWS.

• If the buyer account for your private offer is managed through a private marketplace, you must include
both the buyer's account and the account that includes their private marketplace administrator in the
offer.

• Private offers don't support the Bring Your Own License model (BYOL) or BYOL product types.

Supported product types
AMI, container, professional services, and SaaS products are supported for private offers.

Private offers for AMI products
You can provide private offers pricing for AMI products.

The offer can be any custom duration for the following:

• AMI hourly or AMI annual private offers: up to 3 years (1,095 days)

• AMI contract private offers: up to 5 years (60 months)

For AMI contracts, private offers don't monitor usage.

Buyers can manually upgrade to new contract levels at any time. However, it is up to the independent
software vendor (ISV) to define contract tiers, enforce service limitations, and advise buyers to
manually upgrade to higher contract tiers when needed. The contract duration of the private offer can
match the public product listing, or can be a custom duration in months (up to 60).

License entitlements begin on the date the buyer accepts the private offer.

For AMI private offers with flexible payment schedules, you can set the number of annual instance types
agreed to in the contract, for the duration of the contract.

Note
Private offers are not available for monthly billing contracts.

45

AWS Marketplace Seller Guide
Offer submission process

Private offers for container products

You can provide private offers pricing for container-based product contracts.

The offer can be any custom duration for the following:

• Container hourly or AMI annual private offers – Up to 3 years (1,095 days)

• Container contract private offers – Up to 5 years (60 months)

For Container contracts, private offers don't monitor usage.

Buyers can manually upgrade to new contract levels at any time. However, the independent software
vendor (ISV) defines the contract tiers, enforces service limitations, and advises buyers to manually
upgrade to higher contract tiers when needed. The contract duration of the private offer can match
the public product listing, or it can be a custom duration in months (up to 60 months).

License entitlements begin on the date the buyer accepts the private offer. For container private offers
with flexible payment schedules, you can set the number of units agreed to in the contract, for the
duration of the contract. You can also define a custom hourly price for those same units if the buyer uses
more.

Note
Private offers are not available for monthly billing contracts.

Private offers for professional services products

All professional services product offerings are done through private offers. For more information, see
Creating private offers (p. 253).

Private offers for SaaS products

Software as a service (SaaS) private offer products can't change the pricing level for a given pricing
tier based on timing. For example, an offer can't charge $0.80/hour for three months and then change
pricing to $0.60/hour thereafter for the same pricing tier. For SaaS contracts, private offers don't
monitor usage.

Buyers can manually upgrade to new contract levels at any time. However, the independent software
vendor (ISV) defines contract tiers, enforces service limitations, and advises buyers to manually upgrade
to higher contract tiers when needed. The contract duration of the private offer can match the public
product listing, or it can be a custom duration in months (up to 60 months).

Offer submission process
You can create simple private offers using the AWS Marketplace Management Portal by using the
following procedure.

To create a private offer

1. Sign in to the AWS Marketplace Management Portal and choose Offers.

2. On the Manage Private Offer page, choose CREATE AN OFFER.

3. On the Create Private Offer page, select the product from the dropdown list and enter the
AWS account ID (or IDs) of the AWS Marketplace buyer. If your buyer is paying for the product in
installments, select Allow buyers to pay for this product in installments. Verify the information
that you entered, and then choose NEXT.

46

https://aws.amazon.com/marketplace/management

AWS Marketplace Seller Guide
Reporting for private offers

Note
Selecting Allow buyers to pay for this product in installments (ISV only) enables you to
offer your buyer a payment schedule with annual payments that aren't evenly distributed,
multiple payments for a multi-year deal, or quarterly payments. Buyers must be on
invoicing terms with AWS to receive a flexible payment schedule on their private offer. For
more information, see the section called “Flexible payment scheduler” (p. 48).

4. On the Create an Offer page, verify the product name and buyer ID.
5. Specify the Contract duration:

a. If the product offer is for an AMI hourly or AMI annual pricing model, choose a Duration option
or enter a custom duration in number of days.

Note
The duration of the private offer can be up to 1,095 days for the AMI hourly or the AMI
annual pricing model.

b. If the product offer is for a SaaS contract pricing model, AMI contract pricing model, or
container contract pricing model, choose a Duration option or enter a custom duration in
number of months.

Note
The duration of the private offer can be up to 60 months for the SaaS contract pricing
model, AMI contract pricing model, or container contract pricing model.

6. In Input offer price, enter the pricing information that you negotiated with the customer. If you
have installment payments for the private offer, specify the number of units and the payment
schedule for the contract duration. For more information about installment payments, see the
section called “Flexible payment scheduler” (p. 48).

7. In Upload End User License Agreement, select from available options or upload your EULA .pdf file.
8. In Offer Expiration and Acceptance Date, enter the number of days that the offer is valid for.

Note
This is the number of days after the customer accepts the offer that the terms of the
agreement are active. After the number of days has lapsed, the price and EULA revert to the
terms provided in the public offering.

9. For Buyer needs to accept the offer by, enter the date when the offer is no longer available if not
accepted.

Note
This is the date that the offer becomes null and void. On that date, the buyer won't be able
to accept the offer under the custom terms that you have specified.

10. Choose REVIEW OFFER.
11. On the Review Offer page, verify the offer information and the .pdf file, and then do one of the

following:
• If the offer is correct, choose EXTEND OFFER.
• If the offer is incorrect, choose EDIT OFFER and make any required changes.

The offer should appear on the Manage Private Offer page in approximately 45 minutes. To view the
offer, sign in to the AWS Marketplace Management Portal and choose Private Offer. This opens the
Manage Private Offer landing page.

Reporting for private offers
Private offers appear on the existing seller reports and in the reports relevant to the offer. The
Monthly billed revenue report (p. 288) is generated every month and has offer visibility and offer ID
information. When an invoice is generated for a buyer, it appears in the report covering the appropriate
billing period. For more information, see the Seller reports guide.

47

https://s3.us-west-2.amazonaws.com/external-mp-channel-partners/Seller+Reports+Guide.pdf

AWS Marketplace Seller Guide
Flexible payment scheduler

The Offer ID field contains the unique offer ID generated for the private offer. It's blank unless the report
entry is for a private offer. The Offer Visibility field indicates whether the report entry is a public or
private offer. For all private offers, the entry is marked private.

Flexible payment scheduler
Flexible payment scheduler enables you to extend private offers with a custom payment schedule.
The schedule can be spread over up to three years, and the customer makes payments in regular
installments. After they are subscribed, your customers can see all the payments on the schedule and on
their AWS invoice, helping them track their spending. Flexible payment scheduler is available for private
offers on AMI multi-year and SaaS contracts products.

Any customer on invoice terms, for example net-30 or net-60 terms, can subscribe to a private offer with
a flexible payment schedule. Customers who pay their AWS bill using a credit card can't. If you try to
create a private offer with a custom payment schedule for a customer who isn't on invoice terms, you
receive an error.

Creating a payment schedule
The process for creating a custom payment schedule using flexible payment scheduler is part of the
process for creating a private offer. While creating the private offer, as you are adding product and buyer
account information, choose Allow Buyers to pay for this product in installments. This enables you
to create an offer with a flexible payment schedule. When you choose Next to continue, the flexible
payment scheduler feature validates that any AWS account that you added is an account on invoice
terms. If you have provided an account that isn't on invoice terms, you receive an error message.

Note
If the account is in an AWS Organizations billing family, the targeted account can be any account
that is on net payment terms with AWS. For more information, see Consolidated Billing for AWS
Organizations in the AWS Billing and Cost Management User Guide.

After the AWS account or accounts are confirmed, customize your offer details on the next page. Choose
the contract duration for this offer and specify the offer details accordingly.

Note
For private offers with flexible payment scheduler, for multi-year and custom duration Amazon
Machine Image (AMI) products, set the number of instances for each instance type included
in the offer and the hourly pricing for any additional launched instances. After the customer
launches the specified number of instances, any additional instances launched are charged at
the hourly rate specified in the private offer.

Under Payment Schedule, add the invoice dates and invoice amounts for all of the installments that the
customer will make. You can add up to 60 installments. Each time you add an installment, Total amount
due from buyer is updated.

Note
The invoice date for the first installment is the first time that the customer is invoiced for your
private offer. You receive the payment for that first invoice after AWS Marketplace receives the
payment from the customer.

The flexible payment scheduler feature validates that the invoice dates fall within the contract duration.
If your last invoice date is after the duration of the contract, you receive an error message.

After you have added all invoice dates and amounts, confirm that Total amount due from buyer
matches the total price that you want your customer to pay over the course of the private offer. To finish
creating the private offer, upload the end user license agreement (EULA) for the customer and set the
offer acceptance date.

Note
Only one invoice date can occur before the offer acceptance date that you're extending to your
customer.

48

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidated-billing.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/consolidated-billing.html

AWS Marketplace Seller Guide
Consulting partner private offers

Your customer is invoiced based on the schedule that you defined, and invoices start after they accept
the offer. If the first invoice date is scheduled before the offer is accepted, this invoice is processed
immediately after the offer is accepted.

Note
You can't modify the payment schedule on a private offer that has been extended to and
subscribed by a buyer. To make changes, you must create a new offer.

Reporting for flexible payment scheduler
Reporting for private offers with flexible payment schedules is in the Section 4: Contracts with flexible
payment schedule (p. 293), of the monthly billed revenue report.

Consulting partner private offers
AWS Marketplace consulting partner private offers allow consulting partners to resell independent
software vendors' (ISVs) products on AWS Marketplace. The consulting partner and ISV establish an
agreement to resell one or more of the ISV's products, and then they extend a private offer to the buyer
for that product.

The following diagram shows this relationship between an ISV, a consulting partner, and a buyer.

Note
For more information on creating a resell opportunity for a consulting partner, as an ISV, see ISV
setup of resell opportunities (p. 50).
For more information on creating a private offer for a buyer, as a consulting partner, see
Consulting partner setup of resell opportunities (p. 51).

Each consulting partner private offer is visible only to a single buyer, with customized pricing and unique
commercial terms to meet that buyer's needs. When creating a private offer, you start from a wholesale
cost set by the ISV. Then you mark up that price to create the buyer's offer price. The wholesale cost is
determined in one of two ways:

• Recurring discount – An ISV authorizes the consulting partner to resell their product or products
at an agreed-to discount from their list price with a recurring opportunity. This discount allows the
consulting partner to continue to resell the product without further price negotiation with the ISV. This

49

AWS Marketplace Seller Guide
Consulting partner private offers

discount can be set up to last until a specified date, or indefinitely, until ended by either the ISV or the
consulting partner.

• Non-recurring discount – The opportunity that the ISV gives the consulting partner is a one-time
discount intended to be used only with a specific buyer.

In both cases, after the buyer pays for the private offer, AWS Marketplace uses the standard process to
distribute the funds to the consulting partner and the ISV based on the agreed-to pricing.

Tip
As an ISV or a consulting partner, you can view opportunities that you have granted or received
from the Partners menu of the AWS Marketplace Management Portal.

For detailed instructions about creating private offers, see Consulting partner creates.

For information about third-party financing for private offers, see Customer financing is now available in
AWS Marketplace.

Additional information
For additional information and questions, we encourage ISVs and consulting partners to connect
with the AWS Marketplace channel team. If you don’t know who to contact specifically, send an email
message to <aws-mp-channel@amazon.com>, and someone on the team will respond to you within
one business day.

ISV setup of resell opportunities
As an ISV, you can authorize consulting partners to resell your products by creating a resale opportunity
for that partner. You can specify a discount percentage or custom price per product dimension to create
a wholesale price for the consulting partner. The partner can mark up the wholesale price when creating
their consulting partner private offer for a buyer. For more information about consulting partner private
offers, see Extending a private offer based on an opportunity (p. 51).

Note
If the particular terms of the authorization that you want to create are not possible using the
AWS Marketplace Management Portal, you can fill out an AWS Marketplace Reseller Author
form. To request and return the form, reach out to your AWS Marketplace channel account
manager or send an email message to mpcustdesk@amazon.com.

The following procedure outlines how ISVs can create an opportunity for a consulting partner. To use this
feature, you must have permissions to use the Partners tab in the AWS Marketplace Management Portal.
For more information, see Policies for AWS Marketplace sellers (p. 346).

To create an opportunity for a consulting partner

1. Sign in to the AWS Marketplace Management Portal.
2. Choose the Partners tab, and then choose Create opportunity.
3. Enter the Opportunity name and Opportunity description.

Note
The information you enter in Opportunity name and Opportunity description will be
visible to consulting partners in their seller reports.

4. Choose the Resellers that you want to authorize. You can select resellers by name or account ID.

Note
If a reseller doesn't appear in the list, they may need to register first. Only registered
resellers can be authorized for an opportunity. For more information, see Consulting
partner setup of resell opportunities (p. 51).

5. Select which of your Products are part of this opportunity and the Discount that you want to apply.

50

http://aws.amazon.com/marketplace/management/
https://s3.us-west-2.amazonaws.com/external-mp-channel-partners/Consulting+Partner+Creates+(1).pdf
https://s3.us-west-2.amazonaws.com/external-mp-channel-partners/Financing+External+Briefing+Document+Customer+Facing.pdf
https://s3.us-west-2.amazonaws.com/external-mp-channel-partners/Financing+External+Briefing+Document+Customer+Facing.pdf
mailto://mpcustdesk@amazon.com
http://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Consulting partner private offers

6. Select the Duration of the opportunity.
7. (Optional) For SaaS contract products, add or remove custom Product dimensions and modify the

Additional usage fees to customize your opportunity.
8. (Optional) Set one or more Buyer account IDs to specify that the opportunity is only for those

buyers.
9. (Optional) Select the End User License Agreement (EULA) version or upload the EULA to be

included in the opportunity.
10. Select Review opportunity, and make sure that the information is correct.
11. Select Create opportunity to finalize the opportunity and authorize the consulting partners.

Once created, opportunities can't have their dates extended. However, you can revoke an opportunity
and recreate it at any time. When you revoke an opportunity, new offers can't make use of that discount.
Any existing offers are unaffected and retain their opportunity discount.

Consulting partner setup of resell opportunities
To create a consulting partner private offer, you must be registered through the AWS Marketplace
Management Portal as an AWS Marketplace seller. The following topics can help you get started as an
AWS Marketplace seller.

• Getting started as a seller (p. 4)
• Preparing your product (p. 35)
• Submitting your product for publication (p. 261)
• Seller reports and data feeds (p. 273)

If you're new to providing products on AWS Marketplace, the following topics can help you better
understand the kinds of products available:

• AMI-based products (p. 63)
• Software as a service (SaaS)–based products (p. 214)

Putting an agreement in place with an ISV

Before you as a consulting partner can create a private offer for a product, the ISV must authorize you to
resell their product. The ISV does this by creating an opportunity for you. For more information, see ISV
setup of resell opportunities (p. 50). To create an opportunity, the ISV must provide:

• The product or products that they authorize you to resell.
• The price reduction that they want to offer you.
• The AWS account ID that you used to register as an AWS Marketplace seller.

After the opportunity has been created, you will be an authorized reseller for that product. Then, you can
extend private offers that are marked up from the price given you by the ISV.

Extending a private offer based on an opportunity

For recurring discount private offers, an ISV authorizes a consulting partner to resell one or more of
their products on AWS Marketplace. The discount, called the wholesale price, is an agreed-to price
or percentage discount off the product’s list price. Consulting partners can use the discount with any
number of buyers.

The following procedure outlines how a consulting partner can extend a private offer based on a
recurring discount.

51

https://aws.amazon.com/marketplace/management
https://aws.amazon.com/marketplace/management

AWS Marketplace Seller Guide
Private offer upgrades and renewals

To extend a private offer based on a recurring discount

1. Determine what your offer price will be by marking up the wholesale price by a percentage.

2. Sign into the AWS Marketplace Management Portal.

3. Choose Partner from the menu at the top of the screen.

4. From the Opportunities you received list, choose the opportunity with the product and discount
you want to offer to the buyer, and then select Create Offer.

5. Step through the Create Private Offer screens, entering required information, including the buyer's
account, the pricing details of the offer (including the marked-up price by a percentage), the End
User License Agreement (EULA), and the dates for the offer. Then, choose Review Offer.

6. Review the offer, and then choose Extend Offer.

The publishing process for this offer can take up to 45 minutes to complete. After it's completed, the
offer is visible on the Manage Offers page.

Accepted offers

After the buyer accepts the private offer from the consulting partner, the offer and any disbursement of
funds occur in the same manner:

1. AWS Marketplace invoices the buyer on their existing AWS bill per the terms of the private offer. If
the private offer is extended to a linked account, the invoiced amount appears on the payer account
associated with that linked account.

2. The buyer pays their AWS bill in accordance with the net payment terms that they agreed to with
AWS. The private offer process enables custom terms for each transaction, but net payment terms
aren't customizable.

3. After AWS receives payment from the buyer, AWS disburses payment to you and the ISV. The ISV
receives the wholesale cost minus the AWS Marketplace fee. You receive your markup minus the AWS
Marketplace processing fee. All fees are percentages applied to the transaction amounts listed. If
you're not sure of the fee percentages and need this information for quoting purposes, contact your
AWS Marketplace channel account manager. If you don’t know who that is, send an email message to
the AWS Marketplace channel team at <aws-mp-channel@amazon.com>, and someone on the team
will respond to you within 24 hours.

4. AWS Marketplace provides electronic reports to the ISV and to you using the AWS Marketplace
Management Portal. These reports have the following differences depending on the type of private
offer:

• For recurring discount private offers, the ISV sees you as the buyer and you see the subscriber as the
buyer.

• For non-recurring discount private offers, the ISV and the consulting partner see the subscriber as
the buyer.

For more information about AWS Marketplace reporting, see Seller Reporting.

Private offer upgrades and renewals
For software as a service (SaaS) contract and SaaS contract with consumption products, you can offer
upgrades and renewals by using a private offer on any active agreements. For example, you can do this
to grant new entitlements, offer pricing discounts, adjust payment schedules, or change the end user
license agreement (EULA) to use standardized license terms (p. 54). You can also change the number
of units and payment schedule, and add a custom end date.

The difference between an offer and an agreement is whether the buyer accepted its terms:

52

http://aws.amazon.com/marketplace/management/
https://aws.amazon.com/marketplace/management
https://aws.amazon.com/marketplace/management
https://docs.aws.amazon.com/marketplace/latest/userguide/Reporting.html

AWS Marketplace Seller Guide
Private offer upgrades and renewals

• An offer is a set of terms for a buyer's use of a product. Offers can be public or private.
• An agreement is an offer that a buyer accepted. Agreements include purchased and free products that

a seller made available via a public or private offer.

This feature is available to all AWS Marketplace sellers, including independent software vendors (ISVs)
and consulting partners. You can't amend an agreement to specify a seller of record that's different from
the seller of record from the original agreement.

To use this feature, you must have permissions to use the Agreements tab in the AWS Marketplace
Management Portal. For information, see Permissions for AWS Marketplace sellers (p. 346).

Supported product types
The following product types support private offer renewals and upgrades:

• SaaS contracts
• SaaS contracts with consumption

Submission process for upgrades and renewals
You can create private offer upgrades and renewals from the AWS Marketplace Management Portal by
using the following procedure.

To create private offer upgrades and renewals

1. Sign in to the AWS Marketplace Management Portal and choose Agreements.
2. On the Agreements page, create an upgrade or renewal private offer in one of the following ways:

• Choose a check box next to an agreement, and then choose Create agreement-based offer.
• Choose an agreement ID to view the agreement details. On the Agreement summary page, review

the agreement's existing information and terms to verify that this is the agreement you want to
amend, and then choose Create agreement-based offer.

3. On the Agreement offer details page, enter a custom offer name.

Tip
Entering descriptive custom offer names can help you distinguish between your active
offers on the Offers page. Custom offer names are also visible to buyers.
AWS recommends that you specify a custom offer name that includes any additional
identifying details, such as your own IDs and purchase order numbers. Using high-level
descriptions like upgrade or renewal and custom company names are also recommended.
Don't use any personally identifiable data (for example, first or last names, phone numbers,
or addresses). You can enter up to 150 characters for this field.

4. Edit the information for any dates, dimensions, payment schedule, and EULA that you want to
change. Then choose Next.

5. On the Review and create page, review the information. When ready, choose Create agreement-
based offer.

The new private offer appears on the Manage Private Offer page in approximately 45 minutes. To view
the offer, sign in to the AWS Marketplace Management Portal and choose Offers to open the Manage
Private Offer page.

Similar to the process for creating a private offer, the buyer isn't notified that you created a new private
offer. Instead, you provide the URL for the new private offer to the buyer. From there, the buyer has the
option to accept it or to continue to operate under the original agreement:

53

https://aws.amazon.com/marketplace/management

AWS Marketplace Seller Guide
Standardized license terms

• If the buyer accepts the private offer upgrade or renewal, the new agreement takes effect immediately
and the agreement is listed on the Agreements page in the AWS Marketplace Management Portal. Any
remaining scheduled payments from previous agreements are cancelled.

Buyers accept agreement-based private offers the same way they accept private offers. For more
information about the buyer experience for private offers, see Private offers in the AWS Marketplace
Buyer Guide.

• If the buyer doesn't accept the private offer upgrade or renewal before it expires, the original
agreement remains in effect with no changes.

Reporting for upgrades and renewals
Upgrade and renewal private offers appear on the existing seller reports and in the reports relevant
to the offer. The Daily customer subscriber report (p. 281) report and Daily business report (p. 274)
report are generated daily. The Monthly billed revenue report (p. 288) report is generated monthly.

In the Daily customer subscriber report, the Subscription intent field indicates whether the report entry
is a new private offer. The Previous offer ID field indicates the ID of the offer that preceded the new
offer, if one exists. For all private offers, the entry is marked "private".

Agreements data is not shown in data feeds.

Standardized license terms
As you go through the process of preparing your product (p. 35), you need to determine what to
include in the end user license agreement (EULA) for your product. You can create and customize your
own EULAs, or you can use the standardized license terms that AWS Marketplace offers, which help
speed up transactions and simplify procurement.

AWS Marketplace offers the following options for providing standardized license terms for your product
listings:

• Standard Contract for AWS Marketplace (SCMP) (p. 54) – These license terms are intended to meet
the fundamental requirements of buyer and seller.

This option is available to all AWS Marketplace sellers and is accessible to all buyers.
• Enterprise Contract for AWS Marketplace (ECMP) (p. 55) – These license terms are intended to meet

the more stringent requirements of enterprise buyers.

This option is available for all AWS Marketplace sellers to enroll in, and it's accessible only to enrolled
enterprise buyers. When you enroll as a seller in the ECMP program, you can still offer SCMP to non-
enterprise buyers.

Disclaimer
You are responsible for determining whether these documents meet your specific requirements.
These documents should not be construed as legal advice for any particular facts or
circumstances.

Standard Contract for AWS Marketplace (SCMP)
SCMP is a standardized set of license terms that govern usage and define obligations of buyers and
sellers. AWS Marketplace sellers can offer SCMP as the EULA for public product listings. Buyers can
search for, buy, and quickly deploy software from sellers that offer the terms of the standard contract.

54

https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-private-offers.html

AWS Marketplace Seller Guide
Enterprise Contract for AWS Marketplace (ECMP)

For private offers (p. 44), you can amend the SCMP to address custom transaction requirements as
agreed upon by both parties.

Getting started with SCMP
This section describes how to review terms and offer SCMP to buyers.

To use SCMP for new and existing AWS Marketplace listings

1. Review the terms of the Standard Contract for AWS Marketplace.

2. Sign in to the AWS Marketplace Management Portal.

3. As you create a product or edit an existing listing, choose SCMP EULA as the EULA.

For more information about creating products, see Submitting your product for publication (p. 261).

To request assistance in updating the EULA to the SCMP

1. From the lower-left corner of the AWS Marketplace Management Portal, choose Contact us.

2. Enter your email address, and then complete the rest of the form as follows:

• For the subject of your question, choose Commercial Marketplace.

• For the category, choose Product Listing.

• For the subcategory, choose Standard Contract Request.

• In the text box for providing request details, type Enable SCMP for AWS Marketplace
product listings.

If you have questions about the SCMP program, contact <aws-mp-standardcontract@amazon.com>.

Enterprise Contract for AWS Marketplace (ECMP)
Like SCMP, ECMP is standardized set of license terms that govern usage and define obligations of
buyers and sellers. For private offers (p. 44), you can amend the ECMP to address custom transaction
requirements as agreed upon by both parties.

The differences between ECMP and SCMP are as follows:

• ECMP is designed to address the more stringent requirements of large enterprises.

• To offer the ECMP on your listings, you must enroll in the program.

• You can offer ECMP as the EULA on public product listings and private offers only to enrolled
enterprise buyers.

After enrolling in the ECMP program, you can still offer SCMP as your public EULA to address license
requirements of non-enterprise customers.

Getting started with ECMP
This section describes how to review terms and enroll in the ECMP program.

To enable ECMP for AWS Marketplace listings

1. Review the terms of the Enterprise Contract for AWS Marketplace.

2. Complete the enrollment form and choose Register Now.

55

https://s3.amazonaws.com/EULA/Standard+Contract+for+AWS+Marketplace+2019-04-24.pdf
http://aws.amazon.com/marketplace/management/
http://aws.amazon.com/marketplace/management/contact-us/
https://s3.amazonaws.com/EULA/Enterprise+Contract+for+AWS+Marketplace+2019.pdf
https://pages.awscloud.com/awsmp_ent_contracts.html

AWS Marketplace Seller Guide
Categories and metadata

If you have questions about enrollment in the ECMP program, contact
<aws-mp-enterprisecontract@amazon.com>.

Categories and metadata
Here are best practices and information for supplying product metadata. AWS Marketplace revises
product metadata solely for quality assurance and error correction.

Naming and describing your product
The information that you provide about your product is visible to buyers. Ensure that potential buyers
have enough information to make informed decisions about buying your product.

Creating the product name
Keep the following guidelines in mind as you create the product name:

• Use title case (capitalize the first letter of each important word)
• Ensure that a buyer can identify the product by the name alone
• Use the name of the brand or manufacturer
• Avoid descriptive data or hyperbole

Example product name: Smart Solution Load Balancer - Premium Edition.

Writing the product description
The product description lists the product's features, benefits, and usage. It can also provide other
relevant, specific product information. The description can be up to 350 characters long.

Keep the following guidelines in mind as you write the product description:

• Avoid unnecessary capitalization
• Avoid unnecessary punctuation marks
• Don't include redirect information
• Check spelling and grammar
• Include only critical, useful information

Example product solution: Smart Solution automatically distributes incoming application traffic
across multiple Amazon EC2 instances. It enables you to achieve even greater fault tolerance in your
applications, providing the amount of load-balancing capacity you need to respond to incoming
application traffic. Smart Solution detects unhealthy instances in a pool and automatically reroutes
traffic to healthy instances until the unhealthy instances are restored. You can enable Smart Solution in a
single AWS Availability Zone or across multiple Availability Zones to ensure more consistent application
performance.

Writing the product highlights
The product information page displays up to three product highlight bullet points. Use these bullet
points to briefly describe the product's primary selling points.

Example product highlight: Projecting costs: With Smart Solution, you pay only for what you use. You're
charged for each hour or partial hour that Smart Solution is running.

56

AWS Marketplace Seller Guide
Choosing categories and keywords

Writing the release notes
Each time you update an AMI product, you must provide a description of the changes in the release
notes. The release notes should contain specific information to help the user decide whether to install
the update. Use clear labels for the update, such as "Critical" for a security update or "Important" or
"Optional" for other types of updates.

Writing the usage instructions
Provide usage instructions that help ensure that the buyer can successfully configure and run the
software. The usage instructions you provide are shown during the AMI configuration process.

To write effective usage instructions, follow these guidelines:

• Write them with a new or moderately technical audience.
• Don't assume that the user has prior experience with or extensive knowledge of the product, computer

operating systems, engineering, or IT operations.
• Take the buyer from launching to using the product, including any configuration or special steps to get

the application running.

Example usage instructions:

1. Launch the product via 1-Click.
2. Use a web browser to access the application at https://<EC2_Instance_Public_DNS>/index.html.
3. Sign in using the following credentials:

• Username: user
• Password: the instance_id of the instance

Writing the upgrade instructions
Provide details on how buyer can upgrade from an earlier version of the product. Include information on
how to preserve data and settings when creating another instance. If there is no upgrade path, edit this
field to specifically mention that.

Example upgrade instructions:

1. Do ****, and then ****.
2. Check that all plugins used by your project are compatible with version *.*, by doing ***. If they aren't

compatible, do ***.
3. Make a backup of your data, by doing ***.

Choosing categories and keywords
When you list your product, you can choose up to three software categories and corresponding
subcategories for your product. This helps buyers discover your product as they browse or search for
products on AWS Marketplace. Choose only categories that are relevant to your product; in most cases,
only one category applies. The product load form and the Products tab both contain a complete list of
categories.

Categories aren't the same as keywords. The categories and subcategories available are predefined for
AWS Marketplace, and you decide which ones apply to your product by selecting them from a list during

57

AWS Marketplace Seller Guide
Search engine optimization for products

the product request process. Keywords aren't predefined, but are created during the process. You don't
need to add the category as a keyword.

Creating search keywords
During the product request process, you can enter up to three keywords (single words or phrases) to help
buyers discover your product through site searches. The keywords field can contain a maximum of 250
characters.

The following tips can help you to create a relevant set of search keywords:

• Use relevant terms.
• Don't use the names of products published by other sellers or use other sellers' names.
• Choose keywords from your buyer's vocabulary—that is, words and phrases that buyers are likely to

use when thinking about your type of product.
• Create keywords based on specific features in your product.
• Don't use the product title as a keyword. The product title is already indexed in searches.

Note: Keywords aren't the same as software categories. Keywords are more specific terms that are
related to your product.

Search engine optimization for products
The AWS Marketplace website ranks the results of search queries using search optimization techniques
similar to those used across the industry. By understanding how AWS Marketplace ranks and returns
search results, you can create product details optimized for the AWS Marketplace search engine. We
recommend taking this guidance into consideration when you create your product detail pages.

Keywords
During the product creation process, you can submit up to three keywords (single words or phrases) to
help customers discover your product through site searches. The keywords text box can contain up to
250 characters.

Use the following tips to create search keywords:

• Use terms that are relevant so that customers can easily find your products.
• Choose keywords from your customers' vocabulary—that is, words and phrases that they're likely to

use when thinking about your type of product.
• Create keywords based on specific features in your product.
• Don't include the product title in the terms that you submit. The product title is already indexed in the

search.

Note
Keywords aren't the same as software categories. Keywords are more specific terms that are
related to your product.

You can edit keywords after you create a product by editing the metadata for the product. For products
that you created using a Product Load Form (PLF), you also use the PLF to make changes to those
products. For products that you created using the Products tab in AWS Marketplace Management
Portal, you also use the Products tab to make changes. For more information, see Product changes and
updates (p. 264).

58

AWS Marketplace Seller Guide
Software categories

The AWS Marketplace Managed Catalog Operations team helps redirect queries with similar-sounding
words or words with similar meanings. For example, when customers search for automobile when you
expect them to search for car.

Software categories
When you list your product, you can choose up to three software categories and corresponding
subcategories for your product. This helps customers discover your product as they browse or search the
products on AWS Marketplace. Choose only categories that are relevant to your product. In most cases,
only one category applies. Both the product load form and the Products pages contain a complete list of
categories.

Note
Categories aren't the same as keywords. The available categories and subcategories are
predefined for AWS Marketplace. You decide which of them apply to your product by choosing
them from a list. Keywords aren't predefined, but they are created during the process.

Highlights section
The product details page displays up to three product highlights as bullet points. Customers can search
for products by highlights, so include highlights when you create a product. A highlight should describe
the product's primary selling points in brief and informative language.

Example Highlights

• Projecting costs: With AnyCompany's product, you pay only for what you use. You're charged for each
hour or partial hour that it's running.

Short description
The product description lists the product's features, benefits, and usage instructions, along with other
relevant and specific product information. Keep the following guidelines in mind as you create the
product description:

• Avoid unnecessary capitalization and punctuation marks
• Don't include redirect information
• Check spelling and grammar
• Include only critical and useful information

Example Short description

AnyCompany's product automatically distributes incoming application traffic across multiple Amazon
EC2 instances. It enables you to improve fault tolerance in your applications by seamlessly providing the
load balancing capacity that you need to respond to incoming application traffic. AnyCompany's product
detects unhealthy instances in a pool and automatically reroutes traffic to healthy instances until the
unhealthy instances have been restored. Customers can enable it in a single AWS Availability Zone or
across multiple Availability Zones to enable more consistent application performance.

59

AWS Marketplace Seller Guide
Starting the onboarding process

AWS Marketplace for Desktop
Applications (AMDA)

AWS Marketplace for Desktop Applications (AMDA) is a catalog of virtualized desktop applications that
run on Amazon WorkSpaces. By using AMDA, you can find and subscribe to free and paid applications
across 11 software categories. Applications run in virtualized containers as if they were natively installed
and buyers are charged on a per-user, per-month basis.

Buyers use the Amazon WorkSpaces Application Manager (Amazon WAM) console to deploy desktop
applications to their WorkSpaces. The applications are delivered to each WorkSpace through the Amazon
WAM client application.

The virtualization technology enables fast delivery of programs, often without a reboot, so that users
can quickly launch and use their subscribed applications. Users are charged only for those applications
they have been assigned, and charges accrue monthly from when they are first launched until the
assignment is revoked. For more information, see the following resources:

• WorkSpaces product pages
• WorkSpaces testimonials
• AMDA help pages and frequently asked questions
• AWS Marketplace for Desktop Applications catalog

Starting the onboarding process
Under the terms of the AWS Marketplace for Desktop Applications Publisher Addendum (the “AMDA
Addendum”), Amazon Web Services, Inc. is the seller of record for applications you choose to make
available through the AMDA channel. As the seller of record, AWS needs to know the price you charge
AWS for the products you plan to have on AWS Marketplace. Pricing should be on a per-month basis, per
user. AWS can help you to determine the final price to buyers.

In order to have your product published in non-US AWS Regions, AWS also needs you to provide certain
export classification information, including the applicable Export Control Classification Number (ECCN).

During and after the initial testing of your product, a member of the AMDA Business Development
team is available to answer your questions. You will then receive an email message from
<aws-mp-amda-contract@amazon.com> with the AMDA Addendum for you to fill out, sign, and
return for counter signature. The AMDA Addendum is an addendum to the Terms and Conditions for
AWS Marketplace Sellers. Therefore, you must establish an AWS Marketplace seller account and click
through these terms prior to beginning the onboarding process to include your applications on AMDA.

Product submission and packaging
Virtualization and packaging are handled by the AWS Marketplace Managed Catalog Operations (MCO)
team. AMDA vendors provide the software installer, installation instructions, and product metadata. MCO
will work with you to complete the packaging and complete the process for AMDA. Currently, all AMDA
software must be packaged by using an MCO administrative account with permissions to the Amazon
Simple Storage Service (Amazon S3) bucket that will store the package. AWS is unable to accept shared

60

https://aws.amazon.com/workspaces/
https://aws.amazon.com/workspaces/testimonials/
https://aws.amazon.com/marketplace/help/buyer-desktop-apps?ref=help_ln_sibling
https://aws.amazon.com/marketplace/desktop/search?ref_=footer_nav_desktop_view_products
https://www.bis.doc.gov/index.php/licensing/commerce-control-list-classification/export-control-classification-number-eccn

AWS Marketplace Seller Guide
Application packaging types

packages. Review the following guidelines before you submit your product. MCO will start processing
your packaging request upon receipt of these items:

1. Software installer and license key:
a. Amazon S3 bucket or external URL for the hosted Installer file (for example, .msi or .exe)
b. Server license key that is compatible with Windows Server 2008 R2

2. Installation instructions:
a. Known issues for Windows Server 2008 R2
b. Silent install command line arguments
c. Licensing mechanism notes:

i. Where is the license stored?
ii. How is the license verified?
iii. Which actions trigger a license check?

d. Auto-update
i. If enabled, describe how to disable this function.

e. Services or Registry requirements:
i. List each required service or registry key, with a brief description of its purpose.

3. Test servers, data files, and additional external elements
a. If required for installation, provide a test environment for external components (for example, SQL

Server).
b. If your program processes data files, include test files so we can assess performance and

functionality.
4. List all program dependencies, for example:

a. C++ redistributables
b. Java, QuickTime, etc.
c. GPU/hardware requirements

5. Program technical contacts
a. Who is the point of contact for technical questions or issues encountered during testing and

packaging?

Application packaging types
AMDA packaging can be completed in two ways: virtualized installation or silent installation.

Virtualized installation relies on AMDA packaging tools to monitor all file changes during the installation
process. AWS will point to the installer executable and click Install, which monitors all file changes. AWS
then makes custom changes to the registry, services, and file structure to assess program stability and
performance.

Some advanced programs require a silent installation mechanism. In this case, AMDA virtualizes only the
installer files so that the software is physically installed only when the application is first launched on
the user’s WorkSpace. Additional steps are required to script the removal of silent installation programs.

Building the AMDA package
The packaging process relies on creating a diff of the target installation machine, which is a Windows
Server 2008 R2 virtual machine (VM).The packaging tool monitors the VM during the installation process,
creates a manifest of the changed files, and rolls this into a package to be ingested.

61

AWS Marketplace Seller Guide
Application metadata

After capturing the changes programmatically, an AWS technician inspects the files, services, and registry
entries to ensure all changes were accurately captured. During this process, the technician removes
all uninstall and auto-update references to ensure the application stays within the confines of the
virtualized package.

Programs that rely on specific Windows services (for example, background-running Windows services
and .dll requirements) might require additional testing and packaging. By default, all program properties
are virtualized to run on demand. Some services might require elevation to ensure they are available to
the program at runtime.

License keys are captured during the packaging process to help ensure a seamless, one-click experience
for end users. If your program requires the license keys on first launch, include detailed notes about how
to manually add the license to the applications files.

Application metadata
The current data load form is available at: https://s3.amazonaws.com/aws-mp-vendor-
guide/AMDAProductDataLoad.xlsx Enter the following application metadata into the
AMDAProductDataLoad.xlsx load form and include it with your application submission:

• Title – The title of the product.
• Full Description – Description appears on the product detail page.
• Short Description – Description appears on the search results page.
• End User License Agreement – The EULA that applies to the buyer's use of the product.
• Image – The product image or logo that appears on the product detail page, in search results, and

elsewhere on the AMDA website. Provide a URL to a square-formatted image logo.
• Categories – The software category for the product. See the AMDA home page to view the available

categories.
• Software By – The software developer that is displayed on the product page, which is usually your

company name.
• Vendor URL – The link to your website or a specific page that displays more information on the

product.
• Support text/email/URL – Only one field is required, but multiple contact points are encouraged.

Ingestion and new version updates
Ingestion of each AMDA product is handled by the AWS Marketplace MCO team. The current pipeline
supports releases on Thursday. AWS locks on metadata and final packaging on Tuesday at noon PST.
Requests after Tuesday noon PST are eligible on the following week’s publishing day. New version
updates are made on the same schedule.

If no metadata updates are requested, only the installer and associated files are required.

If you are updating metadata, send an updated product data load form to the AWS Marketplace Seller
Operations team.

62

https://s3.amazonaws.com/aws-mp-vendor-guide/AMDAProductDataLoad.xlsx
https://s3.amazonaws.com/aws-mp-vendor-guide/AMDAProductDataLoad.xlsx
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
AMI-based product delivery methods

AMI-based products
One way of delivering your products to buyers is with Amazon Machine Images (AMIs). An AMI provides
the information required to launch an Amazon Elastic Compute Cloud (Amazon EC2) instance. You create
a custom AMI for your product, and buyers can use it to create EC2 instances with your product already
installed and ready to use.

When buyers use the AMI that you provide, they're billed for instances that they create, following the
pricing and metering options that you create for your product. Buyers can use your product AMI in the
same way that they use other AMIs in AWS, including making new custom versions of the AMI. EC2
instances created from the AMI are still billed as your product, based on the AMI product code.

See the following resources:

• For more information about pricing AWS Marketplace products, see Product pricing (p. 37).
• For more information about creating custom metering for your product, see AWS Marketplace

Metering Service integration (p. 96).

AMI-based product delivery methods
You can deliver your AMI-based product in one of three ways:

• Single AMI – Buyers select and use the AMI as a template for an EC2 instance. Buyers can find these
products using the Amazon Machine Image delivery method filter.

For more information, see Single-AMI products (p. 66).
• AWS CloudFormation templates – You create templates that allow buyers to install a system of

multiple instances with different roles as a single unit. Buyers can find these products using the
CloudFormation delivery method filter.

For more information, see AMI-based delivery using AWS CloudFormation (p. 74).
• Private image build – This approach allows buyers to install your product on a base gold image that

meets their internal needs for operating system configuration. They create a new AMI, with your
product code for tracking and billing. Buyers can find these products using the Private Amazon
Machine Image delivery method filter.

For more information, see Private images (p. 84).

See the following resources:

• For more information about how your AMIs are tracked as buyers use them, see AMI product
codes (p. 65).

• For more information about the details of AMI-based products, and their lifecycle, see Understanding
AMI-based products (p. 63).

Understanding AMI-based products
This section outlines key concepts in working with AMI-based products.

Topics
• Product lifecycle (p. 64)

63

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html#AmazonMachineImage

AWS Marketplace Seller Guide
Product lifecycle

• AMI product codes (p. 65)
• Change requests (p. 65)
• Product Load Forms (p. 66)

Product lifecycle
AMI-based products include a set of one or more versions of the software, and metadata about the
product as a whole. When you create the product, you configure its properties in AWS Marketplace
including your product’s name, description, and pricing. You also determine the appropriate categories
for your product and add keywords so your product appears in relevant searches.

You also create the first version of the software. Depending on how you are delivering your software,
this might be a single AMI, a set of one or more AMIs with AWS CloudFormation templates, or software
packages for your buyer to use in creating their own AMIs. For more information, see AMI-based product
delivery methods (p. 63).

For paid products, buyers are billed for the number of installed instances. To meter on a different
dimension that your software tracks (for example, number of users of the product), integrate your
product with the AWS Marketplace Metering Service. For more information, see AWS Marketplace
Metering Service integration (p. 96).

When you create your product and the first version of your software, it's initially published in a limited
scope so that only your account can access it. When you're ready, you can publish it to the AWS
Marketplace catalog to allow buyers to subscribe and purchase your product.

The lifecycle of an AMI-based product for AWS Marketplace does not end after you publish the first
version. You should keep your product up to date with new versions of your software and with security
patches for the base operating system.

As an example of a complete AMI-based product lifecycle, imagine a seller wants to sell their AMI-based
product on AWS Marketplace. Following is how the seller creates and maintains the product over time:

1. Create a product – The seller creates the product, and publishes version 1.0.0 to AWS Marketplace.
Buyers can create instances of version 1.0.0 and use it.

2. Add a new version – Later, the seller adds a new feature to the product, and adds a new version, 1.1.0,
that includes the feature. Buyers can still use the original version, 1.0.0, or they can choose the new
version, 1.1.0.

Note
Unlike new products, new versions are published to full public availability. You can only test
them in AWS Marketplace without customers seeing them if the product as a whole is in
limited release.

3. Update product information – With version 1.1.0 available, the seller lets buyers know about the new
feature by updating the product information with new highlight text describing the feature.

4. Add a minor version – When the seller fixes a bug in version 1.1.0, they release it by adding a new
version 1.1.1. Buyers now have the choice of using version 1.0.0, 1.1.0, or 1.1.1.

5. Restrict a version – The seller decides that the bug is serious enough that they don’t want buyers to
be able to use version 1.1.0, so they restrict that version. No new customers can then buy 1.1.0 (they
can only choose 1.0.0 or 1.1.1), although existing buyers still have access to it.

6. Update version information – To help those existing buyers, the seller updates the version
information for 1.1.0 with a suggestion to upgrade to version 1.1.1.

7. Monitor usage – As buyers purchase and use the product, the seller monitors sales, usage, and other
metrics using the AWS Marketplace Seller reports and data feeds (p. 273).

8. Remove the product – When the product is no longer needed, the seller removes it from AWS
Marketplace.

64

AWS Marketplace Seller Guide
AMI product codes

In this example, the seller created three different versions of the AMI in the product, but only two were
available to new buyers (prior to removing the product).

To make modifications to versions or the product information, you create Change requests (p. 65) in
the AWS Marketplace Management Portal.

For detailed instructions on the steps to create and manage your AMI-based product, see Single-AMI
products (p. 66).

AMI product codes
A unique product code is assigned to your product when you create it in AWS Marketplace. That
product code is associated with the AMIs for your product and is used to track usage of your product.
Product codes are propagated automatically as buyers work with the software. For example, a customer
subscribes and launches an AMI, configures it, and produces a new AMI. The new AMI still contains the
original product code, so correct usage tracking and permissions remains in place.

Note
The product code is different than the product ID for your product. Each product in AWS
Marketplace is assigned a unique product ID. The product ID is used to identify your product
in the AWS Marketplace catalog, in customer billing, and in seller reports. The product code
is attached to instances created from your AMI as instance metadata. When an AMI with that
product code is used to create an instance, the customer will get a bill that shows the associated
product ID. After you create your product, find the product code and the product ID in the AWS
Marketplace Management Portal page for your product.

As a seller, your software can get the product code for the running Amazon Elastic Compute Cloud
(Amazon EC2) instance at runtime from the instance metadata. You can use the product code for extra
security, such as validating the product code at product start. You can't make API calls to an AMI's
product code until the product has been published into a limited state for testing. For more information
about verifying the product code, see Verifying your software is running on your AWS Marketplace
AMI (p. 89) .

Change requests
To make changes to a product or version in AWS Marketplace, you submit a change request through
the AWS Marketplace Management Portal. Change requests are added to a queue and can take from
minutes to days to resolve, depending on the type of request. You can see the status of requests in the
AWS Marketplace Management Portal.

The types of changes you can request for AMI-based products include:

• Update product information displayed to buyers.
• Update version information displayed to buyers.
• Add a new version of your product.
• Restrict a version so that new buyers can no longer access that version.
• Update the AWS Regions that a product is available in.
• Update the pricing and instance types for a product.
• Remove a product from AWS Marketplace.

For more information, see Creating a change request (p. 68).

Note
Some change requests require you to use product load forms to create the request. See the
following section.

65

AWS Marketplace Seller Guide
Product Load Forms

Product Load Forms
Typically, when you create or edit your product, you work within the AWS Marketplace Management
Portal user interface to make the changes that you want. However, a few operations direct you to use a
Product Load Form (PLF).

A PLF is a spreadsheet that contains all the information about a product. There are several ways that you
can get the PLF:

• You can download the PLF for an existing product from the product's details page in the AWS
Marketplace Management Portal.

• You are prompted to download the PLF when you select a menu item for an action that requires it.
For example, if you choose to create a new monthly billed server product, you will be prompted to
download the appropriate PLF.

If the action is an edit to an existing product, the PLF is pre-populated with the information for that
product, so you only need to change the details that you are updating.

• If you need a new, blank PLF, there are links to PLFs, based on the type of product you want to create,
on the AWS Marketplace Management Portal File upload page.

After you have completed your PLF, upload it to the AWS Marketplace Management Portal File upload
page. The PLF itself has more detailed instructions in the Instructions tab.

Single-AMI products
This section discusses how you can work with products in AWS Marketplace that are made up of a single
Amazon Machine Instance (AMI). Customers can use AMIs to create Amazon EC2 instances with your
product already installed and configured.

Topics

• Prerequisites (p. 66)

• Creating your product (p. 67)

• Creating a change request (p. 68)

• Getting status of a request (p. 69)

• Updating product information (p. 69)

• Updating version information (p. 70)

• Adding a new version (p. 70)

• Giving AWS Marketplace access to your AMI (p. 71)

• Restricting a version (p. 72)

• Removing a product from AWS Marketplace (p. 73)

• Common errors when submitting change requests (p. 74)

Prerequisites
Before you get started, you must complete the following prerequisites:

1. Have access to the AWS Marketplace Management Portal. This is the tool that you use to register
as a seller and manage the product that you sell on AWS Marketplace. To learn more about getting

66

https://aws.amazon.com/marketplace/management/product-load
https://aws.amazon.com/marketplace/management/product-load

AWS Marketplace Seller Guide
Creating your product

access to the AWS Marketplace Management Portal, see Policies and permissions for AWS Marketplace
sellers (p. 346).

2. Register as a seller and, if you want to charge for your products, submit your tax and banking
information. To learn more about becoming a seller, see Getting started as a seller (p. 4).

3. Have a product that you want to sell. For AMI-based products, this typically means you have created
or modified server software, and you have created an AMI for your customers to use. To learn more
about preparing an AMI for use in AWS Marketplace, see Best practices for building AMIs (p. 88).

Creating your product
Create AMI-based products by using the AWS Marketplace Management Portal.

To create a single-AMI product

1. Open the AWS Marketplace Management Portal at https://aws.amazon.com/marketplace/
management/tour/, and then sign in to your seller account.

2. From the Products menu, choose Server. Or, you can go directly to the Server Products page.

3. From the Current Server Products tab, select Create server product and then select one of the
licensing types for single AMI products:

• Bring your own license (BYOL) – A product that the user gets a license from you outside of AWS
Marketplace. It can be either a paid or free license.

• Free – A product that is free for your subscribers to use. (They will still pay charges for any
associated Amazon Elastic Compute Cloud (Amazon EC2) instance or other AWS resources.)

• Paid hourly or hourly-annual – A product that the buyer pays for either on an hourly basis or
hourly with an annual contract. AWS does the metering based on the product code on the AMI.

• Paid monthly – A product that the buyer is billed for monthly by AWS.

Note
There is one other type of licensing for AMI-based products: Usage-based. This licensing
type applies when your product integrates with the AWS Marketplace Metering Service to
provide custom metering based on your customers' usage. To create a product that has
usage-based pricing, you must to download, complete, and upload a Product Load Form
(PLF).
For more information about PLFs, see Product Load Forms (p. 66).
For more information about the different types of licensing, see AMI pricing
models (p. 91).

4. Based on your selection, fill out the information for the new product, and choose Submit.

Note
If you select Paid monthly, you will be asked to download a Product Load Form (PLF).

5. Verify that the request appears on the Requests tab with the Under Review status. You can return
to this page to see the status of your request as it is processed.

Note
Product verification and publication is a manual process, handled by the AWS Marketplace
Seller Operations team. It can take 3–5 days to publish your initial product version, if there
are no errors. For more details about timing, see Timing and expectations (p. 265).

When your product is initially published, it's only accessible to your AWS account (the one you used to
create the product). If you view the product from the Server products page, you can select View on
AWS Marketplace to view the product details as it will appear in AWS Marketplace for buyers. This detail
listing isn't visible to other AWS Marketplace users.

67

https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/products/server

AWS Marketplace Seller Guide
Creating a change request

This capability allows you to test your product (and even publish multiple versions for testing) before
releasing it publicly. If you need to make the product available to additional test accounts, or to publish
your product publicly, contact the AWS Marketplace Seller Operations team.

For more information about preparing your product information and submitting it for publication, see
the following resources:

• Preparing your product (p. 35)
• Submitting your product for publication (p. 261)

For more information about preparing your AMI for submission to AWS Marketplace, see the following
resources:

• Best practices for building AMIs (p. 88)
• AMI product checklist (p. 112)
• AMI security policies (p. 113)

Creating a change request
To make modifications to versions or the product information, you create a change request in the AWS
Marketplace Management Portal.

Note
You can also create change requests using the AWS Marketplace Catalog API.

To create a change request

1. Open the AWS Marketplace Management Portal at https://aws.amazon.com/marketplace/
management/tour/, and sign in to your seller account, then go to the Server products page.

2. On the Current server products tab, select the product you want to modify.
3. Choose an option from the Request changes dropdown.

For most change requests, you simply fill out the UI form and submit. However, for certain changes,
you must download, complete, and then upload a Product Load Form (PLF). This is a spreadsheet that
contains a form for you to fill out with the required information. When you choose one of these change
requests, you will be prompted to download the correct PLF for the request you are attempting to create.
The PLF is pre-populated with information from your existing product details. You can upload your
completed PLF to the AWS Marketplace Management Portal File upload page.

Note
We strongly recommend that you download and use the most recent PLF. The form is regularly
updated with new information, including instance types and Regions as they become available.
You can find the latest PLF for a product from the Server products page, by selecting the
product and then choosing Download Product Load Form.

For more information about the status of a change request, see the section called “Getting status of
a request” (p. 69). For insight into potential issues with change requests, see Common errors when
submitting change requests (p. 74).

For more details about specific change requests, see the following resources:

• Updating product information (p. 69)
• Updating version information (p. 70)
• Adding a new version (p. 70)
• Restricting a version (p. 72)

68

https://aws.amazon.com/marketplace/management/contact-us/
https://docs.aws.amazon.com/marketplace-catalog/latest/api-reference/seller-products.html
https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/products/server
https://aws.amazon.com/marketplace/management/product-load

AWS Marketplace Seller Guide
Getting status of a request

Getting status of a request
After you submit a change request, you can see the status of your request from the Requests tab of
the Server products page of the AWS Marketplace Management Portal. The status could be any of the
following:

• Under review means that your request is being reviewed. Some requests require manual review by the
AWS Marketplace team but most are reviewed automatically in the system.

• Succeeded means that your request is complete. Your product or version has been updated as you
requested.

• Action required means that you need to update your request to fix an issue or answer a question
about the request. Select the request to see the details, including any issues.

• Failed means that something went wrong with the request, and you should create a new request for
the change, with the same data.

Updating product information
After you have created your product, you may want to change some of the information associated with it
in AWS Marketplace. For example, if a new version modifies the description or highlights of the product,
you can edit the product information with the new data.

To update product information

1. Open the AWS Marketplace Management Portal at https://aws.amazon.com/marketplace/
management/tour/, and then sign in to your seller account.

2. Go to the Server Products page, and on the Current server products tab, select the product you
want to modify.

3. From the Request changes dropdown, choose Update product information.
4. Update any of the following fields that you need to change:

• Product title
• SKU
• Short description
• Long description
• Product logo image URL
• Highlights
• Product categories
• Keywords
• Product video URL
• Resources
• Support information

Note
For details about the logo format, see Company and product logo requirements (p. 262).

5. Select Submit.
6. Verify that the request appears on the Requests tab with the Under review status. You may need to

refresh the page to see the request on the list.

You can check the status of your request at any time from the Requests tab of the Server Products page.
For more information, see Getting status of a request (p. 69).

69

https://aws.amazon.com/marketplace/management/products/server
https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/products/server
https://aws.amazon.com/marketplace/management/products/server

AWS Marketplace Seller Guide
Updating version information

Updating version information
After a version is created, it can be helpful to provide updated information to your buyers by modifying
the information associated with the version. For example, if you plan to restrict version 1.0 after version
1.1 is released, you can update the description of version 1.0 to direct buyers to version 1.1, with the
date that the version will be restricted. You update the version information from the AWS Marketplace
Management Portal.

To update version information

1. Open the AWS Marketplace Management Portal at https://aws.amazon.com/marketplace/
management/tour/, and then sign in to your seller account.

2. Go to the Server Products page, and on the Current server products tab, select the product you
want to modify.

3. From the Request changes dropdown, choose Update version information.
4. On the Update version page, select the version that you want to update.
5. Update any of the following information that you need to modify:

• Release notes
• Usage instructions
• 64-bit (x86) Amazon Machine Image (AMI) – Details on usage and security group

6. Select Submit.
7. Verify that the request appears on the Requests tab with the Under review status.

Note
You can't use this procedure to update the version title, or the AMI associated with the version.
In this case, create a new version (p. 70) and restrict the previous one (p. 72).

You can check the status of your request at any time from the Requests tab of the Server Products page.
For more information, see Getting status of a request (p. 69).

Adding a new version
You can add a new version of your product when you make changes to the product, the base image, or
any other time you need to modify the AMI for the product. Add a new version of your product from the
AWS Marketplace Management Portal.

Note
For information about creating an AMI for AWS Marketplace, see Best practices for building
AMIs (p. 88).

To add a new version

1. Open the AWS Marketplace Management Portal at https://aws.amazon.com/marketplace/
management/tour/, and then sign in to your seller account.

2. Go to the Server products page, and on the Current server products tab, select the product you
want to modify.

3. From the Request changes dropdown, choose Add new version. The Add a new version form
appears, pre-populated with the information from your most recent version.

4. In the Version information section, provide the following information:

• Version title – Enter a valid string (for example 1.1 or Version 2.0). It must be unique across
the product.

70

https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/products/server
https://aws.amazon.com/marketplace/management/products/server
https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/products/server

AWS Marketplace Seller Guide
Giving AWS Marketplace access to your AMI

• Release notes – Enter text to describe details about this version.
5. In the New Amazon Machine Image (AMI) section, provide the following information:

• Amazon Machine Image ID – Enter the AMI ID for the AMI that you want to use for this version.
You can find the AMI ID from the list of AMIs in the console. The AMI must exist in the US East (N.
Virginia) Region, and in your AWS Marketplace Seller account.

• IAM access role ARN – Enter the Amazon Resource Name (ARN) for an AWS Identity and Access
Management (IAM) role that allows AWS Marketplace to gain access to your AMI. For instructions
on how to create the IAM role, see Giving AWS Marketplace access to your AMI (p. 71). Use
the standard format for an IAM ARN, for example: arn:aws:iam::123456789012:role/
RoleName. The ARN must exist in your AWS Marketplace Seller account.

• OS user name – For Linux-based AMIs, enter the name of a user that can be used to sign into the
instance. We recommend using ec2-user.

• Scanning port – Enter the port number that can be used to log into the operating system: the
SSH port for a Linux AMI or the RDP port for a Windows AMI.

6. If it is not already, expand the Configuration settings to publish the AMI to the AWS Marketplace
customer website section, then provide the following information:

• Usage instructions – Enter instructions for using the AMI or a link to more information about
using the AMI. For example: To get started with the product, navigate to https://
example.com/usage.htm.

• Endpoint URL – Provide information about how the buyer can access the software after
they create an instance. Enter the Protocol (https or http), the Relative URL (for example, /
index.html), and the Port (for example, 443) that buyers can use to access your product. (The
host name depends on the EC2 instance, so you only need to provide the relative path).

• Operating system (OS) – Enter the name of the OS used by the AMI (for example, Amazon
Linux).

• OS version – Enter the specific version of the OS in the AMI.
• Recommended instance type– Choose the instance type that buyers get by default.
• Security group recommendations – Enter the information for one or more recommendations,

including the protocol (TCP or UDP), range of ports to allow, and list of IPv4 CIDR IPs (in the form
xxx.xxx.xxx.xxx/nn, for example, 192.0.2.0/24).

7. Select Submit to submit the request to add your new version.
8. Verify that the request appears on the Requests tab with the Under review status. If there are errors

to fix, the page displays the errors in a table at the top of the page, and the specific fields that need
to be updated display in red.

You can check the status of your request at any time from the Requests tab of the Server Products page.
The new version will be reviewed and, if successful, published as a new public version of your product. If
there is an issue, the status may show Action required. Select the request to see details, including any
issues.

If your request is successful, your existing users will receive an email notifying them the new version is
available, linking to the version's release notes, and suggesting that they upgrade to the latest version.
You will also receive a copy of the email in your root AWS account email.

Giving AWS Marketplace access to your AMI
When you create a request that includes adding a new AMI to AWS Marketplace, the AMI must be copied
into the AWS Marketplace system and then scanned for security issues. You must give AWS Marketplace
access to the AMI by creating an AWS Identity and Access Management (IAM) role with permissions to
perform actions on your AMI and a trust policy that allows AWS Marketplace to assume the role. You
only need to create the IAM role once.

71

https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#Images:sort=name
https://aws.amazon.com/marketplace/management/products/server

AWS Marketplace Seller Guide
Restricting a version

To create a role for AWS Marketplace AMI assets ingestion

1. Sign in to the AWS Management Console, open the IAM console and go to the Roles page.

2. Select Create role.

3. On the Create role page, make the following selections:

• Select type of trusted entity – Choose AWS Service.

• Choose a use case – Choose AWS Marketplace.

• Select your use case – Choose Marketplace – AMI Assets Ingestion.

• To move to the next page, select Next: Permissions.

4. Select the AWSMarketplaceAmiIngestion policy. Add a permissions boundary if required, and then
select Next: Tags to continue.

Note
You can use permissions boundaries to limit the access that you give AWS Marketplace with
this role. For more information, see Permissions boundaries for IAM entities in the AWS
Identity and Access Management User Guide.

5. To continue, select Next: Review.

6. Provide a name for the role, and select Create role.

7. You should see "The role rolename has been created" at the top of the page, and the role should
appear in the list of roles.

On this page, when you select the role that you just created, you can see its ARN in the form
arn:aws:iam::123456789012:role/exampleRole. Use the ARN for the IAM access role ARN when you
create change requests, for example, when adding a new version (p. 70) to your product.

Restricting a version
If you want to prevent buyers from accessing a specific version of your public product, you can restrict
that version.

Note
Buyers that previously subscribed to the product will still be able to use the version. AWS
Marketplace guidelines require that you continue to offer support to existing buyers for 90 days
after restricting the version.

To restrict a version

1. Open the AWS Marketplace Management Portal at https://aws.amazon.com/marketplace/
management/tour/, and then sign in to your seller account.

2. Go to the Server Products page, and on the Current server products tab, select the product you
want to modify.

3. From the Request changes dropdown, choose Restrict version.

4. On the Restrict version page, select the version (or versions) that you want to restrict.

5. Select Submit to submit your request for review.

6. Verify that the Requests tab show the Request status as Under review. When the request
completes, the status is Succeeded.

Note
You can't restrict all versions of a product. If you try to restrict the last remaining public version
of a product, you will receive an error. To completely remove a product, see the section called
“Removing a product from AWS Marketplace” (p. 73).

72

https://console.aws.amazon.com/iam/home?region=us-east-1#/roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/products/server

AWS Marketplace Seller Guide
Removing a product from AWS Marketplace

You can check the status of your request at any time from the Requests tab of the Server Products page.
For more information, see Getting status of a request (p. 69).

Note
Restricting a version can take up to 3 days to complete.

If your request is successful, your existing users will receive an email notifying them of the version
restriction, and suggesting that they use the most recent version available. You will also receive a copy of
the email in your root AWS account email.

Removing a product from AWS Marketplace
After your product is published, you can remove (also referred to as sunset) it from AWS Marketplace.
To remove a product, identify the product and submit a request to remove it, along with a reason for
removal and a contact email address for you. You can also provide a replacement product ID if you're
replacing the current product with a new one. After you request product removal, new customers will
no longer be able to subscribe to the product. You're required to support any existing customers for a
minimum of 90 days. We process requests for product removal from AWS Marketplace with the following
conditions:

• The product is removed from AWS Marketplace search, browse, and other discovery tools. Any
Subscribe button or functionality is disabled, and messaging on the page clearly indicates the product
is no longer available. Note that the product detail page is still accessible using the URL and may be
indexed in public search engines.

• A reason for removal must be specified (for example, end of support, end of product updates, or
replacement product). For the requirements for continuing support for removed products, see Terms
and Conditions for AWS Marketplace Sellers.

• AWS Marketplace contacts current buyers via email message informing them of the product removal,
reasons for the removal, and to provide seller contact information.

• Current buyers do retain access to the software until they cancel their subscription. They aren't
affected in any way by the product's removal.

To remove a product created using the AWS Marketplace Management Portal

1. Open the AWS Marketplace Management Portal at https://aws.amazon.com/marketplace/
management/tour/, and then sign in to your seller account.

2. Choose the Products tab, and then choose Server.
3. On your product page, under Current server products, locate the product that you want to remove.

From the Actions column on the Select action menu, choose Unpublish product.
4. On the Unpublish Product page, for Request Reason, enter the reason that you're requesting the

product's removal.
5. (Optional) Provide a Replacement Product ID, if there is another product that will take the place of

the product you are removing.
6. For Contact Information, enter the email address that AWS can use to contact you with any

questions.
7. Review the information for accuracy, and then choose Submit Sunset Request.

A What’s next informational page displays after you submit the product removal request. The AWS
Marketplace Seller Operations team reviews and processes your request. Check the status of your
submission by viewing Requests.

After your product is removed, the product appears in the Current Products list in the AWS Marketplace
Management Portal. In Current Products, the only action that you can perform is downloading the
spreadsheet for the product. You can't edit or submit another sunset request.

73

https://aws.amazon.com/marketplace/management/products/server
https://aws.amazon.com/marketplace/management/terms
https://aws.amazon.com/marketplace/management/terms
https://aws.amazon.com/marketplace/management/tour/
https://aws.amazon.com/marketplace/management/tour/

AWS Marketplace Seller Guide
Common errors when submitting change requests

If you have questions about product removals, contact the AWS Marketplace Seller Operations team.

Common errors when submitting change requests
When you make changes to your product's information, you sometimes run into errors. Following are
some common issues and suggestions for how to fix them:

• Scanning your AMI – Several issues could happen when scanning your AMI:
• You have not granted AWS Marketplace permissions to scan your AMI. Grant AWS Marketplace

permissions to access it. Or you have granted permissions, but the permissions boundary is too
restrictive. For more information, see Giving AWS Marketplace access to your AMI (p. 71).

• If scanning finds security issues or Common Vulnerabilities and Exposures (CVEs) in your AMI, make
sure you're using the latest patches for the operating system in your image. For more information,
see AMI security policies (p. 113).

For general guidelines about building an AMI, see Best practices for building AMIs (p. 88).
• AWS Marketplace Management Portal fields – Some fields in the AWS Marketplace Management

Portal require very specific information:
• If you are unsure about what the field is requesting, try checking the details in the console. Most

fields have text descriptions above the field, and formatting requirements below the field.
• If you try to submit a form with one or more invalid fields, a list of issues is shown. A recommended

action is provided to help you fix the issue.
• If you're asked to provide an ARN, you will typically find it elsewhere in the console. For example, the

ARN for the IAM role that you created to give AWS Marketplace access to your AMI is found on the
Roles page in the IAM console. ARNs all have a similar format. For example, an IAM role ARN is in the
form arn:aws:iam::123456789012:role/exampleRole.

• Your logos and videos must be provided as a URL directly to the content. For more information
about logo formats, see Company and product logo requirements (p. 262).

For more information about submitting products and version change requests, see Submitting your
product for publication (p. 261).

• Product Load Form (PLF) issues – PLFs contain instructions that are included in the spreadsheet.
Overall instructions are provided in the Instructions table. Each field has instructions for how to fill it
out—select the field to reveal the instructions.

• Request in Progress – Some requests cannot happen in parallel. You can only have one request to
update specific information in progress for a product at a time. You can see all of your requests still
under review on the Requests tab of the Server products page in AWS Marketplace Management
Portal. If you have a pending request that you did not intend, you can cancel it and then submit a new
request with the change that you want to make.
• You can't update version information when an update (to add or restrict) a version is ongoing.
• If there is a request pending from the AWS Marketplace Seller Operations team, you can't submit

any new changes.
• Unexplained error – If your submission fails with no explanation, try again. Occasionally, server load

causes a submission to fail.

If you're still having problems with a change request, contact the AWS Marketplace Seller Operations
team.

AMI-based delivery using AWS CloudFormation
AWS Marketplace sellers can list AMI-based products that are delivered to AWS Marketplace buyers
by using AWS CloudFormation templates. You can use the templates to define a cluster or distributed

74

https://aws.amazon.com/marketplace/management/contact-us/
https://console.aws.amazon.com/iam/home?region=us-east-1#/roles
https://console.aws.amazon.com/iam/home?region=us-east-1#/roles
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Building your product listing

architecture for the products or to select different AMI combinations or product configurations. The
AWS CloudFormation templates can be configured to deliver a single Amazon Machine Image (AMI)
or multiple AMIs along with associated config files and Lambda functions. Buyers can browse the
selection of solutions on AWS Marketplace, buy with one click, and deploy by using AWS CloudFormation
templates that you provide.

Multi-AMI solutions can contain up to 20 AMIs and up to 20 AWS CloudFormation templates. Each AWS
CloudFormation template can reference any combination or subset of the AMIs contained in the solution.
The buyer purchases a single solution that entitles them to all of the AMIs in that product. When the
product has multiple AMIs, each AMI has its own unique product code and can be priced and metered
separately. However, individual components of a solution aren't discoverable or procurable outside the
context of the product.

If you have existing single-AMI products, you can't migrate or combine them into a new multi-AMI listing.
However, your new solution can feature the same software or copies of AMIs used by existing products.
Each listing created on AWS Marketplace is a listing with new product codes.

You can also include Lambda functions in a Serverless Application with your AMI so that buyers can
deploy them through CloudFormation. For instructions on how to include Lambda functions and
serverless applications with your AMI, see Adding serverless application components (p. 79).

Building your product listing
To submit your product, you need to prepare and validate your AMI(s), create your AWS CloudFormation
template(s), create a topology diagram, complete the product load form, and submit the materials
to AWS Marketplace. We recommend that you start by creating and validating your AMI(s) and then
complete and validate the AWS CloudFormation template(s). After you complete those steps, you
should create a topology diagram and estimate the software and infrastructure price. AWS Marketplace
validates your submission and works with you to make your product public. Use the AWS Pricing
Calculator to help estimate the infrastructure cost for your template. Provide AWS Marketplace with a
link to your saved calculator configuration. The following are limitations of multi-AMI solution products:

• Updating existing AWS Marketplace products from a standalone product to a multi-AMI product
isn't supported. To make a product available in a multi-AMI product, copy the AMI and submit it as a
component to a new multi-AMI product. The resulting AMI has a unique product code that's different
from the previous product's code.

• Multi-AMI solutions aren't visible on the AWS Marketplace tab of the Launch Instance page in the
Amazon Elastic Compute Cloud (Amazon EC2) console.

• An AWS CloudFormation template must not launch AMIs outside of those listed in the multi-AMI
solution.

• AWS CloudFormation templates must be submitted in the form of a public URL. All nested template
URLs contained in the template must also be publicly accessible.

Preparing your AWS CloudFormation template
To build your AWS CloudFormation templates, you must meet the template prerequisites and provide
the required input and security parameters. When submitting your AWS CloudFormation template, use
the guidelines in the following sections.

Template prerequisites
• Verify that the template is launched successfully through the AWS CloudFormation console in all

Regions enabled for your product. You can use this tool to test your templates: https://github.com/
aws-quickstart/taskcat.

• If you are creating a single-AMI product, the template must contain only one AMI.

75

https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://github.com/aws-quickstart/taskcat
https://github.com/aws-quickstart/taskcat

AWS Marketplace Seller Guide
Preparing your AWS CloudFormation template

• AMIs must be in a mapping table for each Region. The AWS Marketplace team updates the AMI
IDs after they're cloned. Your source AMI must be in us-east-1 and the other regions can use
placeholders. See the following YAML example.

Mappings:
 RegionMap:
 us-east-1:
 ImageId: ami-0123456789abcdef0
 us-west-1:
 ImageId: ami-xxxxxxxxxxxxxxxxx
 eu-west-1:
 ImageId: ami-xxxxxxxxxxxxxxxxx
 ap-southeast-1:
 ImageId: ami-xxxxxxxxxxxxxxxxx

• Build templates so that they do not depend on the use in a particular availability zone (AZ). Not all
customers have access to all AZs, and AZs are mapped differently for different accounts.

• You can include dependencies such as Lambda functions, config files, and scripts with your AMI. For
more information, see Create a serverless application (p. 79).

• If you're building a clustered solution using an Auto Scaling group, we recommend that you account
for a scaling event. The new node should join the running cluster automatically.

• Even for single-node products, we recommend using an Auto Scaling group.

• If your solution involves a cluster of multiple instances, consider using placement groups if you want
low network latency, high network throughput, or both among the instances.

• If your solution involves Docker containers, you must incorporate the Docker images into the AMI.

• For ease of review by the AWS Marketplace team and transparency to the customer, we recommend
that you add comments in your UserData section.

Template input parameters
• Input parameters to the template must not include the AWS Marketplace customer's AWS credentials

(such as passwords, public keys, private keys, or certificates) or personal information such as email
address.

• Do not set defaults for parameters such as remote access, CIDR/IP, or passwords for databases. The
customer must provide these as input parameters.

• For sensitive inputs such as passwords, choose the NoEcho property and enable stronger regular
expression. For other inputs, set the most common inputs along with appropriate helper text.

• Use AWS CloudFormation parameter types for inputs where available.

• Use AWS::CloudFormation::Interface to group and sort input parameters.

Network and security parameters
• Ensure that the default SSH port (22) or RDP port (3389) isn't open to 0.0.0.0.

• Instead of using the default virtual private cloud (VPC), we recommend that you build a VPC with
appropriate access control lists (ACLs) and security groups. Only AWS accounts created before
December 4, 2013, support EC2-Classic.

• Access to the customer's AWS environment should be enabled using an IAM role to call AssumeRole
from the AWS Security Token Service.

• Set IAM roles and policies to grant the least privilege and enable write access only when absolutely
necessary. For example, if your application needs only S3:GET, PUT, and DELETE operations, specify
those actions only. We don't recommend the use of S3:* in this case.

76

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/mappings-section-structure.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/create-asg-from-instance.html
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS Marketplace Seller Guide
Getting the cost estimate for your template infrastructure

After your template is received, AWS Marketplace validates the product configuration and information
and provides feedback for any required revisions.

Getting the cost estimate for your template
infrastructure
The infrastructure cost estimate for each template displayed to customers is based on an estimate that
you provide by using the AWS Pricing Calculator. The estimation should include the list of services to be
deployed as part of the template, along with the default values for a typical deployment.

After you calculate the template's estimated monthly cost, provide AWS Marketplace with the Save and
Share link for the US East (N. Virginia) Region. This is part of the submission process.

Topology diagram
You must provide a topology diagram for each template. The diagram must use the AWS product
icons for each AWS service deployed through the AWS CloudFormation template, and it must include
metadata for the services. The diagram must be 1100 x 700 pixels in size. Make sure that your diagram
meets this sizing requirement to avoid cropping or stretching, as shown in the following image.

Meeting the submission requirements
To submit products delivered by using AWS CloudFormation templates, you must provide the following
resources:

• AWS CloudFormation template or templates

77

https://calculator.s3.amazonaws.com/index.html
https://aws.amazon.com/architecture/icons/
https://aws.amazon.com/architecture/icons/

AWS Marketplace Seller Guide
Submitting your product request

• A single-AMI product can have one to three AWS CloudFormation templates

• A multi-AMI product can have up to 20 AWS CloudFormation templates

• The estimated infrastructure price for the default configuration of each template

• A topology diagram and topology metadata

• Completed product form (available from the AWS Marketplace Management Portal)

• For single-AMI products, use the Commercial Product form

• For multi-AMI products, use the Multi-AMI Product form

The product forms include example submissions for your reference.

For each product, most of the required product data and metadata are the same as for traditional single-
AMI products. Therefore, each AMI that is delivered by using an AWS CloudFormation template must
continue to meet the standards and requirements described for AWS Marketplace.

For each AWS CloudFormation template, you must also provide the following information.

Field Description Restrictions

Title Title of the topology. This
appears on the detail and
fulfillment pages and the pop-
up that shows the topology
details.

50 characters

Short description This appears on the detail and
fulfillment pages.

200 characters

Long description This appears in the topology
details pop-up.

2000 characters

For multi-AMI products, the following fields are required:

• Solution title

• Solution short description

• Solution long description

• For AWS CloudFormation templates (up to 20 per solution)

• Deployment title (per template)

• Short description (per template)

• Long description (per template)

• Architecture diagram (per template)

• Infrastructure pricing estimate (per template)

• List of products/components contained in this AWS CloudFormation template

• List of regions supported by this AWS CloudFormation template

Submitting your product request
Use the AWS Marketplace Management Portal to submit your product. On the Assets tab, choose File
Upload. Upload any files you want to submit and enter a brief description. Allow three to five weeks for
request processing, including:

78

https://aws.amazon.com/marketplace/management/
https://s3.amazonaws.com/awsmp-loadforms/ProductDataLoad-Current.xlsx
https://s3.amazonaws.com/awsmp-loadforms/AWS_Marketplace_Product_Load_Form_CAR_Multi_AMI.xlsx
https://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Adding serverless application components

• Review of the AWS CloudFormation template, AMI, and metadata for the AMI and AWS
CloudFormation template

• Publication of your AWS CloudFormation template to AWS Marketplace products

Adding serverless application components
You can create a product that includes one or more Amazon Machine Images (AMIs), delivered using one
or more AWS CloudFormation templates, with serverless components incorporated into the product. For
example, create a product with one AMI configured as a controller server and another AMI configured
as a worker server, delivered as a AWS CloudFormation stack. The AWS CloudFormation template used
to create the stack can include the definition to set up an AWS Lambda function that is triggered by an
event in one of the servers.

When you use this approach to design your product, you can simplify the architecture and make it easier
for your buyers to launch. This approach can also make it easier for you to update your product.

For information about creating AMIs for your product, see AMI-based products (p. 63). For information
about completing AWS CloudFormation templates for your product, see AMI-based delivery using AWS
CloudFormation (p. 74).

When you define your serverless application, you use an AWS Serverless Application Model (AWS SAM)
template that you store in the AWS Serverless Application Repository. AWS SAM is an open-source
framework for building serverless applications. During deployment, AWS SAM transforms and expands
the AWS Serverless Application Model syntax into AWS CloudFormation syntax. The AWS Serverless
Application Repository is a managed repository for serverless applications. It makes it possible for you
to store and share reusable applications so buyers can assemble and deploy serverless architectures. To
create and offer this type of product, complete the following steps:

Steps
• Create a serverless application (p. 79)
• Publish your application to the repository (p. 80)
• Create the CloudFormation template (p. 81)
• Submit your CloudFormation template and configuration files (p. 83)
• Update your AWS Serverless Application Repository application permissions (p. 83)
• Share your AMI (p. 84)
• Submit your CloudFormation product with AMI and serverless application (p. 84)

AWS Marketplace reviews and validates your product before your listing is created. If there are issues you
must resolve before the offer is listed, we will send you an email message.

As part of fulfilling a subscription, we copy the AMIs, serverless applications, and AWS CloudFormation
templates to an AWS Marketplace-owned repository in each AWS Region. When a buyer subscribes to
your product, we give them access, and also notify them when you update your software.

Create a serverless application
Your first step is to package the AWS Lambda functions used to create your serverless application. Your
application is a combination of Lambda functions, event sources, and other resources that work together
to perform tasks. A serverless application can be as simple as one Lambda function or contain multiple
functions with other resources, such as APIs, databases, and event source mappings.

Use the AWS SAM to define a model for your serverless application. For descriptions of property names
and types, see AWS::Serverless::Application in AWSLabs on GitHub. The following is an example of an
AWS SAM template with a single Lambda function and AWS Identity and Access Management (IAM) role.

79

https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md#awsserverlessapplication

AWS Marketplace Seller Guide
Adding serverless application components

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An example of SAM template with Lambda function and IAM role

Resources:
 SampleFunction:
 Type: AWS::Serverless::Function
 Properties:
 Handler: 'com.sampleproject.SampleHandler::handleRequest'
 Runtime: java8
 CodeUri: 's3://DOC-EXAMPLE-BUCKET/2EXAMPLE-1234-4b12-ac37-515EXAMPLEe5-lambda.zip'
 Description: Sample Lambda function
 Timeout: 120
 MemorySize: 1024
 Role:
 Fn::GetAtt: [SampleFunctionRole, Arn]

 # Role to execute the Lambda function
 SampleFunctionRole:
 Type: "AWS::IAM::Role"
 Properties:
 AssumeRolePolicyDocument:
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - "lambda.amazonaws.com"
 Action: "sts:AssumeRole"
 ManagedPolicyArns:
 - "arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole"
 Policies:
 - PolicyName: SFNXDeployWorkflowDefinitionPolicy
 PolicyDocument:
 Statement:
 - Effect: "Allow"
 Action:
 - "s3:Get*"
 Resource: "*"
 RoleName: "SampleFunctionRole"

Publish your application to the repository
To publish an application, you first upload the application code. Store your code artifacts (for example,
Lambda functions, scripts, configuration files) in an Amazon S3 bucket that your account owns. When
you upload your application, it's initially set to private, meaning that it's only available to the AWS
account that created it. You must create an IAM policy that grants AWS Serverless Application Repository
permissions to access the artifacts you uploaded.

To publish your serverless application to the serverless application repository

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.
2. Choose the Amazon S3 bucket that you used to package your application.
3. Choose the Permissions tab.
4. Choose Bucket Policy.
5. Copy and paste the following example policy statement.

Note
The example policy statement will produce an error until values for aws:SourceAccount
and Resource are updated in following steps.

{

80

https://console.aws.amazon.com/s3/

AWS Marketplace Seller Guide
Adding serverless application components

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "serverlessrepo.amazonaws.com"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*",
 "Condition" : {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
]
}

a. Replace DOC-EXAMPLE-BUCKET in the Resource property value with the bucket name for your
bucket.

b. Replace 123456789012 in the Condition element with your AWS account ID. The Condition
element ensures that the AWS Serverless Application Repository only has permission to access
applications from the specified AWS account.

6. Choose Save.

7. Open the AWS Serverless Application Repository console at https://console.aws.amazon.com/
serverlessrepo.

8. On the My Applications page, choose Publish application.

9. Complete the required fields and any optional field, as appropriate. The required fields are:

• Application name

• Author

• Description

• Source code URL

• SAM template

10. Choose Publish Application.

To publish subsequent versions of your application

1. Open the AWS Serverless Application Repository console at https://console.aws.amazon.com/
serverlessrepo.

2. In the navigation pane, from My Applications, choose the application.

3. Choose Publish new version.

For more information, see Publishing serverless Applications Using the AWS SAM CLI.

Create the CloudFormation template
To build your CloudFormation templates, you must meet the template prerequisites and provide the
required input and security parameters. For more information, see Template anatomy in the AWS
CloudFormation User Guide.

In your CloudFormation template, you can reference your serverless application and your AMI. You
can also use nested CloudFormation templates and reference serverless applications both in the root
template and the nested templates. To reference the serverless application, you use the AWS SAM

81

https://console.aws.amazon.com/serverlessrepo
https://console.aws.amazon.com/serverlessrepo
https://console.aws.amazon.com/serverlessrepo
https://console.aws.amazon.com/serverlessrepo
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-template-publishing-applications.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html

AWS Marketplace Seller Guide
Adding serverless application components

template. You can automatically generate the AWS SAM template for your application from the AWS
Serverless Application Repository. The following is an example template.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An example root template for a SAR application

Resources:
 SampleSARApplication:
 Type: AWS::Serverless::Application
 Properties:
 Location:
 ApplicationId: arn:aws:serverlessrepo:us-east-1:1234567890:applications/
TestApplication
 SemanticVersion: 1.0.0
 SampleEC2Instance:
 Type: AWS::EC2::Instance
 Properties:
 ImageId: "ami-79fd7eee"
 KeyName: "testkey"
 BlockDeviceMappings:
 - DeviceName: "/dev/sdm"
 Ebs:
 VolumeType: "io1"
 Iops: "200"
 DeleteOnTermination: "false"
 VolumeSize: "20"
 - DeviceName: "/dev/sdk"
 NoDevice: {}

The AWS SAM template contains the following elements:

• ApplicationID – Your application's Amazon Resource Name (ARN). This information is located in the
My Applications section of the AWS Serverless Application Repository.

• SemanticVersion – The version of your serverless application. You can find this from the My
Applications section of the AWS Serverless Application Repository.

• Parameter (optional) – Application parameters.

Note
For ApplicationID and SemanticVersion, intrinsic functions aren't supported. You must
hardcode those strings. The ApplicationID is updated when it's cloned by AWS Marketplace.

If you're planning to reference configuration and script files in your CloudFormation template, use
the following format. For nested templates (AWS::Cloudformation::Stack), only TemplateURLs
without intrinsic functions are supported. Note the Parameters content in the template.

AWSTemplateFormatVersion: '2010-09-09'
Metadata:
 Name: Seller test product
Parameters:
 CFTRefFilesBucket:
 Type: String
 Default: "seller-bucket"
 CFTRefFilesBucketKeyPrefix:
 Type: String
 Default: "cftsolutionFolder/additionCFfiles"
Resources:
 TestEc2:
 Type: AWS::EC2::Instance
 Metadata:
 AWS::CloudFormation::Init:

82

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html

AWS Marketplace Seller Guide
Adding serverless application components

 addCloudAccount:
 files:
 /etc/cfn/set-aia-settings.sh:
 source:
 Fn::Sub:
 - https://${CFTRefFilesBucket}.${S3Region}amazonaws.com/
${CFTRefFilesBucketKeyPrefix}/sampleScript.sh
 - S3Region:
 !If
 - GovCloudCondition
 - s3-us-gov-west-1
 - s3
 owner: root
 mode: '000700'
 authentication: S3AccessCreds
 ..
 ..
 ..
 SampleNestedStack:
 Type: AWS::CloudFormation::Stack
 Properties:
 TemplateURL: 'https://sellerbucket.s3.amazon.com/sellerproductfolder/
nestedCft.template'
 Parameters:
 SampleParameter: 'test'
Transform: AWS::Serverless-2016-10-31

Submit your CloudFormation template and configuration files
To submit your CloudFormation template and configuration and scripts files, grant AWS Marketplace
permissions to read the Amazon S3 bucket where these files are stored. To do so, update your bucket
policy to include the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "assets.marketplace.amazonaws.com"
 },
 "Action": ["s3:GetObject", "s3:ListBucket"],
 "Resource": ["arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"]
 }
]
}

Update your AWS Serverless Application Repository application
permissions
To submit your AWS Serverless Application Repository application to AWS Marketplace, you must grant
AWS Marketplace permissions to read your application. To do that, add permissions to a policy associated
with your serverless application. There are two ways to update your application policy:

• Go to the AWS Serverless Application Repository. Choose your serverless application from the list.
Select the Sharing tab, and choose Create Statement. On the Statement configuration page, enter
the following service principal, assets.marketplace.amazonaws.com, in the Account Ids field.
Then choose Save.

• Use the following AWS CLI command to update your application policy.

83

https://console.aws.amazon.com/serverlessrepo/home

AWS Marketplace Seller Guide
Private images

aws serverlessrepo put-application-policy \
--region region \
--application-id application-arn \
--statements Principals=assets.marketplace.amazonaws.com,Actions=Deploy

Share your AMI
All AMIs built and submitted to AWS Marketplace must adhere to all product policies. Self-service
AMI scanning is available in the AWS Marketplace Management Portal. With this feature, you can
initiate scans of your AMIs. You receive scanning results quickly (typically, in less than an hour) with
clear feedback in a single location. After your AMI has been successfully scanned, submit the AMI for
processing by the AWS Marketplace Seller and Catalog Operations team by uploading your product load
form.

Submit your CloudFormation product with AMI and serverless
application
Keep the following in mind before you submit your product:

• You must provide a topology diagram for each template. The diagram must use the AWS product icons
for each AWS service deployed through the CloudFormation template. Also, the diagram must include
metadata for the services. To download our official AWS architecture icons, see AWS Architecture Icons.

• The infrastructure cost estimate for each template displayed to buyers is based on an estimate that
you provide by using the AWS Pricing Calculator. In the estimate, include the list of services to be
deployed as part of the template, along with the default values for a typical deployment.

• Complete the product load form. You can find the product load form from the AWS Marketplace
Management Portal. A different product load form is required for single AMI products and multiple
AMI products. In the product load form, you will provide a public URL to your CloudFormation
template. CloudFormation templates must be submitted in the form of a public URL.

• Use the AWS Marketplace Management Portal to submit your listing. From Assets, choose File upload,
attach your file, and then choose Upload. After we receive your template and metadata, AWS starts
processing your request.

After you submit your listing, AWS Marketplace reviews and validates the product load form.
Additionally, AWS Marketplace regionalizes AMIs and serverless applications, and updates the
regional mapping for your AWS CloudFormation template on your behalf. If any issues occur, the AWS
Marketplace Seller and Catalog Operations team contacts you by email.

Private images
You can use private image builds to let buyers purchase your installable software products through AWS
Marketplace, and then install those products on a gold image or Amazon Machine Image (AMI) they
choose from the images available to their AWS account. A gold image is a buyer-provided server image
that includes a base operating system with modifications applied to help ensure the software adheres to
the buyer’s IT standards. Gold images allow buyers to better meet their internal security, compliance, and
management requirements.

This topic describes how to use the AWS Marketplace Management Portal (AMMP) to upload your
software binaries and/or scripts and create an installable package group for each operating system (OS)
your software will run on. AWS Marketplace does a test build by installing the package group on a base

84

https://aws.amazon.com/architecture/icons
https://calculator.s3.amazonaws.com/index.html
https://aws.amazon.com/marketplace/management/tour/

AWS Marketplace Seller Guide
Package group requirements

OS you specify and scans the resulting image for certain known vulnerabilities. After the image build and
scan completes, you can use the AMMP to submit your product.

The following diagram shows the private image build flow.

1. You upload an installable software package to AWS Marketplace.

2. A buyer selects your product from AWS Marketplace, but wants to use their own gold image for the
OS on the AMI.

3. The buyer requests a new AMI from the AWS Marketplace Private Image Build Service, specifying their
gold image and your installable software package.

4. The AWS Marketplace Private Image Build Service creates a new private image that the buyer can use
in their AWS account only. They can then launch the AMI from the private image configuration panes
or within Amazon Elastic Compute Cloud (Amazon EC2).

Package group requirements
You can submit your package group for use on either AWS Marketplace base Linux AMIs or AWS
Marketplace base Windows Server AMIs.

When you select the OS platform for your product, you will have the option to select multiple OSs
and OS versions on which your package group will run. Windows Server packages will not run on Linux
OSs and vice versa, so if you want your product to support private images for both OS platforms, you
will need to define at least two package groups. When you define your package group, you upload the
installation packages or scripts and AMMP will build and scan a test image for each OS you choose.

For your package group to successfully complete the build and scan process, you must adhere to these
guidelines:

• The package group must have one of the packages or scripts marked as the installer. For example,
the installer may be a batch file or script that orchestrates the installation of the other packages and
provides the required parameters for an unattended installation.

• For Windows Server-based packages, the supported installer types have .msi, .ps1, .bat, and .exe
extensions.

• For Linux/UNIX (or any POSIX-compliant) systems, the supported installer types
have .exe, .rpm, .deb, .sh, and .run extensions.

• The entire installation process must be unattended. It cannot require any interactive input, and all
parameters or switches must be included in the installer.

• The packages must install without downloading patches or configuration files (be complete) from
another website.

85

AWS Marketplace Seller Guide
Submitting your package group

• The installer/installation script must be synchronous. For example, the script must not exit until the
packages are completely installed.

• The installer must exit with exit status 0 when the installation is successful. Any value other than 0 is
used for unsuccessful installations.

• The installer cannot require a reboot during the installation. A reboot would stop the agent that tracks
the test and scan process for packages. If your installer reboots, the agent is stopped and the test and
scan will fail.

• The installer must not affect the network routing on the instance in such a way that the host becomes
unreachable.

Submitting your package group
To submit a package group to AWS Marketplace for use with Private Image Build

1. From the AMMP, choose Assets, Private image build.
2. Under Manage packages, choose Start package.
3. In Enter a unique name for your package group, type the name of your product. The

name must be less than 100 characters and can only contain alphanumeric characters,
underscores, and dashes. Each product name associated with the AWS account used
to create and publish package groups must be unique. After you've used a name (even
if the build is unsuccessful), you can't use the name again. We recommend using a
naming convention with a revision number included in the file name. For example:
[product_group_name]<product_name><version><platform><revision_number>

4. In Select one or more packages, select a package from the dropdown list or choose Browse to
locate and select the package group you want to upload.

5. Under Select supported operating system platform, choose either AWS Marketplace base Linux
AMIs or AWS Marketplace base Windows AMIs.

6. Under Select supported operating systems, choose all the OSs that your package group will
support, and then choose Submit.

For each package group you submit, a build process is completed for each OS version you chose.
After you submit your package group, you are redirected to the Scan status page, where you can
check progress of the image building and scanning process for each package group.

Scan status
After you submit your package group, you can check the current status on the Scan status tab. Each
package group you've submitted is listed. Choose the arrow next to the package group to expand the list
and show the build and scan status for each package group you selected.

Each entry will show the AMI ID, date you submitted the package group, and the status of the package
group (or build). During the process, you can track the state of package groups and individual builds you
have submitted. There are four states your package group submission can be in, and five states individual
builds can be in.

Package group state
The package group state updates as automated steps complete. You can return to the Scan status page
to check on progress, or if the page is open you can choose Refresh status to update the information on
the page. The package group states are:

• Building – You have submitted your package group and the corresponding image(s) are being built.

86

https://aws.amazon.com/marketplace/management/tour/

AWS Marketplace Seller Guide
Submitting your product to AWS Marketplace

• Scanning – You have submitted your package group and the corresponding images(s) are being
scanned.

• Successful – All builds associated with your package group were successfully scanned. Submit your
product load form.

• Issues Found – One or more builds for your submission failed that require your attention. Choose the
information icon next to the status for additional troubleshooting information.

• Investigating – There was a problem uncovered during the build and scan process. AWS Marketplace is
investigating.

Note
If your status remains in the Investigating state for four or more business days, contact the AWS
Marketplace Seller Operations team.

OS build state

On the Scan status page, you can choose the arrow next to the package group name to expand the entry
to show each OS build that is part of the package group. The OS build states are:

• Building – The build of your software on the OS is in progress. This might take up to an hour to
complete for each build.

• Scanning – The build process completed successfully and the scan is in progress. This might take
several hours to complete.

• Successful – The build and scan process completed successfully. No further action on your part.

• Issues found – There was a problem with the build or the scan process that require your attention.
Choose the Information icon next to the status for additional troubleshooting information.

• Investigating – The build or scan process failed. AWS Marketplace is investigating.

Note
If your status remains in the Investigating state for four or more business days, contact the AWS
Marketplace Seller Operations team.

When your package group shows a status of Successful, this phase is complete. Next, you can publish
your package group as a new fulfillment option for your product on AWS Marketplace.

Submitting your product to AWS Marketplace
After you upload a package group to AWS Marketplace you can submit a product load form to publish
it as a new fulfillment option for your product, or as a new product if it does not already exist. The load
form is an Excel spreadsheet. The first tab of the spreadsheet provides instructions for providing the
metadata needed to publish your product on AWS Marketplace.

To download and complete the load form

1. From the AMMP, under the Assets tab, choose File upload.

2. On the File Uploads page, under Product load forms and seller guides, choose Private Image
Form.

3. Download the product load form.

4. Complete the form.

5. From the AMMP Assets tab, choose File upload.

6. Choose the files you want to submit and enter a brief description.

87

https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/tour/

AWS Marketplace Seller Guide
Best practices for building AMIs

AWS Marketplace creates or update your product entry. If there are any questions on your submission,
AWS Marketplace will contact you for clarification. Your product is typically added or updated within five
business days.

When adding a package group as a new fulfillment option for your product, consider the following
options:

• Add the package group as an additional fulfillment option to an existing software version, on an
existing public product on AWS Marketplace. With this approach, the software version on the AMI
and package fulfillment options must match. AWS Marketplace cannot replace an AMI on an existing
software version.

• If the package group has different software than what currently exists on AWS Marketplace, you can
list the package group as a new software version on an existing product. Using this approach, you must
provide a successfully built and scanned AMI from the AMMP Packages tab. You will have the option to
test package fulfillment before making the new package group public. However, the AMI will be visible
to buyers right away. This is consistent with the current experience for new software versions.

Best practices for building AMIs
This topic provides some best practices and references to help you build Amazon Machine Images (AMIs)
for use with AWS Marketplace. AMIs built and submitted to AWS Marketplace must adhere to all AWS
Marketplace product policies.

Verifying your AMI
To help verify your AMI before submitting it as a new product or version, you can use self-service
scanning.

From the AWS Marketplace Management Portal, choose Amazon Machine Image from the Assets menu.
Click Add AMI to start the scanning process. You can see the scan status of AMIs by returning to this
page.

Note
To learn about giving AWS Marketplace access to your AMI, see Giving AWS Marketplace access
to your AMI (p. 71).

Securing resell rights
You are responsible for securing resell rights for non-free Linux distributions, with the exception of AWS-
provided Amazon Linux, RHEL, SUSE, and Windows AMIs.

Building an AMI
Use the following guidelines for building AMIs:

• Ensure that your AMI meets all AWS Marketplace policies, including disabling root login.
• Create your AMI in the US East (N. Virginia) Region.
• Create products from existing, well-maintained AMIs backed by Amazon Elastic Block Store (Amazon

EBS) with a clearly defined lifecycle provided by trusted, reputable sources such as AWS Marketplace.
• Build AMIs using the most up-to-date operating systems, packages, and software.
• Ensure that all AMIs must start with a public AMI that uses hardware virtual machine (HVM)

virtualization and 64-bit architecture.
• Develop a repeatable process for building, updating, and republishing AMIs.

88

AWS Marketplace Seller Guide
Verifying your software is running

on your AWS Marketplace AMI

• Use a consistent operating system (OS) user name across all versions and products. We recommend
ec2-user.

• Configure a running instance from your final AMI to the end-user experience you want, and test all
installation methods, features, and performance before submission to AWS Marketplace.

• Check port settings as follows:
• Linux-based AMIs – Ensure that a valid SSH port is open. The default SSH port is 22.
• Windows-based AMIs – Ensure that an RDP port is open. The default RDP port is 3389. Also, the

WinRM port (5985 by default) must be open to 10.0.0.0/16.

For more information about creating an AMI, see the following resources:

Creating Your Own AMI in the Amazon EC2 User Guide for Linux Instances

Creating a Custom Windows AMI in the Amazon EC2 User Guide for Windows Instances

How do I create an Amazon Machine Image (AMI) from an EBS-backed instance?

Amazon Linux AMI

Amazon EC2 Instance Types and Instance Types

Verifying your software is running on your AWS
Marketplace AMI
You may wish to have your software verify at runtime that it is running on an Amazon EC2 instance
created from your AMI product.

To verify the Amazon EC2 instance is created from your AMI product, use the instance metadata service
built into Amazon EC2. The following steps take you through this validation. For more information about
using the metadata service, see Instance metadata and user data in the Amazon Elastic Compute Cloud
User Guide.

1. Obtain the instance identity document

Each running instance has an identity document accessible from the instance that provides data about
the instance itself. The following example shows using curl from the instance to retrieve the instance
identity document.

curl http://169.254.169.254/latest/dynamic/instance-identity/document
{
 "accountId" : "0123456789",
 "architecture" : "x86_64",
 "availabilityZone" : "us-east-1e",
 "billingProducts" : null,
 "devpayProductCodes" : null,
 "marketplaceProductCodes" : ["0vg0000000000000000000000"],
 "imageId" : "ami-0123456789abcdef1",
 "instanceId" : "i-0123456789abcdef0",
 "instanceType" : "t2.medium",
 "kernelId" : null,
 "pendingTime" : "2020-02-25T20:23:14Z",
 "privateIp" : "10.0.0.2",
 "ramdiskId" : null,
 "region" : "us-east-1",
 "version" : "2017-09-30"
}

2. Verify the instance identity document

89

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html#creating-an-ami
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Creating_EBSbacked_WinAMI.html
https://aws.amazon.com/premiumsupport/knowledge-center/create-ami-ebs-backed/
https://aws.amazon.com/amazon-linux-ami/
http://aws.amazon.com/ec2/instance-types/
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/instance-types.html?r=2153
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

AWS Marketplace Seller Guide
Securing an AMI

You can verify that the instance identity is correct using the signature. For details about this process,
see Instance identity documents in the Amazon Elastic Compute Cloud User guide.

3. Verify the product code

When you initially submit your AMI product for publishing, your product is assigned a product code
by AWS Marketplace. You can verify the product code by checking the marketplaceProductCodes
field in the instance identity document, or you can get it directly from the metadata service:

curl http://169.254.169.254/latest/meta-data/product-codes
0vg0000000000000000000000

If the product code matches the one for your AMI product, then the instance was created from your
product.

You may also wish to verify other information from the instance identity document, such as the
instanceId and the instance privateIp.

Securing an AMI
We recommend the following guidelines for creating secure AMIs:

• Architect your AMI to deploy as a minimum installation to reduce the attack surface. Disable or remove
unnecessary services and programs.

• Whenever possible, use end-to-end encryption for network traffic. For example, use Secure Sockets
Layer (SSL) to secure HTTP sessions between you and your buyers. Ensure that your service uses only
valid and up-to-date certificates.

• When adding a new version to your AMI product, configure security groups to control inbound
traffic access to your instance. Ensure that your security groups are configured to allow access only
to the minimum set of ports required to provide necessary functionality for your services. Allow
administrative access only to the minimum set of ports and source IP address ranges necessary.
For more information about how to add a new version to your AMI product, see Adding a new
version (p. 70).

• Consider performing a penetration test against your AWS computing environment at regular intervals,
or consider employing a third party to conduct such tests on your behalf. For more information,
including a penetration testing request form, see AWS Penetration Testing.

• Be aware of the top 10 vulnerabilities for web applications, and build your applications accordingly.
To learn more, see Open Web Application Security Project (OWASP) - Top 10 Web Application Security
Risks. When new internet vulnerabilities are discovered, promptly update any web applications that
ship in your AMI. Examples of resources that include this information are SecurityFocus and the NIST
National Vulnerability Database.

For more information related to security, see the following resources:

• Guidelines for Shared Linux AMIs in the Amazon EC2 User Guide for Linux Instances

• AWS Cloud Security

• The Center for Internet Security (CIS): Security Benchmarks

• The Open Web Application Security Project (OWASP): Secure Coding Practices - Quick Reference Guide

• OWASP Top 10 Web Application Security Risks

• SANS (SysAdmin, Audit, Networking, and Security) Common Weakness Enumeration (CWE) Top 25
Most Dangerous Software Errors

• Security Focus

90

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-documents.html
https://docs.aws.amazon.com/marketplace/latest/userguide/ami-getting-started.html#ami-product-codes
http://aws.amazon.com/security/penetration-testing/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
http://www.securityfocus.com/vulnerabilities
http://nvd.nist.gov/
http://nvd.nist.gov/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/building-shared-amis.html
http://aws.amazon.com/security/
http://benchmarks.cisecurity.org/downloads/benchmarks/
https://www.owasp.org/www-project-secure-coding-practices-quick-reference-guide/migrated_content
https://owasp.org/www-project-top-ten/
http://www.sans.org/top25-software-errors/
http://www.sans.org/top25-software-errors/
http://www.securityfocus.com/vulnerabilities

AWS Marketplace Seller Guide
AMI product pricing

• NIST National Vulnerability Database

AMI product pricing
AWS Marketplace has multiple pricing models for Amazon Machine Image (AMI) products. With seller
private offers, there are options available for multi-year and custom duration contracts.

For more information about multi- year and custom duration contracts, see Private offers (p. 44) and
Flexible payment scheduler (p. 48). The following table provides general information about pricing
models.

Note
You must be able to provide a W-9 tax form (for US based entities) or a W-8 form (for EU-based
entities) as described in Seller registration process (p. 6).

AMI pricing models
The following table provides general information about pricing models for AMI-based products.

Pricing model Description

Free Customers can run as many instances as Amazon Elastic
Compute Cloud (Amazon EC2) supports with no additional
software charges incurred.

Note
Free Trial and Annual pricing can't be combined with
Monthly pricing.

Bring your own license (BYOL) AWS Marketplace doesn't charge customers for usage of the
software, but customers must supply a license key to activate
the product. This key is purchased outside of AWS Marketplace.
The entitlement and licensing enforcement, in addition to all
pricing and billing, are handled by you.

Paid hourly or hourly-annual Hourly – Software is charged by the hour. Each instance type
can be priced differently (but it isn't required to be), and usage
is rounded up to the nearest whole hour.

Hourly with Free Trial – Customers are limited to running
exactly one instance of the software without incurring a charge.
You define the duration, between 5 and 30 days. The free trial
applies to the most expensive instance type that is running,
and any concurrent usage outside the 1 instance is billed at the
hourly rate. NOTE: This is a different model than the AWS Free
Tier for Amazon EC2 usage whereby customers are given 750
hours of free usage each month.

Hourly with Monthly – Both hourly and monthly charges are
applied independently. The monthly fee is charged every month
regardless of usage, and the hourly fee is applied based on
hourly usage only.

Hourly with Annual – Customers have the option to purchase
a year’s worth of usage upfront for one Amazon EC2 instance
of one instance type. You set the pricing for each instance type
and can offer net savings over the hourly price. Any customer

91

http://nvd.nist.gov/

AWS Marketplace Seller Guide
AMI pricing models

Pricing model Description

usage above the number of annual subscriptions purchased is
billed at the hourly rate you set for that instance type.

Hourly with Multi-Annual and Custom Duration – This type
of offer is only available through seller private offers. Using
seller private offers, you specify a custom contract duration,
up to 3 years. You can specify upfront payment, or include
a flexible payment schedule. You set the pricing for each
instance type. If there is a flexible payment schedule in the
offer, you also set the invoice dates, payment amounts, and
number of instances for each instance type included in the
offer. For an active seller private offer with a flexible payment
schedule, after the customer launches the specified number
of instances, any additional instances launched are charged at
the hourly rate specified in the seller private offer. For more
information about multi-year and custom duration contracts,
see Private offers (p. 44) and the section called “Flexible
payment scheduler” (p. 48).

Hourly with Free Trial and Annual – This is identical to the
Hourly model with an Annual option, except it includes a Free
Trial allowing a customer to run one instance of any instance
type for free for a set number of days that you determine.
Annual subscriptions can be purchased at any time, and they
are combined with the Free Trial subscription.

Annual with Hourly – Same as the Hourly with Annual pricing
model. Customers have the option to purchase a year’s worth
of usage upfront for one Amazon EC2 instance of one instance
type. You set the pricing for each instance type and can offer
net savings over the hourly price, but offering savings isn't
required. Any customer usage above the number of annual
subscriptions purchased is billed at the hourly rate you set for
that instance type.

Multi-Annual and Custom Duration with Hourly – This is only
available through Private offers (p. 44). Using seller private
offers, you can specify a custom duration contract of up to
three years. You can require upfront payment, or you can offer a
flexible payment schedule to the customer. You set the pricing
for each instance type for the duration of the contract, and
the hourly pricing for additional instances launched. If you
offer a flexible payment schedule, you also set the invoice
dates, payment amounts, and number of instances for each
instance type included in the offer. For an active private offer
with a flexible payment schedule, after the specified number
of instances have been launched, any additional instances the
customer launches are charged at the hourly rate specified in
the private offer. For more information about multi-year and
custom duration contracts, see Private offers (p. 44) and the
section called “Flexible payment scheduler” (p. 48).

Note
Free Trial and Annual pricing can't be combined with
Monthly pricing.

92

AWS Marketplace Seller Guide
AWS charges and software charges

Pricing model Description

Paid monthly Monthly – Software is paid for on a fixed monthly basis,
regardless of the number of instances the customer
runs. Monthly charges are pro-rated at sign-up and upon
cancellation. Example: A customer who subscribes for 1 day of
the month will be charged for 1/30th of the month.

Monthly with Hourly – Both Hourly and Monthly charges are
applied independently. The monthly fee is charged every month
regardless of usage, and the hourly fee is applied based on
hourly usage only.

Note
Free Trial and Annual pricing can't be combined with
Monthly pricing.

Paid usage pricing Software is directly charged for the value you provide along
with one of four usage categories: users, data, bandwidth, or
hosts. You can define up to 24 dimensions for the product. All
charges are still incurred hourly by the customer.

All usage is calculated monthly and billed monthly using the
same mechanism as existing AWS Marketplace software. Usage
pricing is also referred to as AWS Marketplace Metering Service.

Contract pricing model AMI with contract pricing – A Single AMI product or Single AMI
with AWS CloudFormation stack that the buyer pays an upfront
fee for.

AWS charges and software charges
Amazon Machine Image (AMI)-based product charges fall into two categories:

• Infrastructure Pricing Details – All AMI-based products incur associated AWS infrastructure charges
depending on the services and infrastructure used. These rates and fees are defined and controlled by
AWS, and can vary between AWS Regions. For more information, see Amazon EC2 Pricing.

• Software Pricing Details – For Paid products, the seller defines the charges for using the software.

These two product charge categories are displayed separately on the AWS Marketplace detail pages to
help buyers understand the potential cost of using the products.

Free trial for single AMI hourly products
Single AMI hourly products are eligible for the optional Free trial program. In a Free trial, a customer can
subscribe to the product and use a single instance for up to 31 days without paying software charges
on the product. Applicable AWS infrastructure charges still apply. To offer a single AMI hourly product,
define the duration of the trial period and notify the AWS Marketplace Managed Catalog Operations
(MCO) team. The trial period can be 5–31 days.

When customers subscribe to a Free trial product, they receive a welcome email message that includes
the term of the Free trial, a calculated expiration date, and details on unsubscribing. A reminder email
message is sent three days before the expiration date.

If you offer a Free trial product in AWS Marketplace, you agree to the specific refund policies described
under Refund Policy.

93

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Contract pricing for AMI products

Note
Free trials are available for single AMI products. AMI products that use AWS CloudFormation
don't allow free trials.

Contract pricing for AMI products
For Amazon Machine Image (AMI)-based products with contract pricing, AWS Marketplace bills your
customers upfront or by the payment schedule that you define, based on the contract between you and
your customer. After that point, they're entitled to use those resources.

To set your pricing, choose one or more contract durations that you offer customers. You can enter
different prices for each contract duration. Your options are 1-month, 12-months, 24-month, and 36-
month durations. For private offers, you can specify a custom duration in months (up to 60 months).

Choose the category that best describes your product’s pricing. The pricing category appears to
customers on the AWS Marketplace website. You can choose from Bandwidth (GB/s, MB/s), Data (GB,
MB, TB), Hosts, Requests, Tiers, or Users. If none of the predefined categories fit your needs, you can
choose the more generic Units category.

The offer allows for up to 24 dimensions to be added to it. Each dimension requires the following data:

• Contracts Category – The contract category is used to measure or meter your product if the product
supports consumption-based metering on top of contract pricing. For contract products with no
consumption-based pricing, you can choose a category which most closely resembles the category
of dimension in the contract or choose Units if no values resemble the units for the dimension in the
contract

• Contracts Unit – The Contract Unit is used along with the Contracts Category for metering if the
product supports consumption-based metering. Choose one of the available values for the units that
closely matches your dimensions based on the Category selected.

• Contracts Dimension Allow Multiple Purchases – This field is used to indicate whether an offer is a
tiered pricing offer or a non-tiered offer:

Tiered offer – Allows the buyer to subscribe to only one of the available dimensions in the offer.
Dimensions in a tiered offer don't have the concept of quantities. Signing a contract with a specific
dimension essentially indicates that the buyer has chosen the specific feature indicated by that
dimension.

Non-tiered offer – Allows the customer to procure more than one dimensions as part of the contract
and allows them to procure multiple units of each such dimension.

Setting a value of true for this field indicates that the offer is a non-tiered offer. Setting a value of false
for this field indicates that the offer is a tiered offer.

When using the Product Load Form (PLF) to create the contracts for your AMI product, you must define
the following fields for your pricing dimensions:

• Contracts DimensionX API Name – The name that should appear in the license generated in the
buyer’s AWS License Manager account. This name is also used as the value for Name in Entitlement
in the Checkoutlicense API call.

• Contracts DimensionX Display Name – The customer-facing name of the dimension that will be
displayed on the product detail and procurement pages of the AWS Marketplace website. Create a
name that is be user-friendly. The name's maximum length is 24 characters. After the listing is public,
the value of Namecan't be changed.

• Contracts DimensionX Description – The customer-facing description of a dimension that provides
additional information about the dimension for the product, such as the capabilities that the specific
dimension provides. The maximum length for the description is 70 characters.

94

AWS Marketplace Seller Guide
Contract pricing for AMI products

• Contracts DimensionX Quantity – This is used to calculate proration in cases of agreement
amendments to a product. This value of this field should be set to 1 for all contract offers. It should
not be edited.

• Contracts DimensionX 1-Month Rate – The contract rate to be charged for onemonth of entitlements
against this dimension. For non-tiered offers, this rate is charged for each unit of the dimension that is
procured. This field supports three decimal places.

• Contracts DimensionX 12-Month Rate – The contract rate to be charged for 12 months of
entitlements against the dimension. For non-tiered offers, this rate is charged for each unit of the
dimension that is procured. This field supports three decimal places.

• Contracts DimensionX 24-Month Rate – The contract rate to be charged for 24 months of
entitlements against the dimension. For non-tiered offers, this rate is charged for each unit of the
dimension that is procured. This field supports three decimal places.

• Contracts DimensionX 36-Month Rate – The contract rate to be charged for 36 months of
entitlements against the dimension. For non-tiered offers, this rate is charged for each unit of the
dimension that is procured. This field supports three decimal places.

Example: Data storage application

1-month price 12-month price 24-month price P36-month price

Unencrypted data
(GB)

$1.50/GB $16.00/GB $30.00/GB $60.00/GB

Encrypted data
(GB)

$1.55/GB $16.60/GB $31.20/GB $61.20/GB

Example: Log monitoring product

1-month price 12-month price 24-month price 36-month price

Basic (10 hosts
monitored,
5 containers
monitored)

$100 $1000 $2000 $4000

Standard (20
hosts monitored,
10 containers
monitored)

$200 $2000 $4000 $8000

Pro (40 hosts
monitored,
20 containers
monitored)

$400 $4000 $8000 $16,000

Additional hosts
monitored per
hour

$10 $100 $200 $400

Additional
containers
monitored per
hour

$10 $100 $200 $400

95

AWS Marketplace Seller Guide
AWS Marketplace Metering Service integration

Note
The prices can be for the following durations: 1 month, 12 months, 24 months, or 36 months.
You can choose to offer one or more of these options for your product. The durations must be
the same across each dimension.

Example

For example, in a case where you have ReadOnlyUsers and AdminUsers dimensions, if you
offer a yearly price for ReadOnlyUsers, you must offer a yearly price for AdminUsers, too.

Automatic renewals
When a customer purchases your product through AWS Marketplace using AMI contracts, they can agree
to automatic renewal of the contract terms. The customer continues to pay for the entitlements every
month or for 1, 2, or 3 years. The customer always has the option to modify the renewal settings. They
can cancel the renewal or renew the contract different quantities and durations.

AWS Marketplace Metering Service integration
The AWS Marketplace Metering Service is a pricing and metering feature that sellers can use to directly
charge for their software by usage category. There are five usage categories: users, data, bandwidth,
hosts, or unit. You can use the Metering Service with Amazon Machine Image (AMI)-based, container-
based, and software as a service (SaaS)-based products. For more information, see the AWS Marketplace
Metering Service API Reference.

All AMI-based software that uses the Metering Service must meet the following requirements:

• Your software must be launched from AWS Marketplace through an Amazon Machine Image (AMI).

• If you have an existing product in AWS Marketplace, you must submit a new AMI and create a new
product to enable this feature.

• All software must be provisioned with an AWS Identity and Access Management (IAM) role. The end
customer must add an IAM role to the Amazon Elastic Compute Cloud (Amazon EC2) instance the user
is provisioning with the software. The use of an IAM role is optional when you deploy software through
AWS Marketplace. It's required when you deploy AWS Marketplace Metering Service software.

• Your software must be able to determine consumption in some way.

Products that use the Metering Service must charge customers by a single usage category, but you can
define up to 24 dimensions of a single category. Depending on the category, software can be priced by
provisioned resources, concurrent resources, or accumulated resource consumption. All charges are still
incurred hourly by the customer. All usage is calculated and billed monthly using the same mechanism as
existing AWS Marketplace software.

The AWS Marketplace Metering Service enables several new scenarios. For example, if your software
monitors hosts, you can charge for each host monitored. You can have different prices based on the host
size, and charge for the number of concurrent hosts monitored each hour. Similarly, if your software
allows many users across an organization to sign in, you can charge by the number of users. Each hour,
the customer is charged for the total number of provisioned users.

Metering service concepts
The AWS Marketplace Metering Service enables software sellers to modify their software to send
metering records to an endpoint to capture usage. Sellers can select a usage category and define up

96

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html

AWS Marketplace Seller Guide
Metering service concepts

to 24 dimensions of that one category. These dimensions are metered once per hour, aggregated, and
charged against a price plan defined by the seller. As a seller, you must determine which dimension you
want to use. After the AMI is published, you will not be able to change it. Important service concepts
include the following:

• Usage Category – Any software product priced through the use of the Metering Service is categorized
according to one usage category, which determines the appropriate way to charge customers. Usage
categories include but aren't limited to:
• Users – A defined set of permissions associated with a single identifier. This category is appropriate

for software in which a customer’s users connect to the software directly (for example, for customer-
relationship management or business intelligence reporting).

• Hosts – Any server, node, instance, endpoint, or other part of a computing system. This category
is appropriate for software that monitors or scans many customer-owned instances (for example,
performance or security monitoring).

• Data – Storage or information, measured in MB, GB, or TB. This category is appropriate for software
that manages stored data or processes data in batches.

• Bandwidth – Measured in Mbps or Gbps. This category is appropriate for software that allows
customers to specify an amount of bandwidth to provision.

• Unit – Unit of measurement; see the examples described next.
• Usage Unit – A software product's specific usage unit corresponds to the selected usage category. This

usage unit describes the unit your software will charge on. Examples include:
• NodesHrs (corresponding to the Hosts category)
• UserHrs (corresponding to the User category)
• GBStored (corresponding to the Data category)

• Consumption – Software products priced through the use of the Metering Service charge for
consumption in one of three ways:
• Provisioned – The software allows customers to configure a specific amount of resources for use (for

example, number of users or a fixed amount of bandwidth). Each hour, customers pay for what they
have provisioned.

• Concurrent – The software allows any number of distinct hosts or users to connect to the software.
Each hour, customers pay based on the number of hosts or users who accessed the software.

• Accumulated – The software allows customers to use any amount of data, either processed or
stored. Each hour, customers pay for the aggregated amount.

• Pricing – Software products priced through the use of the Metering Service must specify either a
single price or define up to 24 dimensions, each with their own price. Details about the pricing options
include:
• Single dimension – This is the simplest pricing option. Customers pay a single price per resource unit

per hour, regardless of size or volume (for example, $0.014 per user per hour, or $0.070 per host per
hour).

• Multiple dimensions – This pricing option is appropriate when the selected usage category varies
along multiple axes. For example, for host monitoring, a different price could be set depending on
the size of the host. Or, for user-based pricing, a different price could be set based on the type of
user (for example, admin, power user, and read-only user).

• Metering – All usage is recorded as a metering event, once each hour. Your software must be
configured to send the appropriate dimension and usage amount to the AWS Marketplace Metering
Service.
• Allocations – Optionally, you may distribute the usage into allocations by properties that you track.

These allocations are represented as tags to the buyer. The tags allow the buyer to view their costs
split into usage by tag. For example, if you charge by the user, and users have a "Department"
property, you could create usage allocations with tags that have a key of "Department", and one
allocation per value. This approach doesn't change the price, dimensions, or the total usage that
you report. However, it allows your customer to view their costs by categories appropriate to your
product.

97

AWS Marketplace Seller Guide
Pricing your software

Pricing your software
When pricing your software with the AWS Marketplace Metering Service, you must first decide on a
usage category and how it will be consumed. The service supports six distinct pricing scenarios. You must
select only one of these for your product:

• Provisioned user (per hour)
• Concurrent user (per hour)
• Provisioned host (per hour)
• Concurrent host (per hour)
• Provisioned bandwidth (per hour)
• Accumulated data (per hour)

Next, you must decide how to price the selected usage category:

• Single price
• Multiple dimensions (up to 24)

Adding your product to AWS Marketplace (p. 98) describes how to provide a customer-friendly
description of your dimension and pricing.

Example: Provisioned bandwidth with nonlinear pricing
Imagine you offer network appliance software. You choose to bill by provisioned bandwidth. For your
usage category, select Bandwidth. In addition to charging by bandwidth, you want to charge a different
price as buyers scale up. You can define multiple dimensions within the bandwidth category. You can
define a distinct price for 25 Mbps, 100 Mbps, and 1 Gbps.

Example: Concurrent hosts with multiple dimensions
Imagine you offer software that monitors other Amazon EC2 instances. You choose to bill by the number
of hosts that are being monitored. For your usage category, select Host. In addition to charging by host,
you want to charge for the extra value for monitoring larger hosts. You can use multiple dimensions
within the host category. You can define a distinct price for micro, small, medium, large, x-large, 2XL,
4XL, and 8XL instances. Your software is responsible for mapping each particular host to one of your
defined dimensions. Your software is responsible for sending a separate metering record for each
dimension of your usage category if applicable.

Adding your product to AWS Marketplace
To take advantage of the Metering Service, you must create a new product for AWS Marketplace to
list. If your product is already on the AWS Marketplace, you will need to decide whether the new AWS
Marketplace Metering Service product will be made available in addition to your current product, or if it
will replace your current product as the only version available to new users. If you choose replacement,
the existing product will be removed from the AWS Marketplace so that it is no longer available for
new buyers. Existing customers will continue to have access to their old product and instances, but
they can migrate to the new product at their convenience. The new product must meter usage to
the AWS Marketplace Metering Service, as described in Modifying your software to use the Metering
Service (p. 100).

After you have your AMI, follow the standard process to share and scan your AMI using the self-service
tool. In addition to using the template available on the management portal, fill out the product load
form and upload it to start the ingestion process.

98

AWS Marketplace Seller Guide
Adding your product to AWS Marketplace

Use the following definitions to complete the fields of the Product Load Form for the AWS Marketplace
Metering Service. On the Product Load Form, these fields are labeled as Flexible Consumption Pricing
(FCP) to differentiate them from hourly and monthly priced products.

• Title – If you already have a product on AWS Marketplace and you're adding the same product with
the AWS Marketplace Metering Service, include the FCP category and dimension in parentheses to
differentiate them (for example, “PRODUCT TITLE (Data)”).

• Pricing Model –From the dropdown list, choose Usage.

• FCP Category – The category in which customers are charged for paid products with a Usage pricing
component. From the dropdown list, choose Users, Hosts, Data, or Bandwidth.

• FCP Unit –The unit of measurement on which customers are charged for paid products with a Usage
pricing component. Options will appear in the dropdown list based on the FCP category you selected.
The following table lists the valid units for each category.

Category Valid units

Users UserHrs

Hosts HostHrs

Data MB, GB, TB

Bandwidth Mbps, Gbps

• FCP Dimension Name – The name used when sending metering records by calling the MeterUsage
operation. It is visible in billing reports. However, because it isn't external-facing, the name doesn't
need to be user-friendly. The name can be no more than 15 characters and can only include
alphanumeric and underscore characters. After you set the name and make the product public, you
can't change it. Changing the name requires a new AMI.

• FCP Dimension Description – The customer-facing statement that describes the dimension for the
product. The description (can be no more than 70 characters and should be user-friendly. Examples of
descriptions include: Administrators per hour and Per Mbps bandwidth provisioned. After the product
is published, you can't change this description.

• FCP Rate – The software charge per unit for this product. This field supports three decimal places.

Notes:

• You don't need to fill out hourly and annual pricing fields.

• Free trial and annual pricing aren't compatible.

• Products that use multiple AMIs and the Clusters and AWS Resources feature can't use the
AWS Marketplace Metering Service.

• Price, instance type, or AWS Region change will follow the same process as other AWS
Marketplace products.

• Products with the AWS Marketplace Metering Service can't be converted to other pricing
models such as hourly, monthly, or Bring Your Own License (BYOL).

• AWS Marketplace recommends adding IAM policy information in your usage instructions or
document.

• You can include up to 24 FCP dimensions in total. Once created and published, you can't
modify existing dimensions, but you can add new ones (up to the limit of 24).

If you have questions, contact the AWS Marketplace Seller Operations team.

99

https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Modifying your software to use the Metering Service

Modifying your software to use the Metering Service
You will need to modify your software to record customer usage, send hourly usage reports to the
Metering Service, and handle new failure modes. The software operates independently of pricing, but
the software will need to know about the usage category, how it's consumed, and any dimensions.

Measuring consumption
Your software must determine how much of the selected usage category and which dimensions the
customer has consumed. This value will be sent, once each hour, to the Metering Service. In all cases, it's
assumed that your software has the ability to measure, record, and read consumption of resources for
the purpose of sending it on an hourly basis to the Metering Service.

For provisioned consumption, this will typically be read from the software configuration as a sampled
value, but might also be a maximum configured value, recorded each hour. For concurrent consumption,
this might be either a periodic sample or a maximum value recorded each hour. For accumulated
consumption, this will be a value that is accumulated each hour.

For pricing on multiple dimensions, multiple values must be measured and sent to the Metering Service,
one per dimension. This requires your software to be programmed or configured with the known set of
dimensions when you provide the AMI. The set of dimensions can't change after a product is created.

For each pricing scenario, the following table describes recommended ways for measuring consumption
each hour.

Scenario How to measure

Provisioned user Current number of provisioned users (sampled).

-OR-

Maximum number of provisioned users (seen that
hour).

Concurrent user Current number of concurrent users (sampled).

-OR-

Maximum number of concurrent users (seen that
hour).

-OR-

Total number of distinct users (seen that hour).

Provisioned host Current number of provisioned hosts (sampled).

-OR-

Maximum number of provisioned hosts (seen that
hour).

Concurrent host Current number of concurrent hosts (sampled).

-OR-

Maximum number of concurrent hosts (seen that
hour).

100

AWS Marketplace Seller Guide
Call AWS Marketplace Metering Service

Scenario How to measure

-OR-

Total number of distinct hosts (seen that hour).

Provisioned bandwidth Current provisioned bandwidth setting (sampled).

-OR-

Maximum provisioned bandwidth (seen that hour).

Accumulated data Current GB of data stored (sampled).

-OR-

Maximum GB of data stored (seen that hour).

-OR-

Total GB of data added or processed that hour.

-OR-

Total GB of data processed that hour.

Call AWS Marketplace Metering Service
Your software must call the Metering Service hourly and record the consumption value for that hour.

When your software starts, it should record the minute-of-the-hour at which it started. This is referred
to as the start-minute. Every hour on the start-minute, your software must retrieve the consumption
value for that hour and call the Metering Service. For information about how to obtain this value, see the
Measuring consumption (p. 100) section.

To wake up each hour at the start-minute, your software must use one of the following approaches:

• A thread within your software.

• A daemon process that starts up with the instance or software.

• A cron job that is configured during application startup.

Note
Your software must call the AWS Marketplace Metering Service using the IAM role configured
on the customer’s instance and specify the consumption dimension and amount.

Your software can use the AWS SDK to call the AWS Marketplace Metering Service, similar to the
following example implementation:

1. Use the instance profile to create a service client. This requires the role configured for the EC2
instance. The role credentials are refreshed by the SDK automatically.

2. Each hour, read your software configuration and state to determine consumption values for that hour.
This might include collecting a value-per-dimension.

3. Call the meterUsage method on the SDK client with the following parameters (call additionally for
each dimension that has usage):

• timestamp – Timestamp of the hour being recorded (in UTC).

• productCode – Product code assigned to the software.

101

AWS Marketplace Seller Guide
Failure handling

• dimension – Dimension (or dimensions) assigned to the software.
• quantity – Consumption value for the hour.
• allocations – (Optional) You may provide allocations for the usage across properties that you

track. These allocations must add up to the total consumption in the record. To the buyer, these
display as potential cost allocation tags in their billing tools (such as the AWS Billing and Cost
Management console). The buyer must activate the tags in their account in order to track their cost
using these tags.

In addition, your software must call an in-Region AWS Marketplace Metering Service endpoint. Your
product must have a correct Regional endpoint set up, so us-east-1 sends records to a us-east-1
endpoint, and us-west-2 sends records to a us-west-2 endpoint. Making in-Region calls provides
buyers with a more stable experience and prevents situations in which an unrelated Region’s availability
could impact software running in another Region.

When you send metering records to the service, you must connect to the AWS Marketplace Metering
Service in your Region. Use the getCurrentRegion() helper method to determine the Region in which
the EC2 instance is running, and then pass this Region information to the MeteringServiceClient
constructor. If you don't specify an AWS Region in the SDK constructor, the default us-east-1 Region
is used. If your application attempts to make cross-Region calls to the service, the calls are rejected. For
more information, see Determining an Application’s Current Region and getCurrentRegion().

Failure handling
Your product must send metering records to the service, a public internet endpoint, so that usage can
be captured and billed. Because it's possible for a customer to modify network settings in a way that
prevents your metering records from being delivered, your product should account for this by choosing a
failure mode.

Note
Some metering failures may be transient issues in connecting to the AWS Marketplace Metering
Service. AWS Marketplace strongly recommends implementing retries for up to 30 minutes, with
exponential back off, to avoid short-term outages or network issues.

Typically, software can fail open (provide a warning message but maintain full functionality) or fail
closed (disable all functionality in the application until a connection has been reestablished). You can
choose to fail open, closed, or something specific to your application. We strongly recommend that you
refrain from failing closed after less than two hours of metering failures.

As an example of failing partially open, you could continue to allow access to the software but not allow
the buyer to modify the software settings. Or, a buyer could still access the software but would not be
able to create additional users. Your software is responsible for defining and enforcing this failure mode.
Your software’s failure mode must be included when your AMI is submitted, and it can't be changed later.

Limitations
Keep these limitations in mind when designing and submitting your Metering Service-enabled software:

• IAM role and internet gateway requirements for your customers – Your customers must have an
internet gateway and must launch your software with an IAM role with specific permissions. For more
information, see AWS Marketplace metering and entitlement API permissions (p. 358). Your software
can't connect to the Metering Service if these two conditions aren't met.

• Inability to add new or change usage category to existing Metering Service product – When
customers subscribe to your software product, they're agreeing to terms and conditions. Changing the
usage categories in products with the Metering Service requires a new product and a new subscription.

• Inability to change dimensions to existing Metering Service product – When customers subscribe to
your software product, they're agreeing to terms and conditions. Changing the dimensions in products

102

https://java.awsblog.com/post/Tx3GBOIEN1JJMQ5/Determining-an-Application-s-Current-Region
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/regions/Regions.html#getCurrentRegion()

AWS Marketplace Seller Guide
Vendor-metered tagging (Optional)

with the Metering Service requires a new product and a new subscription. You can add new dimensions
to existing products, up to the limit of 24.

• Lack of free trial and annual subscriptions – Metering Service products don't support free trials and
annual subscriptions at launch.

• Multi-instance or cluster-based deployment considerations – Some software is deployed as part of a
multi-instance deployment. When you design your software, consider how and where consumption is
measured and where metering records are emitted.

Vendor-metered tagging (Optional)
Vendor-metered tagging helps Independent Software Vendors (ISVs) give the buyer more granular
insight into their software usage and can help them perform cost allocation.

There are many ways to tag a buyer's software usage. One way is to first ask your buyers what they
want to see in their cost allocation. Then you can split the usage across properties that you track for
the buyer’s account. Examples of properties include Account ID, Business Unit, Cost Centers,
and other relevant metadata for your product. These properties are exposed to the buyer as tags. Using
tags, buyers can view their costs split into usage by the tag values in their AWS Billing Console (https://
console.aws.amazon.com/billing/). Vendor-metered tagging doesn't change the price, dimensions, or the
total usage that you report. It allows your customer to view their costs by categories appropriate to your
product.

In a common use case, a buyer subscribes to your product with one AWS account. The buyer also has
numerous user accounts associated with the same product subscription. You can create usage allocations
with tags that have a key of Account ID, and then allocate usage to each user account. In this case,
buyers can activate the Account ID tag in their Billing and Cost Management console and analyze
individual user account usage.

Seller experience
Sellers can aggregate the metering records for resources with the same set of tags instead of
aggregating usage for all resources. For example, sellers can construct the metering record that includes
different buckets of UsageAllocations. Each bucket represents UsageQuantity for a set of tags,
such as AccountId and BusinessUnit.

In the following diagram, Resource 1 has a unique set of AccountId and BusinessUnit tags, and
appears in the Metering Record as a single entry.

Resource 2 and Resource 3 both have the same AccountId tag, 2222, and the same BusinessUnit
tag, Operations. As a result, they're combined into a single UsageAllocations entry in the Metering
Record.

103

https://console.aws.amazon.com/billing/
https://console.aws.amazon.com/billing/

AWS Marketplace Seller Guide
Code example

Buyer experience
The following table shows an example of the buyer experience after a buyer activates the AccountId
and BusinessUnit vendor tags.

In this example, the buyer can see allocated usage in their Cost Usage Report. The vendor-metered tags
use the prefix “aws:marketplace:isv”. Buyers can activate them in the Billing and Cost Management,
under Cost Allocation Tags, AWS-generated cost allocation tags.

The first and last rows of the Cost Usage Report are relevant to what the Seller sends to the Metering
Service (as shown in the Seller experience (p. 147) example).

Cost Usage Report (Simplified)

ProductCode Buyer UsageDimensionUsageQuantity aws:marketplace:isv:AccountIdaws:marketplace:isv:BusinessUnit

xyz 111122223333 Network: per
(GB) inspected

70 2222 Operations

xyz 111122223333 Network: per
(GB) inspected

30 3333 Finance

xyz 111122223333 Network: per
(GB) inspected

20 4444 IT

xyz 111122223333 Network: per
(GB) inspected

20 5555 Marketing

xyz 111122223333 Network: per
(GB) inspected

30 1111 Marketing

For a code example, see MeterUsage with usage allocation tagging (Optional) (p. 104)

Code example
The following code example is provided to help you integrate your AMI product with the AWS
Marketplace APIs required for publishing and maintaining your product.

MeterUsage with usage allocation tagging (Optional)
The following code example is relevant for AMI products with consumption pricing models. The Python
example sends a metering record with appropriate usage allocation tags to AWS Marketplace to charge
your customers for pay-as-you-go fees.

NOTE: Your application will need to aggregate usage for the
customer for the hour and set the quantity as seen below.
AWS Marketplace can only accept records for up to an hour in the past.
#
productCode is supplied after the AWS Marketplace Ops team has
published the product to limited

Import AWS Python SDK
import boto3
import time

usageRecord = [
 {

104

AWS Marketplace Seller Guide
AWS License Manager integration

 "AllocatedUsageQuantity": 2,
 "Tags":
 [
 { "Key": "BusinessUnit", "Value": "IT" },
 { "Key": "AccountId", "Value": "123456789" },
]

 },
 {
 "AllocatedUsageQuantity": 1,
 "Tags":
 [
 { "Key": "BusinessUnit", "Value": "Finance" },
 { "Key": "AccountId", "Value": "987654321" },
]

 }
]

marketplaceClient = boto3.client("meteringmarketplace")

response = marketplaceClient.meter_usage(
 ProductCode="testProduct",
 Timestamp=int(time.time()),
 UsageDimension="Dimension1",
 UsageQuantity=3,
 DryRun=False,
 UsageAllocations=usageRecord
)

For more information about MeterUsage, see MeterUsage in the AWS Marketplace Metering Service API
Reference.

Example response

{ "MeteringRecordId": "string" }

AWS License Manager integration
For Amazon Machine Image (AMI)-based products with contract pricing, you use AWS License Manager to
associate licenses with your product.

AWS License Manager is a license management tool that enables your application to track and update
licenses (also known as entitlements) that have been purchased by a customer. This section provides
information about how to integrate your product with AWS License Manager. After the integration is
complete, you can publish your product listing on AWS Marketplace.

For more information about AWS License Manager, see the AWS License Manager User Guide and the
AWS License Manager section of the AWS CLI Command Reference.

Note

• Customers can't launch new instances of the AMI after the contract expiry period. However,
during the contract duration, they can launch any number of instances. These licenses are not
node-locked or tied to particular instances.

• Private Offer Creation– Sellers can generate private offers for the products using the Private
offer creation tool in the AWS Marketplace Management Portal.

105

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_MeterUsage.html
https://docs.aws.amazon.com/license-manager/latest/userguide/license-manager.html
https://docs.aws.amazon.com/cli/latest/reference/license-manager/index.html

AWS Marketplace Seller Guide
License models

• Reporting – You can set up data feeds by setting up an Amazon S3 bucket in the Report
section in the AWS Marketplace Management Portal. For more information, see Seller reports
and data feeds (p. 273).

License models
AWS Marketplace integration with AWS License Manager supports two license models:

• Configurable license model (p. 106)
• Tiered license model (p. 108)

Configurable license model
The configurable license model (also known as the quantifiable license model) entitles a buyer to a
specific quantity of resources after a buyer has procured a license.

You set a pricing dimension and a per unit price. Then, buyer can choose the quantity of the resources
that they want to purchase.

Example of pricing dimension and per unit price

You can set a pricing dimension (such as data backup) and per unit price (such as $30/unit)

The buyer can choose to purchase 5, 10, or 20 units.

Your product tracks and meters usage to measure the quantity of resources consumed.

With the configuration model, the entitlements are counted in one of two ways:

• Drawdown licenses (p. 106)
• Floating licenses (p. 107)

Drawdown licenses

The license is drawn from the pool of allowed amount of licenses upon use. That entitlement is checked
out permanently and can't be returned to the license pool.

Example of processing a limited amount of data

A user is entitled to process 500GB of data. As they continue to process data, the quantity is drawn from
the pool of 500GB until all 500GB licenses are consumed.

For drawdown licenses, you can use the CheckoutLicense API operation to check out license units that
are consumed.

Example of backup to S3 for a number of units/year

You have a storage product that allows backup to Amazon Simple Storage Service (Amazon S3) for
up to 1024 units for data for one year. Your application can be launched by using multiple Amazon
EC2 instances. Your application has a mechanism to track and aggregate data. Your software calls the
CheckoutLicense API operation with the Product ID upon every backup or at fixed intervals to update
the consumed quantities.

In this example, your software calls CheckoutLicense to check out 10 units of data. When the total
capacity reaches the backup limit that the customer has purchased, the API call fails.

Request

106

AWS Marketplace Seller Guide
License models

linux-machine ~]$ aws license-manager checkout-license\
--product-sku "2205b290-19e6-4c76-9eea-377d6bf7la47" \
--checkout-type "PERPETUAL" \
--key-fingerprint "aws:294406891311:AWS/Marketplace:issuer-fingerprint" \
--entitlements "Name=DataConsumption, Value=l0, Unit=Count" \
--client-token "AKIAIOSFODNN7EXAMPLE"

Response

{
 "CheckoutType": "PERPETUAL",
 "EntitlementsAllowed": [
 {
 "Name": "DataConsumption",
 "Count": 10,
 "Units": "Count",
 "Value": "Enabled"
 }
},
 "Expiration": "2021-04-22Tl9:02: 36",
 "IssuedAt": "2021-04-22Tl8:02:36",
 "LicenseArn": "arn:aws:license-manager::294406891311:license:l-16bf01b...",
 "LicenseConsumptionToken": "AKIAIOSFODNN7EXAMPLE"
}

Floating licenses

The license is returned to the pool of the allowed amount of licenses after use.

Example of number of users from a fixed upper limit

A user is entitled to 500 simultaneous users on the application. As users log in and log out, the users are
drawn and returned to the pool of 500 users. However, the application can't draw more than 500 users
from the pool because 500 simultaneous users is the fixed upper limit.

For floating licenses, you can use the CheckInLicense API operation to return the license units to the
entitlement pool.

Example of number of concurrent users for one year

Your product is priced based on number of concurrent users. The customer purchases a license for
10 users for one year. The customer launches the software by providing AWS Identity and Access
Management (IAM) permissions. When a user logs in, your application calls the CheckoutLicense API
operation to reduce the quantity by 1. When the user logs out, the application returns that license to the
pool by calling the CheckInLicense API operation. If you don't call CheckInLicense, the license unit
will be automatically checked in after 1 hour.

Note
In the following Request, the key-fingerprint isn't a placeholder value but the actual value
of the fingerprint with which all licenses will be published.

Request

linux-machine ~]$ aws license-manager checkout-license\
--product-sku "2205b290-19e6-4c76-9eea-377d6bf7la47" \
--checkout-type "PROVISIONAL" \
--key-fingerprint "aws:294406891311:AWS/Marketplace:issuer-fingerprint" \
--entitlements "Name=ReadOnlyUSers, Value=l0, Unit=Count" \
--client-token "AKIAIOSFODNN7EXAMPLE"

107

AWS Marketplace Seller Guide
License models

Response

{
 "CheckoutType": "PROVISIONAL",
 "EntitlementsAllowed": [
 {
 "Name": "ReadOnlyUsers",
 "Count": 10,
 "Units": "Count",
 "Value": "Enabled"
 }
},
 "Expiration": "2021-04-22Tl9:02: 36",
 "IssuedAt": "2021-04-22Tl8:02:36",
 "LicenseArn": "arn:aws:license-manager::294406891311:license:l-16bf01b...",
 "LicenseConsumptionToken": "AKIAIOSFODNN7EXAMPLE"
}

Tiered license model
The tiered license model entitles a buyer to a specific level, or tier, of application features after a buyer
has procured a license.

You create tiers for your product, such as Basic, Intermediate, and Premium. The buyer then selects one
of the predefined tiers.

The application doesn't need to track or meter usage of the application.

With the tiered license model, the entitlements aren't counted but instead signify a tier of service that
was procured by the customer.

If you want to offer bundled features together, we recommend using the tiered license model.

Example of Basic, Intermediate, and Premium tiers

A customer can sign a contract for one of three possible tiers of the software: Basic, Intermediate, or
Premium. Each of these tiers has its own pricing. Your software can identify the tier that the customer
has signed up for by invoking the CheckoutLicense API operation and specifying all possible tiers in
the request.

The response of the request contains the entitlement corresponding to the tier the customer has
procured. Based on this information, the software can provision the appropriate customer experience.

Request

linux-machine ~]$ aws license-manager checkout-license\
--product-sku "2205b290-19e6-4c76-9eea-377d6bf7la47" \
--checkout-type "PROVISIONAL" \
--key-fingerprint "aws:294406891311:AWS/Marketplace:issuer-fingerprint" \
--entitlements "Name=BasicTier, Unit=None" "Name=IntermediateTier, Unit=None" \
 "Name=PremiumTier, Unit=None"

Response

{
 "CheckoutType": "PROVISIONAL",
 "EntitlementsAllowed": [
 {
 "Name": "IntermediateTier",
 "Units": "None"
 }

108

AWS Marketplace Seller Guide
Integration workflow

},
 "Expiration": "2021-04-22Tl9:02:36",
 "IssuedAt": "2021-04-22Tl8:02:36",
 "LicenseArn": "arn:aws:license-manager::294406891311:license:l-16bf01b...",
 "LicenseConsumptionToken": "AKIAIOSFODNN7EXAMPLE"
}

Integration workflow
The following steps show the workflow for integrating your AMI product with AWS License Manager:

1. Seller creates a product with AWS License Manager integration.
2. Seller lists the product on AWS Marketplace.
3. Buyer finds the product on AWS Marketplace and purchases it.
4. A license is sent to the buyer in their AWS account.
5. Buyer uses the software by launching the Amazon Elastic Compute Cloud (Amazon EC2) instance,

Amazon Elastic Container Service (Amazon ECS) task, or Amazon Elastic Kubernetes Service (Amazon
EKS) pod software, The customer deploys by using an IAM role.

6. Software reads the license in the buyer's AWS License Manager account, discovers the entitlements
purchased, and provisions the features accordingly.

Note
License Manager doesn't do any tracking or updates; this is done by the seller’s application.

License Manager integration prerequisites
Before publishing the product, you must do the following:

1. Create a new AMI product in the AWS Marketplace Management Portal, and make a note of its
product code.

2. Fill out the Product Load Form (PLF) with the necessary price information, and return it to us for
processing.

3. Use an IAM role for the task or pod running your application with the IAM permissions necessary to
call CheckoutLicense, ExtendLicenseConsumption, and CheckInLicense.

The required IAM permissions are detailed in the following IAM policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"VisualEditorO",
 "Effect":"Allow",
 "Action":[
 "license-manager:CheckoutLicense",
 "license-manager:GetLicense",
 "license-manager:CheckInLicense",
 "license-manager:ExtendLicenseConsumption",
 "license-manager:ListReceivedLicenses"
],
 "Resource":"*"
 }
]
}

4. Make a test call to the RegisterUsage API operation with a record for all of the pricing dimensions
you define.

109

AWS Marketplace Seller Guide
Integrating an AMI product with License Manager

Integrating an AMI product with License Manager
To integrate your AMI-based product with License Manager

1. Set IAM permissions to call License Manager. For more information, see License Manager integration
prerequisites (p. 109).

2. Download the AWS SDK.

Don't configure AWS credentials within your software. AWS credentials for the buyer are
automatically obtained at runtime when your AMI is running within an Amazon EC2 instance,
Amazon ECS task, or Amazon EKS pod.

3. Add license checks to your product.

Your product can call the CheckoutLicense API operation wherever the license check should be
performed. For checking the license, your product has to know:

1. The trusted issuer of the license (AWS Marketplace)
2. The application's Product SKU (Product ID)
3. The entitlement to check for this application

The API calls vary based on what kind of pricing licenses you set up.
4. Publish your product listing on AWS Marketplace.

License Manager API calls
To manage the licenses stored in the customer's License Manager account, your software can use the
following API calls:

• GetLicense – Gets the status of a purchased license on whether the license is expired or about to be
expired to send a notification to the customer.

• CheckoutLicense – Discovers licenses that the user has purchased. You can also use it to update the
license quantity when the user has consumed some quantity of licenses. With CheckoutLicense,
you can keep checking out the quantities of the licenses used by the customer. When the customer
exhausts all the licenses, this call returns an error. For information about the suggested cadence to run
CheckoutLicense, see the section called “License renewals and upgrades” (p. 110).

• ExtendLicenseConsumption – In case of floating dimensions, when the software check outs a
license, it will return the license to the pool automatically after 60 minutes. If you want to extend the
time the license remains checked out, your software can call ExtendLicenseConsumption to extend
the license for another 60 minutes.

• CheckInLicense – In case of floating dimensions, when you want to return the license to the
entitlement pool, use CheckInLicense.

• ListReceivedLicenses – Lists licenses purchased by the buyer.

License renewals and upgrades
Customers can renew or upgrade their licenses on the AWS Marketplace Management Portal. After they
make an additional purchase, AWS Marketplace generates a new version of the license that reflects the
new entitlements. Your software reads the new entitlements using the same API calls. You don't have to
do anything different in terms of License Manager Integration to handle renewals and upgrades.

Due to license renewals, upgrades, cancellations, and so on, we recommend that your product
performs the CheckoutLicense API call at a regular cadence while the product is in use. By using the

110

AWS Marketplace Seller Guide
Amazon SNS notifications for AMI products

CheckoutLicense API operation at a regular cadence, the product can detect changes in entitlements
such as upgrades and expiry.

We recommend that you perform the CheckoutLicense API call every 15 minutes.

Amazon SNS notifications for AMI products
To receive notifications, you subscribe to the AWS Marketplace Amazon Simple Notification Service
(Amazon SNS) topics provided to you during product creation. The topics provide notifications about
changes to customers’ subscriptions for your products. For example, you can know when customers
accept a private offer.

The following Amazon SNS topic is available for AMI products:

• Amazon SNS topic: aws-mp-subscription-notification (p. 111) – This topic notifies you when
a buyer subscribes or unsubscribes to a product. This notification is available for hourly pricing models,
including hourly and hourly with annual.

Amazon SNS topic: aws-mp-subscription-
notification
Each message in the aws-mp-subscription-notification topic has the following format.

{
 "action": "<action-name>",
 "customer-identifier": " X01EXAMPLEX",
 "product-code": "n0123EXAMPLEXXXXXXXXXXXX",
 "offer-identifier": "offer-abcexample123"
}

The <action-name> will vary depending on the notification. Possible actions are:

• subscribe-success

• subscribe-fail

• unsubscribe-pending

• unsubscribe-success

The offer-identifier only appears in the notification if the offer is a private offer.

Subscribing an Amazon SQS queue to the Amazon
SNS topic
We recommend subscribing an Amazon SQS queue to the provided SNS topics. For detailed instructions
on creating an SQS queue and subscribing the queue to a topic, see Subscribing an Amazon SQS queue
to an Amazon SNS topic in the Amazon Simple Notification Service Developer Guide.

Note
You can only subscribe to AWS Marketplace SNS topics from the AWS account used to sell the
products. However, you can forward the messages to a different account. For more information,
see Sending Amazon SNS messages to an Amazon SQS queue in a different account in the
Amazon Simple Notification Service Developer Guide.

111

https://docs.aws.amazon.com/sns/latest/dg/subscribe-sqs-queue-to-sns-topic.html
https://docs.aws.amazon.com/sns/latest/dg/subscribe-sqs-queue-to-sns-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-send-message-to-sqs-cross-account.html

AWS Marketplace Seller Guide
AMI product checklist

Polling the SQS queue for notifications
After you subscribe your SQS queue to an SNS topic, the messages are stored in SQS. You must define a
service that continually polls the queue, looks for messages, and handles them accordingly.

AMI product checklist
Before submitting your AMI product request to AWS Marketplace, review this checklist. Validating this
information will help to make sure your submission goes through the publication process smoothly.

Product usage:

• Your AMI must be production-ready.
• Your AMI can't restrict product usage by time or any other measurements.
• Your AMI must be compatible with the 1-Click fulfillment experience.
• Everything required to use the product is in the software, including client applications.
• The default user uses a randomized password, or creating the initial user requires verification that the

buyer is authorized to use the instance using a value unique to the instance such as instance ID.

For free or paid products:

• No additional license is required to use the product.
• The buyer doesn't have to provide personally identifiable information (for example, their email

address) to use the product.

AMI preparation:

• Uses HVM virtualization and 64-bit architecture
• Doesn't contain any known vulnerabilities, malware or viruses
• Buyers have OS-level administration access to the AMI
• Run your AMI through AMI Self-Service Scanning

For Windows AMIs:

• Uses the most recent version of EC2ConfigService
• Ec2SetPassword, Ec2WindowsActivate, and Ec2HandleUserData are enabled in your AMI
• No guest accounts or remote desktop users are present

For Linux AMIs:

• Root login is locked or disabled
• No authorized keys, default passwords, or other credentials are included

Product Load Form or Product tab

• All required fields are completed
• All values are within specified character limits
• All URLs load without error
• The product image is at least 110 pixels wide and between a 1:1 and 2:1 ratio

112

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2config-service.html

AWS Marketplace Seller Guide
AMI security policies

• Pricing is specified for all enabled instance types (for hourly, hourly-based monthly pricing, and
hourly-based annual pricing models)

• Monthly pricing is specified (for hourly-based monthly and monthly pricing models)

AMI security policies
AWS Marketplace maintains the following policies for all Amazon Machine Image (AMI) products and
offerings in AWS Marketplace. The policies promote a safe, secure, and trustworthy platform for our
customers.

All products and their related metadata are reviewed when they're submitted to ensure that they meet
or exceed current AWS Marketplace policies. These policies are reviewed and adjusted to meet evolving
security guidelines. AWS Marketplace continuously scans your products to verify that they meet changes
to the security guidelines. If products fall out of compliance, AWS Marketplace will contact you to update
your AMI product to meet new standards. Likewise, if a newly discovered vulnerability is found to affect
the AMI, we will ask you to provide an updated AMI with the relevant updates in place. You must use the
self-service AMI scanning tool before submitting your AMI. This tool helps ensure that the AMI meets
AWS Marketplace policies.

Security policies
All AMIs must adhere to the following security policies:

• AMIs must not contain any known vulnerabilities, malware, or viruses as detected by the self-service
AMI scanning tool or AWS Security.

• AMIs must use currently supported operating systems and other software packages. Any version of an
AMI with an End-of-Life (EoL) operating system or other software packages will be delisted from the
AWS Marketplace. You can build a new AMI with updated packages and publish it as a new version to
AWS Marketplace.

• All instance authentication must use key pair access, not password-based authentication, even if the
password is generated, reset, or defined by the user at launch. AMIs must not contain passwords,
authentication keys, key pairs, security keys, or other credentials for any reason.

• AMIs must not request or use access or secret keys from users to access AWS resources. If your AMI
application requires access to the user account, it must be achieved through an AWS Identity and
Access Management (IAM) role instantiated through AWS CloudFormation, which creates the instance
and associates the appropriate role. When single-AMI launch is enabled for products with an AWS
CloudFormation delivery method, corresponding usage instructions must include clear guidance for
creating minimally privileged IAM roles. For more information, see the section called “AMI-based
Delivery Using CloudFormation” (p. 74).

• Linux-based AMIs must not allow SSH password authentication. Disable password authentication via
your sshd_config file by setting PasswordAuthentication to NO.

Access policies
There are three categories of access policies: general, Linux-specific, and Windows-specific policies.

General access policies
All AMIs must adhere to the following general access policies:

• AMIs must allow operating system (OS)-level administration capabilities to allow for compliance
requirements, vulnerability updates, and log file access. Linux-based AMIs use SSH, and Windows-
based AMIs use RDP.

113

https://aws.amazon.com/marketplace/management/manage-products
https://aws.amazon.com/marketplace/management/manage-products
https://aws.amazon.com/marketplace/management/manage-products

AWS Marketplace Seller Guide
Customer information policies

• AMIs must not contain authorized passwords or authorized keys.
• AMIs must not use fixed passwords for administrative access. AMIs must use a randomized password

instead. An alternative implementation is to retrieve the instance metadata and use the instance_id
as the password. The administrator must be prompted for this randomized password before being
permitted to set or change their own credentials. For information about retrieving instance metadata,
see Instance Metadata and User Data in the Amazon EC2 User Guide for Linux Instances.

• You must not have access to the customer's running instances. The customer has to explicitly enable
any outside access, and any accessibility built into the AMI must be off by default.

Linux-specific access policies
Linux-based AMIs must adhere to the following access policies, as well as the general access policies:

• Linux-based AMIs must disable password-based remote logins for root access and allow only sudo
access through a user account, not root. Users must use sudo access through a user account and can't
use root access. Sudo access allows the administrator to control which users are allowed to perform
root functions. It also logs the activity for an audit trail. AMIs must not contain authorized passwords
or authorized keys.

• Linux-based AMIs must not have blank or null root passwords.

Windows-specific access policies
Windows-based AMIs must adhere to the following access policies, as well as the general access policies:

• For Windows Server 2016 and later, use EC2Launch.
• For Windows Server 2012 R2 and earlier, use the most recent version of Ec2ConfigService and

enable Ec2SetPassword, Ec2WindowsActivate, and Ec2HandleUserData.
• Remove guest accounts and remote desktop users, none of which are allowed.

Customer information policies
All AMIs must adhere to the following customer information policies:

• Software must not collect or export customer data without the customer's knowledge and express
consent except as required by BYOL (Bring Your Own License). Applications that collect or export
customer data must follow these guidelines:
• The collection of the customer data must be self-service, automated, and secure. Buyers must not

need to wait for sellers to approve to deploy the software.
• The requirements for customer data must be clearly stated in the description or the usage

instructions of the listing. This includes what is collected, the location of where the customer data
will be stored, and how it will be used. For example, This product collects your name and email
address. This information is sent to and stored by the <company name>. This information will only be
used to contact the buyer in regards to the <product name>.

• Payment information must not be collected.

Product usage policies
All AMIs must adhere to the following product usage policies:

• Products must not restrict access to the product or product functionality by time, number of users,
or other restrictions. Beta and prerelease products, or products whose sole purpose is to offer trial or

114

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/building-shared-amis.html#public-amis-disable-password-logins-for-root

AWS Marketplace Seller Guide
Architecture policies

evaluation functionality, are not supported. Developer, Community, and BYOL editions of commercial
software are supported, provided an equivalent paid version is also available in AWS Marketplace.

• All AMIs must be compatible with either the Launch from Website experience or AMI-based delivery
through AWS CloudFormation. For Launch from Website, the AMI can't require customer or user data
at instance creation to function correctly.

• AMIs and their software must be deployable in a self-service manner and must not require additional
payment methods or costs. Applications that require external dependencies on deployment must
follow these guidelines:
• The requirement must be disclosed in the description or the usage instructions of the listing. For

example, This product requires an internet connection to deploy properly. The following packages are
downloaded on deployment: <list of package>.

• Sellers are responsible for the use of and ensuring the availability and security of all external
dependencies.

• If the external dependencies are no longer available, the product must be removed from AWS
Marketplace as well.

• The external dependencies must not require additional payment methods or costs.
• For all products except BYOL, the fulfillment process must not require the customer to leave AWS

Marketplace.
• AMIs that require an ongoing connection to external resources not under the direct control of the

buyer—for example, external APIs or AWS services managed by the seller or a third party—must
follow these guidelines:
• The requirement must be disclosed in the description or the usage instructions of the listing. For

example, This product requires an ongoing internet connection. The following ongoing external services
are required to properly function: <list of resources>.

• Sellers are responsible for the use of and ensuring the availability and security of all external
resources.

• If the external resources are no longer available, the product must be removed from AWS
Marketplace as well.

• The external resources must not require additional payment methods or costs and the setup of the
connection must be automated.

• Product software and metadata must not contain language that redirects users to other cloud
platforms, additional products, or upsell services that aren't available in AWS Marketplace.

• If your product is an add-on to another ISV’s product, your product description must indicate that it
extends the functionality of the other product and that without it, your product has very limited utility.
For example, This product extends the functionality of <product name> and without it, this product has
very limited utility. Please note that <product name> might require its own license for full functionality
with this listing.

Architecture policies
All AMIs must adhere to the following architecture policies:

• Source AMIs for AWS Marketplace must be provided in the US East (N. Virginia) Region.
• AMIs must use HVM virtualization.
• AMIs must use 64-bit or 64-bit ARM architecture.
• AMIs must be AMIs backed by Amazon Elastic Block Store (Amazon EBS). We don't support AMIs

backed by Amazon Simple Storage Service (Amazon S3).
• AMIs must not use encrypted file systems.
• AMIs must be built so that they can run in all AWS Regions and are Region-agnostic. AMIs built

differently for different Regions aren't allowed.

115

AWS Marketplace Seller Guide
Getting help

Container-based products
AWS Marketplace supports software products that use Docker containers. Container products consist
of delivery options that are a set of container images and deployment templates that go together. You
submit at least one delivery option for your product, with up to a maximum of four. For each delivery
option, you provide a set of container images, usage instructions, and links to deployment templates for
customers to launch that delivery option.

AWS Marketplace buyers see the available delivery options on the published product detail pages that
are available to them. After they subscribe to the product and choose their preferred delivery option,
buyers see information and instructions for launching and using the product. For Container image
delivery options, buyers see links to the available deployment templates and container image URLs. They
also receive instructions for how to pull the individual container images. For Helm chart delivery options,
buyers will see step-by-step instructions for launching using Helm.

For a walkthrough of the buying experience, you can refer to this video: Deploying AWS Marketplace
Containers on Amazon ECS Clusters (3:34).

You can find, subscribe to, and deploy third-party Kubernetes applications from AWS Marketplace on
any Kubernetes cluster in any environment. You can deploy third-party Kubernetes applications on
Amazon Elastic Container Service (Amazon ECS), Amazon Elastic Kubernetes Service (Amazon EKS), AWS
Fargate, and on-premises using Amazon EKS Anywhere (EKS Anywhere). You can also deploy them on
self-managed Kubernetes clusters on-premises or in Amazon Elastic Compute Cloud (Amazon EC2).

You can run Free and Bring Your Own License model (BYOL) container products on any Docker-
compatible runtime.

Topics
• Getting help (p. 116)
• Getting started with container products (p. 116)
• Container-based product requirements (p. 126)
• Container product pricing (p. 129)
• Billing, metering, and licensing integrations (p. 134)
• Amazon SNS notifications for container products (p. 174)

Getting help
For assistance with your container products, contact your business development partner for AWS
Marketplace or contact us.

Getting started with container products
This topic describes all the steps related to creating, testing, and publishing your first container product
for AWS Marketplace.

Topics
• Prerequisites (p. 117)
• Creating a container product (p. 117)
• Creating the product ID for your container product (p. 118)

116

https://www.youtube.com/watch?v=XaiUAiQQJtk
https://www.youtube.com/watch?v=XaiUAiQQJtk
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Prerequisites

• Creating or updating pricing details for container products (p. 118)
• Integrating AWS Marketplace Metering Service for your container product (p. 119)
• Integrating AWS License Manager for your container product (p. 119)
• Adding a new version of your product (p. 119)
• Updating version information (p. 124)
• Creating or updating product information for your container product (p. 125)
• Publishing container products (p. 126)
• Container product scans for security issues (p. 126)

Prerequisites
Before you get started, you must complete the following prerequisites:

1. Access and use the AWS Marketplace Management Portal. This is the tool that you use to register as
a seller and manage the products that you sell on AWS Marketplace. For more information, see AWS
Marketplace Management Portal.

2. Register as a seller, and submit your tax and banking information. For more information, see Seller
registration process (p. 6).

3. Create at least one container in Amazon Elastic Container Service (Amazon ECS), Amazon Elastic
Kubernetes Service (Amazon EKS), or AWS Fargate. Make sure that you have links for the associated
images.

4. Plan how you'll create and integrate your container product in AWS Marketplace.

We recommend that you plan your pricing, entitlement, and metering strategy well in advance of
publicly publishing your product.
• For information about the requirements for container-based products, see Container-based product

requirements (p. 126).
• For information about setting the pricing for your product, see Container product pricing (p. 129).
• For information about custom metering for your paid container-based product, see Hourly and

custom metering with AWS Marketplace Metering Service (p. 134).

Creating a container product
Creating a container product involves the following steps:

1. Create the product ID (p. 118).
2. Create the pricing details (p. 118).
3. For paid products, integrate metering into your product (p. 119).
4. Add a new version of your product (p. 119), including:

a. Add repositories for your containers.
b. Upload the final containers into the repositories.
c. Create the first version of the product with your first container images.

5. Update the product version information (p. 124).
6. Publish the product for buyers (p. 126).

The first two steps must happen before you can edit any other details in AWS Marketplace. However, you
can perform the other steps in the order that makes the most sense to you or in parallel.

The following topics describe each of these steps.

117

http://aws.amazon.com/marketplace/management/
https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html#management-portal
https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html#management-portal

AWS Marketplace Seller Guide
Creating the product ID for your container product

Creating the product ID for your container product
To get started with a container product, you must create a product ID record in AWS Marketplace. The
product ID is used to track your product throughout its lifecycle.

Use the following procedure to create a new container product in the AWS Marketplace Management
Portal, and generate the product ID.

To create the container product ID

1. Open a web browser and sign into the AWS Marketplace Management Portal.
2. From the menu bar, expand Assets, and choose Container.
3. Enter a customer-facing name for your product, and choose Create. If necessary, you can change this

name later.
4. Make a note of the Product ID for your later use when you create or update the product pricing

details.

Tip
If you lose your product ID, you can find it in the AWS Marketplace Management Portal
by choosing Container from the Assets menu. The Containers page shows a list of your
products with their associated product IDs.

You now have your initial container product and product ID. Next, add pricing details for your product.

Creating or updating pricing details for container
products
To update the pricing details for your container product, you must use a product load form (PLF). The
PLF for your product is a spreadsheet that contains information about your product. The following
procedure outlines using the PLF to update information about your product, including pricing details.

Note
For more information about pricing models for container products, see Container product
pricing (p. 129).
Your pricing and metering must be aligned. For more information about metering with
container products, see Hourly and custom metering with AWS Marketplace Metering
Service (p. 134).

To update pricing for your container product by using the product load form

1. Open a web browser and sign into the AWS Marketplace Management Portal.
2. From the menu bar, expand Assets, and choose File upload.
3. From Product load forms for download on the right side, choose Containers Product Load Form.
4. Open the PLF spreadsheet on your computer, and fill out the fields to define your product. This

information includes your product ID that you made note of when you created your container
product.

Tip
When viewing the PLF in Microsoft Excel, hover over each of the fields to show comments
that provide guidance about how to fill in each field.

Provide pricing and metering dimensions, based on your pricing model for your product. For more
information, see the following:

• Product load form for custom metering (p. 144)
• Product load form for hourly metering (p. 137)

118

http://aws.amazon.com/marketplace/management/
http://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Integrating AWS Marketplace Metering

Service for your container product

Note
Required fields have a red header with the word REQUIRED in the spreadsheet. Make sure
that all of these fields are filled out to avoid delays in processing your request.

5. Save your PLF.
6. If it's not still open, open a web browser and sign into the AWS Marketplace Management Portal.
7. From the menu bar, expand Assets, and choose File Upload.
8. In Upload File, browse your computer and choose the PLF you saved for this container product.
9. Provide a brief description for this PLF to help you identify it among the other PLFs you upload.
10. Choose Upload. Your uploaded PLF appears in a table at the bottom of the page.

Your pricing details are reviewed and updated manually by the AWS Marketplace Seller Operations team.
It typically takes a few business days to complete the update. You can check the status by choosing
Container from the Assets menu in the AWS Marketplace Management Portal. An email message is sent
to you when the review of your product pricing details is complete.

Note
Your container product is now created, in a limited state. Your account can view the product for
testing and modify it. To make it visible to other test accounts, or when it's ready to be made
publicly available, see Publishing container products (p. 126).

You can edit your container product pricing by following this same procedure, until you publicly publish
the product.

After you create the pricing details for your product, you can add other product details, integrate
metering into your product, and create a software version for your product.

Integrating AWS Marketplace Metering Service for
your container product
For container-based products with usage pricing, you use the AWS Marketplace Metering Service for both
checking entitlement to use your product and metering usage for billing. You must meter for the pricing
model that you created when setting your pricing information. For more information, see Hourly and
custom metering with AWS Marketplace Metering Service (p. 134).

Integrating AWS License Manager for your container
product
For container-based products with contract pricing, you use the AWS License Manager to associate
licenses with your product.

For more information about integrating with AWS License Manager, see Contract pricing with AWS
License Manager (p. 152).

Adding a new version of your product
Your product might have several versions over its lifetime. Each version has a set of container images
that are specific to that version.

Note
You can't add a version to your product until you have created the product ID and the pricing
for your product. For more information about these steps, see Creating the product ID for
your container product (p. 118), and Creating or updating pricing details for container
products (p. 118).

119

http://aws.amazon.com/marketplace/management/
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html

AWS Marketplace Seller Guide
Adding a new version of your product

Creating a version of your product involves the following steps:

Topics
• Step 1: Adding repositories (p. 120)

• Step 2: Uploading container images and artifacts to repositories (p. 120)

• Step 3: Adding a new version to your container product (p. 122)

Your container images and other artifacts for your product are stored in repositories in AWS Marketplace.
Typically, you create one repository for each artifact needed, but the repository can store multiple
versions of the artifact (with different tags).

Note
All images in your product deployment must use images from the AWS Marketplace repositories.

Step 1: Adding repositories
The following procedure describes how to add any needed repositories in AWS Marketplace.

To add repositories

1. Sign in to the AWS Marketplace Management Portal.

2. Select Server from the Products menu.

3. On the Server products tab, select the product you want to modify, and then choose Add
repositories from the Request changes dropdown.

4. Enter the name for the repository that you want to create. If you want to create more than one new
repository, choose Add new repository for each additional repository, and give it a unique name.

Note
The repository will have this structure: <repositoryID>.dkr.ecr.us-
east-1.amazonaws.com/<sellerName>/<repositoryName>. When you add
items to the repository (in the following procedure), they will get a tag and have this
structure: <repositoryID>.dkr.ecr.us-east-1.amazonaws.com/<sellerName>/
<repositoryName>:<tag>. The repositoryID is an internal ID for AWS Marketplace.
The sellerName is based on the name you created for your seller account. You define
the respositoryName in this step. The tag is set when you upload an artifact to the
repository.

5. Select Submit.

Note
You can have up to 50 repositories per product.

A new request is created and shown on the Requests tab. When it's completed, within minutes, you can
start adding container images and other artifacts to the repositories you have created.

Step 2: Uploading container images and artifacts to repositories

To upload container images and artifacts to repositories

1. Sign in to the AWS Marketplace Management Portal.

2. From the Products menu, choose Server.

3. On the Server products tab, select the product you want to modify.

4. Choose Add repositories from the Request changes dropdown.

5. Choose View existing repositories.

120

http://aws.amazon.com/marketplace/management/
http://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Adding a new version of your product

6. Select the repository to which you want to upload.
7. Select View push commands to open a list of instructions, including commands you can use to push

Docker container images and Helm charts to that repository.

For general information about how to push container images and other artifacts to repositories,
refer to Pushing an image in the Amazon Elastic Container Registry User Guide.

Note
You can use the following Amazon Elastic Container Registry (Amazon ECR) API operations
when calling docker pull or docker push:

• DescribeImages – Use this to review the metadata about the images in a repository.
• GetAuthorizationToken – Use to authenticate before uploading artifacts to the

repository, then use docker pull or docker push commands.
• ListImages – Use to view a list of images you pushed.

8. Use the commands listed to push any needed artifacts from your local repository to the AWS
Marketplace repository for your product.

Note
The tag that you provide in the push commands is used to differentiate the version of the
artifact that you are uploading to the repository. Use a tag that makes sense for the version
the artifacts are a part of.

9. Repeat for each container image or artifact you need in your version.

Note
Your version can include up to 50 container images or artifacts in each delivery option.
Refer to the following procedure for more information about delivery options.

After you upload your artifacts, you're ready to create the version of your product.

Note
Your container images are scanned automatically to see if they meet the Container-based
product requirements (p. 126). For more information, refer to Container product scans for
security issues (p. 126).

Adding a new delivery option without a template

1. To add a new delivery option without a template, choose Add delivery option. After adding an
option, follow the instructions in the following steps to configure it.

2. Choose a delivery method for the delivery option. The delivery method determines how buyers will
launch your software.

• For a Container image delivery option, provide paths to container images in an Amazon Elastic
Container Registry (Amazon ECR) repository that was created in the AWS Marketplace console.
Buyers use the container image paths to launch the software by pulling the images directly into
their environments.

• For a Helm chart delivery option, provide paths to Helm charts in an Amazon ECR repository that
was created in the AWS Marketplace console. Buyers install the Helm charts in their deployment
environment to launch the software.

3. To add a Container image delivery option, perform the following steps:

a. In Container images, add the Amazon ECR URL to the container images that contain the
product version software.

b. In Delivery option title and Deployment option description, enter a title and description for
this delivery option.

c. In Usage instructions, enter detailed information to help your buyers use your software after
launching it.

121

https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-push.html

AWS Marketplace Seller Guide
Adding a new version of your product

d. In Supported services, select the environments that buyers can launch the software in.
e. In Deployment templates, add resources that buyers can use to launch the software. Enter a

title and a URL to the resource for each template.
4. To add a Helm chart delivery option, perform the following steps:

a. In Helm chart, add the Amazon ECR URL to the Helm chart that buyers will install in their
deployment environment to launch your software.

b. In Container images, add the Amazon ECR URL to the container images that contain the
product version software.

c. In Delivery option title and Deployment option description, enter a title and description for
this delivery option.

d. In Usage instructions, enter detailed information to help your buyers use your software after
launching it.

e. In Supported services, select the environments that buyers can launch the software in.
f. Optional - In Helm release name, enter the name of the Kubernetes namespace where the

Helm chart will be installed.
g. Optional - In Helm installation namespace, enter the name for the Helm release that will be

used by the helm install command.
h. Optional - In Kubernetes service account name, enter the name of the Kubernetes service

account that will be used to connect to AWS Identity and Access Management (IAM). The
Kubernetes service account calls AWS services such as licensing or metering.

i. Choose to enable QuickLaunch on this product version. QuickLaunch is a feature in AWS
Marketplace. Buyers can use QuickLaunch to create an Amazon EKS cluster quickly and launch
your software on it by using AWS CloudFormation. For more information, see QuickLaunch in
AWS Marketplace.

j. In Override parameters, enter parameters that will be used in the Helm CLI commands that
launch the software. Buyers can override the provided default values. If you have enabled
QuickLaunch, also enter a parameter name and description for the CloudFormation form.

k. Choose Hide passwords and secrets to mask sensitive information in consoles, command line
tools, and APIs. For more information, see the NoEcho parameter documentation in Parameters
in the AWS CloudFormation User Guide.

5. If needed, choose Add delivery option to add additional delivery options and perform the
instructions in the previous steps to configure them.

6. Select Submit.

Step 3: Adding a new version to your container product

To add a new version to your container product

1. Sign in to the AWS Marketplace Management Portal.
2. Choose Server from the Products menu.
3. On the Server products tab, select the product you want to add a version to. Then choose Add new

version from the Request changes dropdown.
4. On the Add new version page, enter the Version title and Release notes for your version.
5. After entering the version details, the next step is to add delivery options. Delivery options are

sets of instructions and information that buyers can use to launch the software from your product
version. Delivery options are known as fulfillment options to buyers.

Note
Your product can support multiple platforms with different container images (for example,
Kubernetes and Ubuntu deployments). You can create one delivery option for each way that
customers can set up your product, up to four delivery options for a product.

122

https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-configuring-a-product.html#buyer-launch-container-quicklaunch
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-configuring-a-product.html#buyer-launch-container-quicklaunch
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
http://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Adding a new version of your product

a. If the product already has delivery options in other versions, you can use the existing option as
a template to add a delivery option to the new version. In Delivery options, choose the delivery
option that you want to add from the list. You can edit the option using the instructions in the
following steps.

b. To add a new delivery option without a template, choose Add delivery option. After adding an
option, follow the instructions in the following steps to configure it.

6. Choose a delivery method for the delivery option. The delivery method determines how buyers will
launch your software.

• For a Container image delivery option, provide paths to container images in an Amazon Elastic
Container Registry (Amazon ECR) repository that was created in the AWS Marketplace console.
Buyers use the container image paths to launch the software by pulling the images directly into
their environments.

• For a Helm chart delivery option, provide paths to Helm charts in an Amazon ECR repository that
was created in the AWS Marketplace console. Buyers install the Helm charts in their deployment
environment to launch the software.

7. To add a Container image delivery option, perform the following steps:

a. In Container images, add the Amazon ECR URL to the container images that contain the
product version software.

b. In Delivery option title and Deployment option description, enter a title and description for
this delivery option.

c. In Usage instructions, enter detailed information to help your buyers use your software after
launching it.

d. In Supported services, select the environments that buyers can launch the software in.

e. In Deployment templates, add resources that buyers can use to launch the software. Enter a
title and a URL to the resource for each template.

8. To add a Helm chart delivery option, perform the following steps:

a. In Helm chart, add the Amazon ECR URL to the Helm chart that buyers will install in their
deployment environment to launch your software.

b. In Container images, add the Amazon ECR URL to the container images that contain the
product version software.

c. In Delivery option title and Deployment option description, enter a title and description for
this delivery option.

d. In Usage instructions, enter detailed information to help your buyers use your software after
launching it.

e. In Supported services, select the environments that buyers can launch the software in.

f. Optional - In Helm release name, enter the name of the Kubernetes namespace where the
Helm chart will be installed.

g. Optional - In Helm installation namespace, enter the name for the Helm release that will be
used by the helm install command.

h. Optional - In Kubernetes service account name, enter the name of the Kubernetes service
account that will be used to connect to AWS Identity and Access Management (IAM). The
Kubernetes service account calls AWS services such as licensing or metering.

i. Choose to enable QuickLaunch on this product version. QuickLaunch is a feature in AWS
Marketplace. Buyers can use QuickLaunch to create an Amazon EKS cluster quickly and launch
your software on it by using AWS CloudFormation. For more information, see QuickLaunch in
AWS Marketplace.

j. In Override parameters, enter parameters that will be used in the Helm CLI commands that
launch the software. Buyers can override the provided default values. If you have enabled
QuickLaunch, also enter a parameter name and description for the CloudFormation form.

123

https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-configuring-a-product.html#buyer-launch-container-quicklaunch
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-configuring-a-product.html#buyer-launch-container-quicklaunch

AWS Marketplace Seller Guide
Updating version information

k. Choose Hide passwords and secrets to mask sensitive information in consoles, command line
tools, and APIs. For more information, see the NoEcho parameter documentation in Parameters
in the AWS CloudFormation User Guide.

9. If needed, choose Add delivery option to add additional delivery options and perform the
instructions in the previous steps to configure them.

10. Select Submit.

Your request for a new version is created and should complete within minutes. You can track the request
from the Requests tab of the Server products page.

Note
Your new version is available to all of your buyers. If your product is currently set to limited
availability, your version is available to the set of buyers that the product is available for. If
your product is currently set to public availability, then your new version is available to all AWS
Marketplace buyers.

If this was your first version set, your product is now ready to be published. For information about how to
publish a product, see Publishing container products (p. 126).

Your request for a new version is created and should complete within minutes. You can track the request
from the Requests tab of the Server products page.

Note
Your new version is available to all of your buyers. If your product is currently set to limited
availability, your version is available to the set of buyers that the product is available for. If
your product is currently set to public availability, then your new version is available to all AWS
Marketplace buyers.

If this was your first version set, your product is now ready to be published. The next topic describes
publishing your product.

If this was your first version set, your product is now ready to be published, see the section called
“Publishing container products” (p. 126).

Updating version information
After a version is created, it can be helpful to provide updated information to your buyers by modifying
the information associated with the version. For example, if you plan to restrict version 1.0 after version
1.1 is released, you can update the description of version 1.0 to direct buyers to version 1.1. Provide the
date that version 1.0 will be restricted. You update the version information from the AWS Marketplace
Management Portal.

To update version information

1. Sign in to the AWS Marketplace Management Portal.
2. Select Server from the Products menu.
3. On the Server products tab, select the product that you want to modify.
4. From the Request changes dropdown, choose Update version information.
5. On the Update version page, select the version that you want to update and choose Submit.
6. Make updates to the selected version. The fields that are available for updating depend on the

status of the product version or delivery option.

a. For all versions, you can update the Release notes.
b. For versions that are not yet publicly available, you can update the Version title.
c. For delivery options that haven't been restricted, you can update the following fields:

124

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html
http://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Creating or updating product

information for your container product

• Description
• Usage instructions
• Supported services

d. For delivery options in versions that are not yet publicly available, you can update the following
fields:

• Delivery option titles
• Helm chart (for Helm chart delivery options only)
• Container images
• Deployment resources

7. Choose Submit.
8. Verify that the request appears on the Requests tab with the Under review status.

You can check the status of your request at any time from the Requests tab of the Server Products page.

Creating or updating product information for your
container product
After you have created your product ID and set the pricing, you can edit your product information,
including what customers will see about your container product in the AWS Marketplace. The following
procedure outlines creating the product details for your product.

To create or update product details for your container product

1. Sign in to the AWS Marketplace Management Portal.
2. Select Server from the Products menu.
3. On the Server products tab, select the product that you want to modify.
4. From the Request changes dropdown, choose Update product information.
5. Update any of the following fields that you need to change:

• Product title
• SKU
• Short description
• Long description
• Product logo image URL
• Highlights
• Product categories
• Keywords
• Product video URL
• Resources
• Support information

Note
Image URLs must be in an Amazon S3 bucket that is publicly accessible. For more details
about the logo format, see Company and product logo requirements (p. 262).

6. Select Submit.
7. Verify that the request appears on the Requests tab with the Under review status. You might need

to refresh the page to see the request on the list.

125

https://aws.amazon.com/marketplace/management/products/server
http://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Publishing container products

You can check the status of your request at any time from the Requests tab of the Server Products page.

Publishing container products
When you initially create your product, its availability is limited to just your account. Once your product is
ready for testing (including having product details filled in and the first version created), you can make it
available to other accounts for testing, or to all accounts as a public product.

Note
Before publishing publicly, you should review your product to ensure accuracy, including image
links, deployment templates, descriptions, and pricing. Your pricing model can't be changed for
publicly published products.

To publish your limited product to additional accounts or for public availability, contact the AWS
Marketplace Seller Operations team. In your request, provide the product ID and describe the changes
that you want to make.

Note
You can also choose to restrict a version that you no longer want available to buyers. You can
include this in a request to publish a product publicly, to avoid test versions appearing in public
products.
You can't restrict a version if it will leave your public product with no public versions.

When you publicly publish a container product, you make it visible to all AWS customers who can then
subscribe and launch your product. The AWS Marketplace Seller Operations team reviews the data in
your product information, as well as your test calls to the AWS Marketplace Metering Service.

Container product scans for security issues
When you submit a container image URL, we scan it and check for security vulnerabilities. We examine
the images you provide for known security vulnerabilities. To do this, we perform a layer-by-layer static
scan on the image. If we find critical vulnerabilities with remotely exploitable risk vectors, we provide you
with a list of found issues. We strongly recommend that you perform your own security analysis using
a container image scanner such as Clair, Twistlock, Aqua Security, or Trend Micro to avoid delays in the
ingestion and publishing process.

Your choice of base image for building your container images can have a significant influence on
the security profile of the final image. If you choose a base image that already has known critical
vulnerabilities, they will be flagged because of the base layer, even if your application software layers are
clean. We recommend that you verify that you're starting with a vulnerability-free base container before
you build your images and submit them to AWS Marketplace.

Container-based product requirements
AWS Marketplace maintains the following requirements for all container-based products and offerings
on AWS Marketplace. These requirements help to promote a safe, secure, and trustworthy catalog for our
customers. We also encourage sellers to review implementation of additional controls and protocols as
applicable to meet the needs of their specific products.

All products and their related metadata are reviewed when submitted to ensure that they meet or
exceed current AWS Marketplace requirements. We review and adjust these policies to meet our
evolving security and other usage requirements. AWS Marketplace continuously verifies that existing
products continue to meet any changes to these requirements. If products fall out of compliance, AWS
Marketplace will contact you to update your product. In some cases, your product might temporarily be
unavailable to new subscribers until issues are resolved.

126

https://aws.amazon.com/marketplace/management/products/server
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Security requirements

Security requirements
All container-based products must adhere to the following security requirements:

• Docker container images must be free from any known malware, viruses, or vulnerabilities. The self-
service container images ingestion tool can detect vulnerabilities. To use the container scanning tool,
sign into the AWS Marketplace Management Portal, select Container from the Assets menu, and
submit an image for your product.

• If your container-based products requires access to manage AWS resources, it must be achieved
through IAM roles for service accounts (if run through Amazon Elastic Kubernetes Service (Amazon
EKS)) or IAM roles for tasks (if run through Amazon Elastic Container Service (Amazon ECS)) instead of
requesting an access key from users.

• Container-based products must only require least privileges to run. For more information, see ECS
security and EKS security.

• Container images should be configured to run with non-root privileges by default.

Access requirements
All container-based products must adhere to the following access requirements:

• Container-based products must use an initial randomized password. Container-based products must
not use initial fixed or blank passwords for external administrative access (for example, to log in to the
application via a web interface). The buyer must be prompted for this randomized password before
being permitted to set or change their own credentials.

• Any outside access to the application must be explicitly agreed to and enabled by customers.

Customer information requirements
All container-based products must adhere to the following customer information requirements:

• Software must not collect or export customer data without the customer's knowledge and express
consent except as required by BYOL (Bring Your Own License). Applications that collect or export
customer data must follow these guidelines:

• The collection of the customer data must be self-service, automated, and secure. Buyers must not
need to wait for sellers to approve to deploy the software.

• The requirements for customer data must be clearly stated in the description or the usage
instructions of the listing. This includes what is collected, the location of where the customer data
will be stored, and how it will be used. For example, This product collects your name and email
address. This information is sent to and stored by the <company name>. This information will only be
used to contact the buyer in regards to the <product name>.

• Payment information must not be collected.

Product usage requirements
All container-based products must adhere to the following product usage requirements:

• Sellers can only list fully functioning products. Beta or prerelease products for trial or evaluation
purposes are not allowed. Developer, community, and BYOL editions of commercial software are
supported if the seller provides an equivalent paid version on AWS Marketplace within 90 days of
providing the free edition.

127

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/security.html
https://docs.aws.amazon.com/eks/latest/userguide/security.html

AWS Marketplace Seller Guide
Architecture requirements

• All of a container-based product's usage instructions must include all steps to deploy container-based
products. Usage instructions must provide commands and deployment resources pointing to the
corresponding container images on AWS Marketplace.

• Container-based products must include all container images that a subscriber needs to use the
software. In addition, container-based products must not require a user to launch the product
using any images from outside AWS Marketplace (for example, container images from third-party
repositories).

• Containers and their software must be deployable in a self-service manner and must not require
additional payment methods or costs. Applications that require external dependencies on deployment
must follow these guidelines:

• The requirement must be disclosed in the description or the usage instructions of the listing. For
example, This product requires an internet connection to deploy properly. The following packages are
downloaded on deployment: <list of package>.

• Sellers are responsible for the use of and ensuring the availability and security of all external
dependencies.

• If the external dependencies are no longer available, the product must be removed from AWS
Marketplace as well.

• The external dependencies must not require additional payment methods or costs.

• Containers that require an ongoing connection to external resources not under the direct control of
the buyer—for example, external APIs or AWS services managed by the seller or a third party—must
follow these guidelines:

• The requirement must be disclosed in the description or the usage instructions of the listing. For
example, This product requires an ongoing internet connection. The following ongoing external services
are required to properly function: <list of resources>.

• Sellers are responsible for the use of and ensuring the availability and security of all external
resources.

• If the external resources are no longer available, the product must be removed from AWS
Marketplace as well.

• The external resources must not require additional payment methods or costs and the setup of the
connection must be automated.

• Product software and metadata must not contain language that redirects users to other cloud
platforms, additional products, or upsell services that aren't available on AWS Marketplace.

• If your product is an add-on to another ISV’s product, your product description must indicate that it
extends the functionality of the other product and that without it, your product has very limited utility.
For example, This product extends the functionality of <product name> and without it, this product has
very limited utility. Please note that <product name> might require its own license for full functionality
with this listing.

Architecture requirements
All container-based products must adhere to the following architecture requirements:

• Source container images for AWS Marketplace must be pushed to the Amazon Elastic Container
Registry (Amazon ECR) repository owned by AWS Marketplace. You can create these repositories in
the AWS Marketplace Management Portal under server products for each of your container product
listings.

• Container images must be based on Linux.

• Paid container-based products must be able to be deployed on Amazon ECS, Amazon EKS, or AWS
Fargate.

• Paid container-based products with contract pricing and an integration with AWS License Manager
should deploy on Amazon EKS, Amazon ECS, AWS Fargate, Amazon EKS Anywhere, Amazon ECS

128

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/what-is-fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/what-is-fargate.html

AWS Marketplace Seller Guide
Container product pricing

Anywhere, Red Hat OpenShift Service on AWS (ROSA), self-managed Kubernetes clusters on-premises,
or on Amazon Elastic Compute Cloud.

Container product pricing
This section outlines the available pricing models for container products. You can list free products,
Bring Your Own License model (BYOL) products, and paid products for Amazon Elastic Container Service
(Amazon ECS), Amazon Elastic Kubernetes Service (Amazon EKS), and AWS Fargate. You can set only one
price per product.

Note
You use the AWS Marketplace Metering Service to enforce entitlement and meter usage for your
paid products. For per task or per pod pricing, usage is metered automatically by AWS.

The price you set for a container product applies to all AWS Regions. Whenever you lower the price for
a container product, the new price is implemented for your buyers immediately. For price increases,
existing buyers are notified about the change 90 days before it impacts their billing. New buyers are
billed the new amount.

Container pricing models
AWS Marketplace has multiple pricing models for container products.

The following table provides general information about pricing models for container-based products.

Pricing models for container products

Pricing model Description

Bring Your Own
License (BYOL)

BYOL is managed outside of AWS Marketplace through an external billing
relationship that you maintain with the buyer.

Monthly Fixed monthly price
A fixed monthly price that provides users with unlimited product usage during
the following month.

Example: You set the price for your product at $99 per month. Your product
includes three different container images that are deployed using an Amazon
ECS task definition.

After a buyer subscribes to your product, they're immediately charged $99,
which repeats each month until they cancel the subscription. The buyer also
gets unlimited usage of the product. The buyer also pays separately for any
infrastructure that the tasks run on. While subscribed, they can access your
container images. They can launch and run any number of containers from those
images on Amazon ECS or Amazon EKS in any configuration.

If the buyer cancels their subscription in the middle of a month, they lose access
to the Amazon ECR repository where AWS Marketplace stores the container
images. The buyer might have pulled and stored the original images. However,
they can no longer pull new container image versions that you make available
through AWS Marketplace. The buyer is refunded for the unused portion of the
final month. You're paid based on the buyer's usage minus the agreed-to AWS
Marketplace fee.

Custom metric
pricing dimensions

Custom metered prices based off of dimensions you define (for example users,
nodes, repositories, or GB), up to 24 dimensions per product.

129

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html

AWS Marketplace Seller Guide
Container pricing models

Pricing model Description

Example: Your product charges by users. You have admin users and regular users,
and you define the pricing as $2 for admin users and $1 for regular users. You
can set them up as separate dimensions when listing your product. You charge
by users logged in per day and you meter that usage per day.

Per task or per pod
hourly price

Amazon ECS task or Amazon EKS pod

Per Amazon ECS task or per Amazon EKS pod pricing that we measure to the
second with the price set per hour.

Example: Your product includes three different container images: a controller
node, a worker node, and an analytics node. Because your product isn't
functional or useful without the controller node, you decide that is the image
that you want to charge usage for. You set a price of $6 per hour.

You modify the software in the container image for the controller node to
integrate with the AWS Marketplace Metering Service RegisterUsage API
operation. This ensures that only buyers with an active subscription can launch
and run that container image and that its usage is metered based on how long it
runs.

The buyer is charged $6 per hour of usage for each Amazon EKS controller pod
running. If the buyer launches five Amazon EKS controller pods that include the
controller node container, they're charged $30 per hour ($6 per pod). The buyer
also pays separately for any infrastructure that the pods run on.

For hourly pricing, billing is per-second with a 1-minute minimum. If the
customer runs this controller container for 20 minutes and 30 seconds, they're
charged 20 x ($6/60) + 30 x ($6/60/60) = $2 + $0.05 = $2.05.
You're paid based on the buyer's usage minus the agreed-to AWS Marketplace
fee.

130

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html

AWS Marketplace Seller Guide
Contract pricing for container products

Pricing model Description

Hourly/usage with
long-term contract

A long-term contract, at a reduced price, paid up front or in regular installments.
A long-term contract can be added to an existing product that has custom
metered pricing, or per task and per pod pricing. Buyers pay the metered prices
when they consume more than what they purchased in the long term contract.

Example: For metered pricing models, you can add a long-term contract price for
buyers to get a discount for committing upfront. Say that you normally charge
$1 per some unit consumed. A buyer using 1 unit per hour would pay $8760 per
year (365 days x 24 hours x $1 per hour). You could enable a contract
that enables the buyer to use 1 unit per hour for those 365 days at half that
price ($4380). In this case, the buyer commits to pay upfront for the one-year
contract, and the price drops from $1 per unit to $0.5 per unit. You could also
enable the buyer to purchase multiple of these contracts. If the quantity that is
metered showed that the buyer consumed 10 units in an hour, and they had two
contracts, then 2 units will be included in the 2 contracts. The 8 additional units
would be billed at the regular $1 per hour, for a total of $8 in that hour.

For the per task or per pod example, you can also add a long-term contract price
for buyers to get a discount for committing upfront. If you normally charge
$6 per pod, you could set a long-term contract duration of 365 days with a
price of $13,140 (365 days x 24 hours x $3 per pod per hour). One
contract would then entitle the customer to 1 pod per hour during those 365
days. Customers can choose to purchase multiple contracts. For example, a
customer can purchase two contracts which entitles them to 2 pods per hour. If
the customer runs more pods per hour than the entitled contracts, then excess
pods will be billed at your normal hourly price.

In both cases, buyers that purchase long-term contracts will be billed upfront,
either as a one-time payment or regularly scheduled future payments. Buyers
will also be billed for any additional usage above their contract at the metered
rate.

Container contract
pricing

AMI with contract pricing – A container-based product that the buyer pays an
upfront fee for.

Contract pricing for container products
For container-based products with contract pricing, AWS Marketplace bills your customers upfront or by
the payment schedule that you define, based on the contract between you and your customer. After that
point, they're entitled to use those resources.

To set your pricing, choose one or more contract durations that you offer customers. You can enter
different prices for each contract duration. Your options are 1-month, 12-months, 24-month, and 36-
month durations. For private offers, you can specify a custom duration in months (up to 60 months).

Choose the category that best describes your product’s pricing. The pricing category appears to
customers on the AWS Marketplace website. You can choose from Bandwidth (GB/s, MB/s), Data (GB,
MB, TB), Hosts, Requests, Tiers, or Users. If none of the predefined categories fit your needs, you can
choose the more generic Units category.

The offer allows for up to 24 dimensions to be added to it. Each dimension requires the following data:

• Contracts Category – The contract category is used to measure or meter your product if the product
supports consumption based metering on top of contract pricing. For contract products with no
consumption based pricing, you can choose a category which most closely resembles the category of

131

AWS Marketplace Seller Guide
Contract pricing for container products

dimension in the contract. If no values resemble the units for the dimension in the contract, choose
Units.

• Contracts Unit – The contract unit is used along with category for metering if the product supports
consumption based metering. Choose one of the available values for the units that closely matches
your dimensions based on the category selected.

• Contracts Dimension Allow Multiple Purchases – This field is used to indicate whether an offer is a
tiered pricing offer or a non-tiered offer which allows for purchase of multiple dimensions.

Tiered offer – Allows the buyer to subscribe to only one of the available dimensions in the offer.
Dimensions in a tiered offer don't have the concept of quantities. Signing a contract with a specific
dimension essentially indicates that the buyer has chosen the specific feature indicated by that
dimension.

Non-tiered offer – Allows the customer to procure more than one dimensions as part of the contract
and allows them to procure multiple units of each such dimension.

Setting a value of true for this field indicates that the offer is a non-tiered offer. Setting a value of false
for this field indicates that the offer is a tiered offer.

When using the Product Load Form (PLF) to create the contracts for your Container product, you must
define the following fields for your pricing dimensions:

• Contracts DimensionX API Name – The name that should appear in the license generated in the
buyer’s AWS License Manager account. This name is also used as the value for Name in Entitlement
in the Checkoutlicense API call.

• Contracts DimensionX Display Name – The customer-facing name of the dimension that will be
displayed on the product detail and procurement pages of the AWS Marketplace website. Create a
name that is user-friendly The name's maximum length is 24 characters. After the listing is public, the
value of Name can't be changed.

• Contracts DimensionX Description – The customer-facing description of a dimension that provides
additional information about the dimension for the product, such as the capabilities that the specific
dimension provides. The maximum length for the description is 70 characters.

• Contracts DimensionX Quantity – This is used to calculate proration in cases of agreement
amendments to a product. This value of this field should be set to 1 for all contract offers. It should
not be edited.

• Contracts DimensionX 1-Month Rate – The contract rate to be charged for 1-month of entitlements
against this dimension. For non-tiered offers, this rate is charged for each unit of the dimension that is
procured. This field supports three decimal places.

• Contracts DimensionX 12-Month Rate – The contract rate to be charged for 12 months of
entitlements against the dimension. For non-tiered offers, this rate is charged for each unit of the
dimension that is procured. This field supports three decimal places.

• Contracts DimensionX 24-Month Rate – The contract rate to be charged for 24 months of
entitlements against the dimension. For non-tiered offers, this rate is charged for each unit of the
dimension that is procured. This field supports three decimal places.

• Contracts DimensionX 36-Month Rate – The contract rate to be charged for 36 months of
entitlements against the dimension. For non-tiered offers, this rate is charged for each unit of the
dimension that is procured. This field supports three decimal places.

Example: Data storage application

1-month price 12-month price 24-month price P36-month price

Unencrypted data
(GB)

$1.50/GB $16.00/GB $30.00/GB $60.00/GB

132

AWS Marketplace Seller Guide
Contract pricing for container products

1-month price 12-month price 24-month price P36-month price

Encrypted data
(GB)

$1.55/GB $16.60/GB $31.20/GB $61.20/GB

Example: Log monitoring product

1-month price 12-month price 24-month price 36-month price

Basic (10 hosts
monitored,
5 containers
monitored)

$100 $1000 $2000 $4000

Standard (20
hosts monitored,
10 containers
monitored)

$200 $2000 $4000 $8000

Pro (40 hosts
monitored,
20 containers
monitored)

$400 $4000 $8000 $16,000

Additional hosts
monitored per
hour

$10 $100 $200 $400

Additional
containers
monitored per
hour

$10 $100 $200 $400

Note
The prices can be for the following durations: 1 month, 12 months, 24 months, or 36 months.
You can choose to offer one or more of these options for your product. The durations must be
the same across each dimension.

Example

For example, in a case where you have ReadOnlyUsers and AdminUsers dimensions, if you
offer a yearly price for ReadOnlyUsers, you must offer a yearly price for AdminUsers, too.

Automatic renewals
When a customer purchases your product through AWS Marketplace using Container contracts, they can
agree to automatic renewal of the contract terms. The customer continues to pay for the entitlements
every month or for 1, 2, or 3 years. The customer always has the option to modify the renewal settings.
They can cancel the renewal or renew the contract different quantities and durations.

When a container contract ends
A container contract product has a contract expiry. When a contract ends, the following events occur:

1. Your container product receives an entitlement-updated notification indicating that the buyer's
entitlement has changed, and the AWS Marketplace Entitlement Service returns an empty response.

133

AWS Marketplace Seller Guide
Billing, metering, and licensing integrations

2. You have one hour to meter any remaining usage for the customer. After this you can no longer send
metering records for this customer.

Billing, metering, and licensing integrations
AWS Marketplace integrates with other AWS services to provide both metering and contract-based
pricing for your container product.

Hourly and custom metering with AWS Marketplace
Metering Service
To both check entitlement to use your product and to meter usage for billing, use the AWS Marketplace
Metering Service. If you want to define your own pricing units and meter that usage to us for billing,
integrate by using the MeterUsage API operation. If you want to price your product based on number of
tasks or pods used and have AWS meter that usage automatically, integrate by using the RegisterUsage
API operation. For both types of pricing, you can add a long-term contract price without changing how
you integrate with the AWS Marketplace Metering Service.

When you create a new container product in the AWS Marketplace Management Portal, we provide a set
of product identifiers (the product code and public key) that are used to integrate your product with the
AWS Marketplace Metering Service.

Entitlement
Integrating with the AWS Marketplace Metering Service allows you to verify that the customer
running your paid software is subscribed to your product on AWS Marketplace, guarding you against
unauthorized use at container startup. To verify entitlement, use the MeterUsage or RegisterUsage
API operations, depending on your pricing model. For hourly and fixed monthly pricing models, use
the RegisterUsage API operation. For custom metering pricing models, use the MeterUsage API
operation.

If a buyer isn't entitled to your product, these API operations return the
CustomerNotEntitledException exception.

Note
If a buyer unsubscribes from your product while running it, they are entitled to continue running
it. However, they can't launch additional containers for your product.

Integration guidelines
As you create and publish your container products and use the MeterUsage or RegisterUsage API
operations for entitlement and metering, keep the following guidelines in mind:

• Don't configure AWS credentials within your software or the Docker container image. AWS credentials
for the buyer are automatically obtained at runtime when your container image is running within an
Amazon ECS task or Amazon EKS pod.

• To call the MeterUsage or RegisterUsage API operations from Amazon EKS, you must use a
supported AWS SDK. To test MeterUsage or RegisterUsage integration of Amazon EKS, you must
run an Amazon EKS cluster running Kubernetes 1.13.x or greater. Kubernetes 1.13 is required for AWS
Identity and Access Management (IAM) roles for pod support, which is a dependency for the running
pod to obtain the AWS credentials required to invoke these actions on Amazon EKS.

• You can do local development, but you will get a PlatformNotSupportedException exception.
This exception won't occur when you launch the container on AWS container services (Amazon ECS,
Amazon EKS, and Fargate).

134

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_MeterUsage.html
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_RegisterUsage.html
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_MeterUsage.html
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_RegisterUsage.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts-minimum-sdk.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts-minimum-sdk.html

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

Supported AWS Regions
For a list of all AWS Marketplace supported AWS Regions, see Region Table on the Global Infrastructure
website.

Obtaining the AWS Region for metering

When integrating your container for metering with either the MeterUsage or RegisterUsage API
operation, don't configure the AWS SDK to use a specific AWS Region. The Region must be obtained
dynamically at runtime.

Example

For example, a customer launches an Amazon ECS task or Amazon EKS pod. The RegisterUsage
API operation is called in a Region that differs from the Region where the Amazon ECS task
or Amazon EKS pod was launched. Therefore, the RegisterUsage API operation throws an
InvalidRegionException error.

AWS SDK languages don't determine the AWS_REGION in a consistent manner. For example, the AWS
SDK for Java automatically uses Amazon EC2 instance metadata (specifically, ec2InstanceMetadata)
to obtain the Region when environment variables or other configuration aren't present. In this instance,
only call ec2InstanceMetadata if the AWS_REGION environment variable isn’t present.

For information about how to dynamically obtain an AWS Region at runtime, refer to the AWS SDK
Developer Guide for your programming language.

Preventing metering modification
Introducing ways for buyers to modify or override calls to RegisterUsage or MeterUsage might result
in undesirable billing and payment issues. We strongly recommend that you integrate the metering and
entitlement logic.

When engineering your product to prevent metering modification, keep the following in mind:

• If buyers can insert new image layers that contain CMD or ENTRYPOINT instructions, directly integrate
RegisterUsage or MeterUsage into the software that the buyer is running through your container
image. Otherwise, calls to RegisterUsage or MeterUsage executed via CMD or ENTRYPOINT from
the base image will likely be overridden by the buyer.

• We recommend that you manage the AWS Marketplace product codes that your software uses
as input to RegisterUsage or MeterUsage in a manner buyers can't modify. However, if your
product manages product codes in a manner customers can override, such as AWS CloudFormation,
Helm chart, or Kubernetes manifest, you must maintain a list of trusted AWS Marketplace product
codes. This is to ensure that the product code your software passes as input to RegisterUsage or
MeterUsage is valid.

• If any of your trusted product codes are for free products, ensure that they can’t be used in place of a
paid product code.

Contract pricing with AWS License Manager
For container-based products with contract pricing, you use AWS License Manager to associate licenses
with your product.

AWS License Manager is a license management tool that enables your application to track and update
licenses (also known as entitlements) that have been purchased by a customer. This section provides
information about how to integrate your product with AWS License Manager. After the integration is
complete, you can publish your product listing on AWS Marketplace.

135

http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
http://aws.amazon.com/tools
http://aws.amazon.com/tools

AWS Marketplace Seller Guide
Hourly metering with AWS Marketplace Metering Service

For more information about AWS License Manager, see the AWS License Manager User Guide and the
AWS License Manager section of the AWS CLI Command Reference.

Note

• Customers can't launch new instances of the container after the contract expiry period.
However, during the contract duration, they can launch any number of instances. These
licenses are not node-locked or tied to particular instances.

• Private Offer Creation – Sellers can generate private offers for the products using the Private
offer creation tool in the AWS Marketplace Management Portal.

• Reporting – You can set up data feeds by setting up an Amazon S3 bucket in the Report
section in the AWS Marketplace Management Portal. For more information, see Seller reports
and data feeds (p. 273).

Integration workflow
The following steps show the workflow for integrating your container product with AWS License
Manager:

1. Seller creates a product with AWS License Manager integration.

2. Seller lists the product on AWS Marketplace.

3. Buyer finds the product on AWS Marketplace and purchases it.

4. A license is sent to the buyer in their AWS account.

5. Buyer uses the software by launching the Amazon EC2 instance, Amazon ECS task, or Amazon EKS
pod software. The customer deploys using an IAM role.

6. Software reads the license in the buyer's AWS License Manager account, discovers the entitlements
purchased, and provisions the features accordingly.

Note
License Manager doesn't do any tracking or updates; this is done by the seller’s application.

Hourly metering with AWS Marketplace Metering
Service
If your container product uses per-hour per-task or per-pod pricing instead of custom metered pricing
dimensions, you don't have to define custom metering dimensions.

The RegisterUsage API operation meters software use per Amazon Elastic Container Service (Amazon
ECS) task or per Amazon Elastic Kubernetes Service (Amazon EKS) pod, per hour, with usage prorated to
the second. A minimum of 1 minute of usage applies to tasks or pods that are short lived. Continuous
metering for software use is automatically handled by the AWS Marketplace Metering Control Plane.
Your software isn't required to perform any metering specific actions except calling RegisterUsage
once for metering of software use to commence.

The AWS Marketplace Metering Control Plane continues to bill customers for running Amazon ECS tasks
and Amazon EKS pods, regardless of the customer's subscription state. This removes the need for your
software to perform entitlement checks after the initial successful launch of the task or pod.

Hourly metering prerequisites
Before publishing the product, you must do the following:

136

https://docs.aws.amazon.com/license-manager/latest/userguide/license-manager.html
https://docs.aws.amazon.com/cli/latest/reference/license-manager/index.html

AWS Marketplace Seller Guide
Hourly metering with AWS Marketplace Metering Service

1. Create a new container product in the AWS Marketplace Management Portal, and make a note of its
product code.

For more information, see Creating a container product (p. 117).
2. Fill out the product load form (PLF) with the necessary hourly price information, and return it to us for

processing.

For more information, see Creating or updating pricing details for container products (p. 118).
3. Use an AWS Identity and Access Management (IAM) role for the task or pod running your

application with the IAM permissions necessary to call RegisterUsage. The IAM managed policy
AWSMarketplaceMeteringRegisterUsage has these permissions.

4. (Optional) If you want to see logging, we recommend that you enable AWS CloudTrail logging in the
task or pod definition.

5. Make a test call to the RegisterUsage API operation with a record for all of the pricing dimensions
you define.

Product load form for hourly metering
When filling out the product load form for hourly metering, fill out the following fields for your product,
in addition to the other required and optional fields that define your product:

• Hourly Price – The price for your product, per hour.
• Dimension Long Term Rate – The total software price over a long-term contract when buyers pay

upfront.
• Long Term Duration (Days) – The duration, in days, for the long-term contract.

Testing integration and preview mode for RegisterUsage
Use the RegisterUsage API operation to test your integration before submitting your image to AWS
Marketplace for publishing.

Preview mode operates identically to production mode, except preview mode does not verify
entitlement to use your product. To call RegisterUsage in preview mode, call RegisterUsage from
the container image by running your product on Amazon ECS or Amazon EKS. Use the AWS account that
you're using to list the product on AWS Marketplace. Your metering integration must dynamically set the
AWS Region, rather than hardcoding it. However, when testing, launch at least one Amazon ECS task or
Amazon EKS pod containing your paid container in the US East (N. Virginia) Region. By doing this, the
AWS Marketplace operations team can verify your work with the logs in that Region.

Note
If your product supports both Amazon ECS and Amazon EKS, you only need to launch in
Amazon EKS for us to validate your integration.

You can't fully test the integration until your product is published with all the required metadata and
pricing information. If requested, the AWS Marketplace catalog operations team can verify receipt of
your metering records in preview mode.

Error handling for RegisterUsage
If your container image integrates with the AWS Marketplace Metering Service and receives an exception
other than ThrottlingException at container startup, you should terminate the container to prevent
unauthorized use.

Exceptions other than ThrottlingException are thrown only on the initial call to the
RegisterUsage API operation. Subsequent calls from the same Amazon ECS task or Amazon EKS pod
don't throw CustomerNotSubscribedException even if the customer unsubscribes while the task or

137

AWS Marketplace Seller Guide
Hourly metering with AWS Marketplace Metering Service

pod is still running. These customers are still charged for running containers after they unsubscribe, and
their usage is tracked.

The following table describes the errors that the RegisterUsage API operation might throw. Each AWS
SDK programming language has a set of error handling guidelines that you can refer to for additional
information.

Error Description

InternalServiceErrorException RegisterUsage isn't available.

CustomerNotEntitiledException The customer doesn't have a valid subscription for
the product.

InvalidProductCodeException The ProductCode value passed in as part of the
request doesn't exist.

InvalidPublicKeyException The PublicKeyVersion value passed in as part
of the request doesn't exist.

PlatformNotSupportedException AWS Marketplace doesn't support metering usage
from the underlying platform. Only Amazon ECS,
Amazon EKS, and AWS Fargate are supported.

ThrottlingException The calls to RegisterUsage are throttled.

InvalidRegionException RegisterUsage must be called in the same
AWS Region that the Amazon ECS task or
Amazon EKS pod was launched in. This prevents
a container from choosing a Region (for example,
withRegion(“us-east-1”)) when calling
RegisterUsage.

Integrating your container product with the AWS Marketplace
Metering Service using the AWS SDK for Java
The following steps outline an example implementation using the AWS SDK for Java to integrate
with the AWS Marketplace Metering Service's RegisterUsage action. For the full source code, see
RegisterUsage Java example (p. 140). Many of these steps apply regardless of the language.

Example steps for AWS Marketplace Metering Service integration

1. Sign into the AWS Marketplace Management Portal.
2. From Assets choose Containers to start creating a new container product. Creating the product

generates the product code for the product to integrate with your container image. For more
information about publishing, see Publishing container products (p. 126). For information about
setting IAM permissions, see the section called “AWS Marketplace metering and entitlement API
permissions” (p. 358).

3. Download the public AWS Java SDK.

Important
To call the metering APIs from Amazon EKS, you must use a supported AWS SDK and run on
an Amazon EKS cluster running Kubernetes 1.13 or later.

4. (Optional) If you're integrating with the RegisterUsage action and you want to perform digital
signature verification, you need to configure the BouncyCastle signature verification library in your
application classpath.

138

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html
https://aws.amazon.com/marketplace/management/tour
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts-minimum-sdk.html
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-jdk15on

AWS Marketplace Seller Guide
Hourly metering with AWS Marketplace Metering Service

If you want to use JSON Web Token (JWT), you must also include JWT Java libraries in your
application classpath. Using JWT provides a simpler approach to signature verification but is not
required, and you can use standalone BouncyCastle instead. Whether you use JWT or BouncyCastle,
you need to use a build system such as Maven to include transitive dependencies of BouncyCastle or
JWT in your application classpath.

// Required for signature verification using code sample
<dependency>
 <groupId>org.bouncycastle</groupId>
 <artifactId>bcpkix-jdk15on</artifactId>
 <version>1.60</version>
</dependency>

// This one is only required for JWT
<dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>6.0</version>
</dependency>

5. Call RegisterUsage from each paid container image in your product offering. ProductCode and
PublicKeyVersion are required parameters, and all other inputs are optional. The following is an
example payload for RegisterUsage.

{
 "ProductCode" : "string", // (required)
 "PublicKeyVersion": 1, // (required)
 "Nonce": "string", // (optional) to scope down the registration
 // to a specific running software
 // instance and guard against
 // replay attacks
}

Note
It is possible to see transient issues in connecting to the AWS Marketplace Metering Service.
AWS Marketplace strongly recommends implementing retries for up to 30 minutes, with
exponential back off, to avoid short-term outages or network issues.

6. RegisterUsage generates an RSA-PSS digital signature using SHA-256 that you can use
to verify request authenticity. The signature includes the following fields: ProductCode,
PublicKeyVersion, and Nonce. To verify the digital signature, you must retain these fields from
the request. The following code is an example response to a RegisterUsage call.

{
"Signature": "<<JWT Token>>"
}

// Where the JWT Token is composed of 3 dot-separated,
// base-64 URL Encoded sections.
// e.g. eyJhbGcVCJ9.eyJzdWIMzkwMjJ9.rrO9Qw0SXRWTe

// Section 1: Header/Algorithm
{
"alg": "PS256",
"typ": "JWT"
}

// Section 2: Payload
{
"ProductCode" : "string",
"PublicKeyVersion": 1,

139

https://jwt.io/

AWS Marketplace Seller Guide
Hourly metering with AWS Marketplace Metering Service

"Nonce": "string",
"iat": date // JWT issued at claim
}

// Section 3: RSA-PSS SHA256 signature
"rrO9Q4FEi3gweH3X4lrt2okf5zwIatUUwERlw016wTy_21Nv8S..."

7. Rebuild a new version of your Docker container image that includes the RegisterUsage call, tag
the container, and push it to any Docker registry that is compatible with Amazon ECS or Amazon
EKS, such as Amazon ECR or Docker Hub. If you are using Amazon ECR, ensure that the account
launching the Amazon ECS task or Amazon EKS pod has permissions on the Amazon ECR repository.
Otherwise, execution fails.

Note
If you use a private Docker Hub repository, follow the steps in Private Registry
Authentication for Tasks in the Amazon Elastic Container Service Developer Guide.

8. Create an IAM role that grants permission for your container to call RegisterUsage, as defined in
the following code. You must supply this IAM role in the Task Role parameter of the Amazon ECS
task or Amazon EKS pod definition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aws-marketplace:RegisterUsage"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

9. Create an Amazon ECS task or Amazon EKS pod definition that references the container that has
integrated with AWS Marketplace and references the IAM role that you created in step 7. You should
enable AWS CloudTrail logging in the task definition if you want to see logging.

10. Create an Amazon ECS or Amazon EKS cluster to execute your task or pod. For more information
about creating an Amazon ECS cluster, see Creating a Cluster in the Amazon Elastic Container Service
Developer Guide. For more information about creating an Amazon EKS cluster (using Kubernetes
version 1.1.3.x or later), see Creating an Amazon EKS Cluster.

11. Configure the Amazon ECS or Amazon EKS cluster and launch the Amazon ECS task definition or
Amazon EKS pod that you created, in the us-east-1 AWS Region. It's only during this testing process,
before the product is live, that you have to use this region.

12. When you get a valid response back from RegisterUsage, you can begin creating your container
product. For questions, contact the AWS Marketplace Seller Operations team.

RegisterUsage Java example

The following example uses the AWS SDK for Java and AWS Marketplace Metering Service to call the
RegisterUsage operation. Signature verification is optional, but if you want to perform signature
verification, you must include the required digital signature verification libraries. This example is for
illustrative purposes only.

import com.amazonaws.auth.PEM;
import com.amazonaws.services.marketplacemetering.AWSMarketplaceMetering;
import com.amazonaws.services.marketplacemetering.AWSMarketplaceMeteringClientBuilder;
import com.amazonaws.services.marketplacemetering.model.RegisterUsageRequest;
import com.amazonaws.services.marketplacemetering.model.RegisterUsageResult;

140

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#task_role_arn
https://docs.aws.amazon.com/AmazonECS/latest/userguide/create_cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create_cluster.html
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Hourly metering with AWS Marketplace Metering Service

import com.amazonaws.util.json.Jackson;
import com.fasterxml.jackson.databind.JsonNode;
import com.nimbusds.jose.JWSObject;
import com.nimbusds.jose.JWSVerifier;
import com.nimbusds.jose.crypto.RSASSAVerifier;
import java.io.ByteArrayInputStream;
import java.nio.charset.StandardCharsets;
import java.security.PublicKey;
import java.security.Security;
import java.security.Signature;
import java.security.interfaces.RSAPublicKey;
import java.util.Base64;
import java.util.Optional;
import java.util.UUID;
import org.bouncycastle.jce.provider.BouncyCastleProvider;

/**
 * Class for making calls out to AWS Marketplace Metering Service.
 */
class RegisterUsage {

 private static final String PRODUCT_CODE = ".......";

 private final AWSMarketplaceMetering registerUsageClient;
 private final SignatureVerifier signatureVerifier;
 private final int publicKeyVersion;

 public RegisterUsage(final SignatureVerifier signatureVerifier) {
 this.signatureVerifier = signatureVerifier;
 this.publicKeyVersion = PublicKeyProvider.PUBLIC_KEY_VERSION;
 this.registerUsageClient = AWSMarketplaceMeteringClientBuilder.standard().build();
 }

 /**
 * Shows how to call RegisterUsage client and verify digital signature.
 */
 public void callRegisterUsage() {
 RegisterUsageRequest request = new RegisterUsageRequest()
 .withProductCode(PRODUCT_CODE)
 .withPublicKeyVersion(publicKeyVersion)
 .withNonce(UUID.randomUUID().toString());

 // Execute call to RegisterUsage (only need to call once at container startup)
 RegisterUsageResult result = this.registerUsageClient.registerUsage(request);

 // Verify Digital Signature w/o JWT
 boolean isSignatureValid = this.signatureVerifier.verify(request, result);
 if (!isSignatureValid) {
 throw new RuntimeException("Revoke entitlement, digital signature invalid.");
 }
 }
}

/**
 * Signature verification class with both a JWT-library based verification
 * and a non-library based implementation.
 */
class SignatureVerifier {
 private static BouncyCastleProvider BC = new BouncyCastleProvider();

 private static final String SIGNATURE_ALGORITHM = "SHA256withRSA/PSS";

 private final PublicKey publicKey;

 public SignatureVerifier(PublicKeyProvider publicKeyProvider) {
 this.publicKey = publicKeyProvider.getPublicKey().orElse(null);

141

AWS Marketplace Seller Guide
Hourly metering with AWS Marketplace Metering Service

 Security.addProvider(BC);
 }

 /**
 * Example signature verification using the NimbusJOSEJWT library to verify the JWT
 Token.
 *
 * @param request RegisterUsage Request.
 * @param result RegisterUsage Result.
 * @return true if the token matches.
 */
 public boolean verifyUsingNimbusJOSEJWT(final RegisterUsageRequest request, final
 RegisterUsageResult result) {
 if (!getPublicKey().isPresent()) {
 return false;
 }

 try {
 JWSVerifier verifier = new RSASSAVerifier((RSAPublicKey) getPublicKey().get());
 JWSObject jwsObject = JWSObject.parse(result.getSignature());
 return jwsObject.verify(verifier) &&
 validatePayload(jwsObject.getPayload().toString(), request, result);
 } catch (Exception e) {
 // log error
 return false;
 }
 }

 /**
 * Example signature verification without any JWT library support.
 *
 * @param request RegisterUsage Request.
 * @param result RegisterUsage Result.
 * @return true if the token matches.
 */
 public boolean verify(final RegisterUsageRequest request, final RegisterUsageResult
 result) {
 if (!getPublicKey().isPresent()) {
 return false;
 }
 try {
 String[] jwtParts = result.getSignature().split("\\.");
 String header = jwtParts[0];
 String payload = jwtParts[1];
 String payloadSignature = jwtParts[2];

 Signature signature = Signature.getInstance(SIGNATURE_ALGORITHM, BC);
 signature.initVerify(getPublicKey().get());
 signature.update(String.format("%s.%s", header,
 payload).getBytes(StandardCharsets.UTF_8));
 boolean verified = signature.verify(Base64.getUrlDecoder()
 .decode(payloadSignature.getBytes(StandardCharsets.UTF_8)));

 String decodedPayload = new String(Base64.getUrlDecoder().decode(payload));
 return verified && validatePayload(decodedPayload, request, result);
 } catch (Exception e) {
 // log error
 return false;
 }
 }

 /**
 * Validate each value in the returned payload matches values originally
 * supplied in the request to RegisterUsage. TimeToLiveInMillis and
 * PublicKeyExpirationTimestamp will have the values in the payload compared
 * to values in the signature

142

AWS Marketplace Seller Guide
Custom metering with AWS Marketplace Metering Service

 */
 private boolean validatePayload(final String payload, final RegisterUsageRequest
 request,
 final RegisterUsageResult result) {
 try {
 JsonNode payloadJson = Jackson.getObjectMapper().readTree(payload);
 boolean matches = payloadJson.get("productCode")
 .asText()
 .equals(request.getProductCode());
 matches = matches && payloadJson.get("nonce")
 .asText()
 .equals(request.getNonce());
 return matches = matches && payloadJson.get("publicKeyVersion")
 .asText()
 .equals(String.valueOf(request.getPublicKeyVersion()));

 } catch (Exception ex) {
 // log error
 return false;
 }
 }

 private Optional<PublicKey> getPublicKey() {
 return Optional.ofNullable(this.publicKey);
 }
}

/**
 * Public key provider taking advantage of the AWS PEM Utility.
 */
class PublicKeyProvider {
 // Replace with your public key. Ensure there are new-lines ("\n") in the
 // string after "-----BEGIN PUBLIC KEY-----\n" and before "\n-----END PUBLIC KEY-----".
 private static final String PUBLIC_KEY =
 "-----BEGIN PUBLIC KEY-----\n"
 + "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDdlatRjRjogo3WojgGHFHYLugd\n"
 + "UWAY9iR3fy4arWNA1KoS8kVw33cJibXr8bvwUAUparCwlvdbH6dvEOfou0/gCFQs\n"
 + "HUfQrSDv+MuSUMAe8jzKE4qW+jK+xQU9a03GUnKHkkle+Q0pX/g6jXZ7r1/xAK5D\n"
 + "o2kQ+X5xK9cipRgEKwIDAQAB\n"
 + "-----END PUBLIC KEY-----";

 public static final int PUBLIC_KEY_VERSION = 1;

 public Optional<PublicKey> getPublicKey() {
 try {
 return Optional.of(PEM.readPublicKey(new ByteArrayInputStream(
 PUBLIC_KEY.getBytes(StandardCharsets.UTF_8))));
 } catch (Exception e) {
 // log error
 return Optional.empty();
 }
 }
}

Custom metering with AWS Marketplace Metering
Service
AWS Marketplace container products can have custom metering on up to 24 different pricing dimensions
per product. Each dimension can have a long-term contract price associated with it. To enable custom
metering, integrate your container product with AWS Marketplace Metering Service. You can define your
own pricing units and custom metering for that usage to AWS for billing using the MeterUsage API
operation.

143

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_MeterUsage.html

AWS Marketplace Seller Guide
Custom metering with AWS Marketplace Metering Service

Price dimensions are defined in two locations, once in the product load form and once through the
MeterUsage operation. This two-factor method ensures that the subsequent offers are working as
intended before they're made available to the public.

To set up custom metering, you'll need to choose the usage category, the unit type, and pricing
dimensions:

• Usage category – The usage category helps buyers understand what your product is and how to use it.

• Unit type – The unit type defines the unit of measure for billing. For example, bandwidth measured in
GBps or MBps, the number of hosts, or data measured in MB, GB, or TB.

• Pricing dimensions – The pricing dimensions represents a feature or service that you've set a per-
unit price for (for example, users, scans, vCPUs, or deployed agents). Pricing dimensions are public.
However, you can still define private and Bring Your Own License (BYOL) offers for public products.
Don't send pricing in the metering records. You meter the quantity of units, and we use that along with
the prices you defined when creating your product to compute the buyer's bill.

If your product pricing doesn't fit with any of the predefined categories or unit types, you can choose
the generic Units category. Then, use the dimension description to describe what the unit is.

Optionally, you may distribute the usage into allocations by properties that you track. The allocations are
represented as tags to the buyer. These tags allow the buyer to view their costs split into usage by tag
values. For example, if you charge by the user, and users have a "Department" property, you could create
usage allocations with tags that have a key of "Department", and one allocation per value. This does not
change the price, dimensions, or the total usage that you report, but allows your customer to view their
costs by categories appropriate to your product.

We recommend that you send a metering record every hour. However, you can aggregate usage over
daily or monthly periods as well. If you experience an outage, you can aggregate buyer software use and
send it in the following hours metering. You can't send more than one record per hour.

Important
Free trial and prepaid entitlement are tracked on an hourly level. As a result, sending these
records in separately might lead to the buyer being overcharged.

Custom metering prerequisites
Before publishing the product, you must do the following:

1. Create a new container product in the AWS Marketplace Management Portal, and make a note of its
product code.

2. Fill out the product load form with the necessary dimension information, and return it to us for
processing.

3. Use an AWS Identity and Access Management (IAM) role for the task or pod running your
application with the IAM permissions necessary to call MeterUsage. The IAM managed policy
AWSMarketplaceMeteringRegisterUsage has these permissions.

4. (Optional) We recommend that you enable AWS CloudTrail logging in the task or pod definition if you
want to see logging.

5. Make a test call to the MeterUsage API operation with a record for all of the pricing dimensions you
define.

Product load form for custom metering
When filling out the product load form for custom metering, each product can have up to 24 dimensions.
The dimensions are defined in the following fields:

144

AWS Marketplace Seller Guide
Custom metering with AWS Marketplace Metering Service

• Dimension Name – The name used when your container application is sending metering records to
the AWS Marketplace Metering Service. This name indicates which dimension your buyer will use. This
name is visible in billing reports. After you set the name, you can't change it.

• Dimension Description – The buyer-facing description for the dimension. The description can't exceed
70 characters. After the product is published publicly to buyers, this field can't be changed.

• Dimension Rate – The software price per unit for this product when buyers pay as they go. This field
supports three decimal places.

• Dimension Long Term Rate – The total software price over a long-term contract when buyers pay
upfront.

• Long Term Duration (Days) – The duration, in days, for the long-term contract.

Testing MeterUsage integration and preview mode

Use the MeterUsage operation to test your integration before submitting your image to AWS
Marketplace for publishing.

Preview mode operates identically to production mode, except preview mode does not verify
entitlement to use your product. To call MeterUsage in preview mode, call MeterUsage from the
container images by running your product on Amazon Elastic Container Service (Amazon ECS) or Amazon
Elastic Kubernetes Service (Amazon EKS) with the AWS account you are using to list the product on AWS
Marketplace. Your metering integration must dynamically set the AWS Region, rather than hard coding
it. However, when testing, launch at least one Amazon ECS task or Amazon EKS pod containing your paid
container in the US East (N. Virginia) Region so that the AWS Marketplace operations team can verify
your work with the logs in that Region.

Note
If your product supports both Amazon ECS and Amazon EKS, you only need to launch in
Amazon EKS for us to validate your integration.

You can't fully test the integration until your product is published with all the required metadata and
pricing information. If requested, the AWS Marketplace catalog operations team can verify receipt of
your metering records in preview mode.

Error handling for MeterUsage

If your container image integrates with the MeterUsage operation and receives an exception other
than ThrottlingException at container startup, you should terminate the container to prevent
unauthorized use.

Exceptions other than ThrottlingException are thrown only on the initial call to
MeterUsage. Subsequent calls from the same Amazon ECS task or Amazon EKS pod do not throw
CustomerNotSubscribedException even if the customer unsubscribes while the task or pod is still
running. These customers are still charged for running containers after they unsubscribe and their usage
is tracked.

The following table describes the errors that MeterUsage might throw. Each AWS SDK programming
language has a set of error handling guidelines that you can refer to for additional information.

Error Description

DuplicateRequestException A metering record has already been emitted for
the given {usageDimension, timestamp}
with a different usageQuantity.

145

AWS Marketplace Seller Guide
Custom metering with AWS Marketplace Metering Service

Error Description

InvalidUsageDimensionException The usage dimension does not match one of the
UsageDimensions associated with the product.

TimestampOutOfBoundsException The timestamp value passed in the MeterUsage
is out of allowed range.

InternalServiceErrorException MeterUsage isn't available.

CustomerNotEntitledException The customer doesn't have a valid subscription for
the product.

InvalidProductCodeException The ProductCode value passed in as part of the
request doesn't exist.

PlatformNotSupportedException AWS Marketplace doesn't support metering usage
from the underlying platform. Only Amazon ECS,
Amazon EKS, and AWS Fargate are supported.

ThrottlingException The calls to MeterUsage are throttled.

InvalidEndpointRegionException MeterUsage must be called in the same AWS
Region that the Amazon ECS task or Amazon
EKS pod was launched in. This prevents a
container from choosing a Region (for example,
withRegion(“us-east-1”)) when calling
MeterUsage.

InvalidTagException The tags in the UsageAllocations object must
have unique keys within each UsageAllocation,
have no key-value pairs the same across
UsageAllocation objects, and the number of
tags must be 5 or less per UsageAllocation.

InvalidUsageAllocationsException The UsageAllocation object allocations do not
add up to the UsageQuantity value.

Vendor-metered tagging (Optional)

Vendor-metered tagging helps Independent Software Vendors (ISVs) give the buyer more granular
insight into their software usage and can help them perform cost allocation.

There are many ways to tag a buyer's software usage. One way is to first ask your buyers what they
want to see in their cost allocation. Then you can split the usage across properties that you track for
the buyer’s account. Examples of properties include Account ID, Business Unit, Cost Centers,
and other relevant metadata for your product. These properties are exposed to the buyer as tags. Using
tags, buyers can view their costs split into usage by the tag values in their AWS Billing Console (https://
console.aws.amazon.com/billing/). Vendor-metered tagging doesn't change the price, dimensions, or the
total usage that you report. It allows your customer to view their costs by categories appropriate to your
product.

In a common use case, a buyer subscribes to your product with one AWS account. The buyer also has
numerous user accounts associated with the same product subscription. You can create usage allocations
with tags that have a key of Account ID, and then allocate usage to each user account. In this case,
buyers can activate the Account ID tag in their Billing and Cost Management console and analyze
individual user account usage.

146

https://console.aws.amazon.com/billing/
https://console.aws.amazon.com/billing/

AWS Marketplace Seller Guide
Custom metering with AWS Marketplace Metering Service

Seller experience

Sellers can aggregate the metering records for resources with the same set of tags instead of
aggregating usage for all resources. For example, sellers can construct the metering record that includes
different buckets of UsageAllocations. Each bucket represents UsageQuantity for a set of tags,
such as AccountId and BusinessUnit.

In the following diagram, Resource 1 has a unique set of AccountId and BusinessUnit tags, and
appears in the Metering Record as a single entry.

Resource 2 and Resource 3 both have the same AccountId tag, 2222, and the same BusinessUnit
tag, Operations. As a result, they're combined into a single UsageAllocations entry in the Metering
Record.

Buyer experience

The following table shows an example of the buyer experience after a buyer activates the AccountId
and BusinessUnit vendor tags.

In this example, the buyer can see allocated usage in their Cost Usage Report. The vendor-metered tags
use the prefix “aws:marketplace:isv”. Buyers can activate them in the Billing and Cost Management,
under Cost Allocation Tags, AWS-generated cost allocation tags.

The first and last rows of the Cost Usage Report are relevant to what the Seller sends to the Metering
Service (as shown in the Seller experience (p. 147) example).

Cost Usage Report (Simplified)

ProductCode Buyer UsageDimensionUsageQuantity aws:marketplace:isv:AccountIdaws:marketplace:isv:BusinessUnit

xyz 111122223333 Network: per
(GB) inspected

70 2222 Operations

xyz 111122223333 Network: per
(GB) inspected

30 3333 Finance

xyz 111122223333 Network: per
(GB) inspected

20 4444 IT

xyz 111122223333 Network: per
(GB) inspected

20 5555 Marketing

xyz 111122223333 Network: per
(GB) inspected

30 1111 Marketing

147

AWS Marketplace Seller Guide
Custom metering with AWS Marketplace Metering Service

For a code example, see MeterUsage code example with usage allocation tagging (Optional) (p. 148).

Code example
The following code example is provided to help you integrate your container product with the AWS
Marketplace APIs required for publishing and maintaining your product.

MeterUsage code example with usage allocation tagging (Optional)

The following code example is relevant for container products with consumption pricing models. The
Python example sends a metering record with appropriate usage allocation tags to AWS Marketplace to
charge your customers for pay-as-you-go fees.

NOTE: Your application will need to aggregate usage for the
customer for the hour and set the quantity as seen below.
AWS Marketplace can only accept records for up to an hour in the past.
#
productCode is supplied after the AWS Marketplace Ops team has
published the product to limited

Import AWS Python SDK
import boto3
import time

usageRecord = [
 {
 "AllocatedUsageQuantity": 2,
 "Tags":
 [
 { "Key": "BusinessUnit", "Value": "IT" },
 { "Key": "AccountId", "Value": "123456789" },
]

 },
 {
 "AllocatedUsageQuantity": 1,
 "Tags":
 [
 { "Key": "BusinessUnit", "Value": "Finance" },
 { "Key": "AccountId", "Value": "987654321" },
]

 }
]

marketplaceClient = boto3.client("meteringmarketplace")

response = marketplaceClient.meter_usage(
 ProductCode="testProduct",
 Timestamp=int(time.time()),
 UsageDimension="Dimension1",
 UsageQuantity=3,
 DryRun=False,
 UsageAllocations=usageRecord
)

For more information about MeterUsage, see MeterUsage in the AWS Marketplace Metering Service API
Reference.

Example response

{ "MeteringRecordId": "string" }

148

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_MeterUsage.html

AWS Marketplace Seller Guide
Custom metering with AWS Marketplace Metering Service

Integrating your container product with the AWS Marketplace
Metering Service using the AWS SDK for Java
The following example outlines an implementation that uses the AWS SDK for Java to integrate with the
AWS Marketplace Metering Service MeterUsage operation. For complete details, see MeterUsage Java
examples (p. 150). Many of the following steps apply regardless of the language.

Example: AWS Marketplace Metering Service integration

1. Sign in to the AWS Marketplace Management Portal.

2. From Assets, choose Containers to start creating a new container product. Creating the product
generates the product code for the product to integrate with your container image. For more
information about publishing, see Publishing container products (p. 126). For information about
setting AWS Identity and Access Management (IAM) permissions, see the section called “AWS
Marketplace metering and entitlement API permissions” (p. 358).

3. Download the public AWS Java SDK.

Important
To call the metering API operations from Amazon Elastic Kubernetes Service (Amazon EKS),
you must use a supported AWS SDK and run on an Amazon EKS cluster running Kubernetes
1.13 or later.

4. Call the MeterUsage operation from the task or pod once every hour for each dimension usage. The
API operation accepts one metering record for a unique combination of Dimension, Resource, and
Hour. The resource is either an Amazon Elastic Container Service (Amazon ECS) task or an Amazon
EKS pod.

{
 "ProductCode" : "string", // (required)
 "UsageDimension" : "string", // (required)
 "UsageQuantity": int, // (optional) Default is 0. Acceptable value from [0,
 2147483647 (INT_MAX)]
 "Timestamp": Date, // (required) Timestamp in UTC. Value can be one hour in the
 past.
 "UsageAllocations": List<UsageAllocation> // (optional) UsageAllocations across 1
 or more tags.
}

Note
It is possible to see transient issues in connecting to the AWS Marketplace Metering Service.
AWS Marketplace strongly recommends implementing retries for up to 30 minutes, with
exponential back off, to avoid short-term outages or network issues.

5. Rebuild a new version of your Docker container image that includes the MeterUsage call, tag the
container, and push it to any Docker registry that is compatible with Amazon ECS or Amazon EKS,
such as Amazon Elastic Container Registry (Amazon ECR) or Docker Hub. If you are using Amazon
ECR, ensure that the account launching the Amazon ECS task or Amazon EKS pod has permissions
on the Amazon ECR repository. Otherwise, the operation fails.

Note
If you use a private Docker Hub repository, follow the steps in Private registry
authentication for tasks in the Amazon Elastic Container Service Developer Guide.

6. Create an IAM role that grants permission for your container to call MeterUsage, as defined in the
following code example. You must supply this AWS Identity and Access Management (IAM) role in
the Task Role parameter of the Amazon ECS task or Amazon EKS pod definition.

{
 "Version": "2012-10-17",

149

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html
https://aws.amazon.com/marketplace/management/tour
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts-minimum-sdk.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#task_role_arn

AWS Marketplace Seller Guide
Custom metering with AWS Marketplace Metering Service

 "Statement": [
 {
 "Action": [
 "aws-marketplace:MeterUsage"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

7. Create an Amazon ECS task or Amazon EKS pod definition that references the container that has
integrated with AWS Marketplace and references the IAM role that you created in step 6. If you want
to see logging, enable AWS CloudTrail logging in the task definition.

8. Create an Amazon ECS or Amazon EKS cluster to run your task or pod. For more information about
creating an Amazon ECS cluster, see Creating a cluster in the Amazon Elastic Container Service
Developer Guide. For more information about creating an Amazon EKS cluster (using Kubernetes
version 1.1.3.x or later), see Creating an Amazon EKS Cluster.

9. Configure the Amazon ECS or Amazon EKS cluster and launch the Amazon ECS task definition or
Amazon EKS pod that you created in step 8, in the us-east-1 AWS Region. It's only during this testing
process, before the product is live, that you have to use this Region.

10. When you get a valid response from MeterUsage for each of the dimensions being published
for the product, you can begin creating your container product. For questions, contact the AWS
Marketplace Seller Operations team.

MeterUsage Java examples

The following code examples use the AWS SDK for Java and AWS Marketplace Metering Service to call
the MeterUsage operation.

The following code example calls the MeterUsage operation without any UsageAllocations.

import com.amazonaws.services.marketplacemetering.AWSMarketplaceMetering;
import com.amazonaws.services.marketplacemetering.AWSMarketplaceMeteringClientBuilder;
import com.amazonaws.services.marketplacemetering.model.MeterUsageRequest;
import com.amazonaws.services.marketplacemetering.model.MeterUsageResult;

import java.util.Date;

public class MeterUsage {
 private static final String PRODUCT_CODE = ".......";
 private final AWSMarketplaceMetering awsMarketplaceMetering;

 public MeterUsage() {
 awsMarketplaceMetering = AWSMarketplaceMeteringClientBuilder.standard().build();
 }

 /**
 * Submits metering record for a FCP Dimension. The API accepts 1 metering record per
 dimension
 * for a given buyer's resource for a given timestamp hour. Ex. If a buyer is running
 10 tasks,
 * the API will accepts 1 call to MeterUsage in an hour for a given dimension for each
 running task.
 *
 * @param dimension - FCP dimension name provided during the publishing of the product.
 * @param quantity - FCP dimension consumption value for the hour.
 * @param timestamp - Timestamp, in UTC, for which the usage is being reported.
 * Timestamp cant be more than 1 hour in the past.
 * Make sure the timestamp value is not before the start of the
 software usage.

150

https://docs.aws.amazon.com/AmazonECS/latest/userguide/create_cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create_cluster.html
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Custom metering with AWS Marketplace Metering Service

 */
 public void callMeterUsage(String dimension, int quantity, Date timestamp) {
 MeterUsageRequest meterUsageRequest = new MeterUsageRequest()
 .withProductCode(PRODUCT_CODE)
 .withUsageDimension(dimension)
 .withUsageQuantity(quantity)
 .withTimestamp(timestamp);
 MeterUsageResult meterUsageResult =
 awsMarketplaceMetering.meterUsage(meterUsageRequest);
 }
}

The following code example calls the MeterUsage operation with UsageAllocations.

private static String callMeterUsageWithAllocationsByTag(AWSMarketplaceMetering
 marketplaceMetering) {
 // Tag Keys for the product
 String tagKey1 = "Key1";
 String tagKey2 = "Key2";
 String tagKey3 = "Key3";

 // 1st Usage Allocation bucket which has two Tags [{Key1, Key1Value1},{Key2,
 Key2Value1}]
 List<Tag> tagsForUsageAllocation1 = Arrays.asList(new
 Tag().withKey(tagKey1).withValue("Key1Value1"),
 new Tag().withKey(tagKey2).withValue("Key2Value1"));
 UsageAllocation usageAllocation1 = new UsageAllocation()
 .withTags(tagsForUsageAllocation1)
 .withAllocatedUsageQuantity(20);

 // 2nd Usage Allocation bucket which has two Tags [{Key1, Key1Value2},{Key2,
 Key2Value1}]
 List<Tag> tagsForUsageAllocation2 = Arrays.asList(new
 Tag().withKey(tagKey1).withValue("Key1Value2"),
 new Tag().withKey(tagKey2).withValue("Key2Value1"));
 UsageAllocation usageAllocation2 = new UsageAllocation()
 .withTags(tagsForUsageAllocation2)
 .withAllocatedUsageQuantity(20);

 // 3rd Usage Allocation bucket which has two Tags [{Key1, Key1Value2},{Key2,
 Key2Value2},{Key3, Key3Value1}]
 List<Tag> tagsForUsageAllocation3 = Arrays.asList(new
 Tag().withKey(tagKey1).withValue("Key1Value2"),
 new Tag().withKey(tagKey2).withValue("Key2Value2"),
 new Tag().withKey(tagKey3).withValue("Key3Value1"));
 UsageAllocation usageAllocation3 = new UsageAllocation()
 .withTags(tagsForUsageAllocation3)
 .withAllocatedUsageQuantity(15);

 // 4th Usage Allocation bucket with no tags
 UsageAllocation usageAllocation4 = new UsageAllocation()
 .withAllocatedUsageQuantity(15);

 List<UsageAllocation> usageAllocationList = Arrays.asList(usageAllocation1,
 usageAllocation2,
 usageAllocation3,
 usageAllocation4);

 MeterUsageRequest meterUsageRequest = new MeterUsageRequest()
 .withProductCode("TestProductCode")
 .withUsageDimension("Dimension1")
 .withTimestamp(new Date())
 //UsageQuantity value must matach with sum of all AllocatedUsageQuantity
 .withUsageQuantity(70)
 .withUsageAllocations(usageAllocationList);

151

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

 MeterUsageResult meterUsageResult;
 try {
 meterUsageResult = marketplaceMetering.meterUsage(meterUsageRequest);
 } catch (Exception e) {
 // Log Error
 throw e;
 }

 return meterUsageResult.getMeteringRecordId();
 }

Contract pricing with AWS License Manager
For container-based products with contract pricing, use AWS License Manager to associate licenses with
your product.

AWS License Manager is a license management tool that enables your application to track and update
licenses (also known as entitlements) that have been purchased by a customer. This section provides
information about how to integrate your product with AWS License Manager. After the integration is
complete, you can publish your product listing on AWS Marketplace.

If you're integrating License Manager with an AWS Marketplace for Containers Anywhere product for
Amazon EKS Anywhere, Amazon ECS Anywhere, Amazon Elastic Compute Cloud (Amazon EC2), or
on-premises infrastructure, follow the instructions in Integrating an AWS Marketplace for Containers
Anywhere product with License Manager (p. 157).

For more information about AWS License Manager, see the AWS License Manager User Guide and the
AWS License Manager section of the AWS CLI Command Reference.

License models

AWS Marketplace integration with AWS License Manager supports two license models:

• Configurable license model (p. 152)

• Tiered license model (p. 155)

Configurable license model

The configurable license model (also known as the quantifiable license model) entitles a buyer to a
specific quantity of resources after a buyer has procured a license.

You set a pricing dimension and a per unit price. Then, the buyer can choose the quantity of the
resources that they want to purchase.

Example of pricing dimension and per unit price

You can set a pricing dimension (such as data backup) and per unit price (such as $30/unit).

The buyer can choose to purchase 5, 10, or 20 units.

Your product tracks and meters usage to measure the quantity of resources consumed.

With the configuration model, the entitlements are counted in one of two ways:

• Drawdown licenses (p. 153)

152

https://docs.aws.amazon.com/license-manager/latest/userguide/license-manager.html
https://docs.aws.amazon.com/cli/latest/reference/license-manager/index.html

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

• Floating licenses (p. 153)

Drawdown license

The license is drawn from the pool of allowed amount of licenses upon use. That entitlement is checked
out permanently and can't be returned to the license pool.

Example of processing a limited amount of data

A user is entitled to process 500 GB of data. As they continue to process data, the quantity is drawn from
the pool of 500 GB until all 500 GB licenses are consumed.

For drawdown licenses, you can use the CheckoutLicense API operation to check out license units
(entitlements) that are consumed.

Example of backup to S3 for a number of units/year

You have a storage product that allows backup to Amazon Simple Storage Service (Amazon S3) for
up to 1,024 units for data for one year. Your application can be launched by using multiple Amazon
EC2 instances. Your application has a mechanism to track and aggregate data. Your software calls the
CheckoutLicense API operation with the Product ID upon every backup or at fixed intervals to update
the consumed quantities.

In this example, your software calls the CheckoutLicense API operation to check out 10 units of data.
When the total capacity reaches the backup limit that the customer has purchased, the API call fails.

Request

linux-machine ~]$ aws license-manager checkout-license\
--product-sku "2205b290-19e6-4c76-9eea-377d6bf7la47" \
--checkout-type "PERPETUAL" \
--key-fingerprint "aws:294406891311:AWS/Marketplace:issuer-fingerprint" \
--entitlements "Name=DataConsumption, Value=l0, Unit=Count" \
--client-token "AKIAIOSFODNN7EXAMPLE"

Response

{
 "CheckoutType": "PERPETUAL",
 "EntitlementsAllowed": [
 {
 "Name": "DataConsumption",
 "Count": 10,
 "Units": "Count",
 "Value": "Enabled"
 }
},
 "Expiration": "2021-04-22Tl9:02: 36",
 "IssuedAt": "2021-04-22Tl8:02:36",
 "LicenseArn": "arn:aws:license-manager::294406891311:license:l-16bf01b...",
 "LicenseConsumptionToken": "AKIAIOSFODNN7EXAMPLE"
}

Floating licenses

The license is returned to the pool of the allowed amount of licenses after use.

For floating licenses, the application checks out entitlements from the entitlements pool using
the CheckoutLicense API operation when the resource is being used. The response of the

153

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

CheckoutLicense API operation includes a license consumption token which is a unique identifier
for the checkout. The license consumption token can be used to perform additional actions on the
entitlements checked out, such as checking them back into the license or extending the checkout.

To check the entitlement back into the pool, use the CheckInLicense API operation when the resource
is no longer in use.

aws license-manager check-in-license --license-consumption-token
 "f1603b3c1f574b7284db84..."

In case of failure to check in the entitlement (in case the application crashed), the entitlement
checks back into the pool automatically after 60 minutes. If the resource is in use longer than
60 minutes, it is a best practice to keep the entitlement checked out of the pool by using the
ExtendLicenseConsumption API operation as long as the resource is being used.

aws license-manager extend-license-consumption --license-consumption-token
 "f1603b3c1f574b7284..."

Example of number of users from a fixed upper limit

A user is entitled to 500 simultaneous users on the application. As users log in and log out, the users are
drawn and returned to the pool of 500 users. However, the application can't draw more than 500 users
from the pool because 500 simultaneous users is the fixed upper limit.

For floating entitlements, you can use the CheckInLicense API operation to return the license units to
the entitlement pool.

Example of number of concurrent users for one year

Your product is priced based on number of concurrent users. The customer purchases a license for
10 users for one year. The customer launches the software by providing AWS Identity and Access
Management (IAM) permissions. When a user logs in, your application calls the CheckoutLicense API
operation to reduce the quantity by 1. When the user logs out, the application returns that license to the
pool by calling the CheckInLicense API operation. If you don't call CheckInLicense, the license unit
will be automatically checked in after 1 hour.

Note
In the following Request, the key-fingerprint isn't a placeholder value but the actual value
of the fingerprint with which all licenses will be published.

Request

aws license-manager checkout-license\
--product-sku "2205b290-19e6-4c76-9eea-377d6bf7la47" \
--checkout-type "PROVISIONAL" \
--key-fingerprint "aws:294406891311:AWS/Marketplace:issuer-fingerprint" \
--entitlements "Name=ReadOnlyUSers, Value=l0, Unit=Count" \
--client-token "AKIAIOSFODNN7EXAMPLE"

Response

{
 "CheckoutType": "PROVISIONAL",
 "EntitlementsAllowed": [
 {
 "Name": "ReadOnlyUsers",

154

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

 "Count": 10,
 "Units": "Count",
 "Value": "Enabled"
 }
},
 "Expiration": "2021-04-22Tl9:02: 36",
 "IssuedAt": "2021-04-22Tl8:02:36",
 "LicenseArn": "arn:aws:license-manager::294406891311:license:l-16bf01b...",
 "LicenseConsumptionToken": "AKIAIOSFODNN7EXAMPLE"
}

Tiered license model

The tiered license model entitles a buyer to a specific level, or tier, of application features after a buyer
has procured a license.

You create tiers for your product, such as Basic, Intermediate, and Premium. The buyer then selects one
of the predefined tiers.

The application doesn't need to track or meter usage of the application.

With the tiered license model, the entitlements aren't counted but instead signify a tier of service that
was procured by the customer.

If you want to offer bundled features together, tiers are preferable.

Example of Basic, Intermediate, and Premium tiers

A customer can sign a contract for one of three possible tiers of the software: Basic, Intermediate, or
Premium. Each of these tiers has its own pricing. Your software can identify the tier that the customer
has signed up for by invoking the CheckoutLicense API operation and specifying all possible tiers in
the request.

The response of the request contains the entitlement corresponding to the tier that the customer has
procured. Based on this information, the software can provision the appropriate customer experience.

Request

linux-machine ~]$ aws license-manager checkout-license\
--product-sku "2205b290-19e6-4c76-9eea-377d6bf7la47" \
--checkout-type "PROVISIONAL" \
--key-fingerprint "aws:294406891311:AWS/Marketplace:issuer-fingerprint" \
--entitlements "Name=BasicTier, Unit=None" "Name=IntermediateTier, Unit=None" \
 "Name=PremiumTier, Unit=None"

Response

{
 "CheckoutType": "PROVISIONAL",
 "EntitlementsAllowed": [
 {
 "Name": "IntermediateTier",
 "Units": "None"
 }
},
 "Expiration": "2021-04-22Tl9:02:36",
 "IssuedAt": "2021-04-22Tl8:02:36",
 "LicenseArn": "arn:aws:license-manager::294406891311:license:l-16bf01b...",
 "LicenseConsumptionToken": "AKIAIOSFODNN7EXAMPLE"

155

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

}

AWS License Manager integration prerequisites
Before publishing the product, you must do the following:

1. Create a new container product in the AWS Marketplace Management Portal, and make a note of its
product code.

For more information, see Creating a container product (p. 117).
2. Fill out the product load form (PLF) with the necessary price information, and return it to us for

processing.

For more information, see Creating or updating pricing details for container products (p. 118).
3. Use an IAM role for the task or pod running your application with the IAM permissions necessary to

call the CheckoutLicense, ExtendLicenseConsumption, and CheckInLicense API operations.

The required IAM permissions are detailed in the following IAM policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"VisualEditorO",
 "Effect":"Allow",
 "Action":[
 "license-manager:CheckoutLicense",
 "license-manager:GetLicense",
 "license-manager:CheckInLicense",
 "license-manager:ExtendLicenseConsumption",
 "license-manager:ListReceivedLicenses"
],
 "Resource":"*"
 }
]
}

4. Make a test call to the RegisterUsage API operation with a record for all of the pricing dimensions
you define.

Integrating a container product with License Manager

To integrate your container-based product with License Manager

1. Set IAM permissions to call License Manager. For more information, see AWS License Manager
integration prerequisites (p. 156).

2. Download the AWS SDK.

Note
Don't configure AWS credentials within your software. AWS credentials for the buyer are
automatically obtained at runtime when your container is running within an Amazon EC2
instance, Amazon ECS task, or Amazon EKS pod.

3. Add license checks to your product.

Your product can call the CheckoutLicense API operation wherever the license check should be
performed. To check the license, your product must know:

1. The trusted issuer of the license (AWS Marketplace)

156

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

2. The application's Product SKU (Product ID)
3. The entitlement to check for this application

The API calls vary based on what kind of pricing licenses you set up.
4. Publish your product listing on AWS Marketplace.

License Manager API operations
To manage the licenses stored in the customer's License Manager account, your software can use the
following API operations:

• GetLicense – Gets the status of a purchased license on whether the license is expired or about to be
expired to send a notification to the customer.

• CheckoutLicense – Discovers licenses that the user has purchased. You can also use the
CheckoutLicense API operation to update the license quantity when the user has consumed some
quantity of licenses. With CheckoutLicense, you can keep checking out the quantities of licenses
used by the customer. When the customer exhausts all the licenses, this call returns an error. For
information about the suggested cadence to run CheckoutLicense, see the section called “License
renewals and upgrades” (p. 157).

• ExtendLicenseConsumption – In case of floating dimensions, when the software checks out a
license, the license will return to the pool automatically after 60 minutes. If you want to extend the
time the license remains checked out, use the ExtendLicenseConsumption API operation to extend
the license for another 60 minutes.

• CheckInLicense – In case of floating dimensions, when you want to return the license to the
entitlement pool, use the CheckInLicense API operation.

• ListReceivedLicenses API – Lists licenses purchased by the buyer.

License renewals and upgrades
Customers can renew or upgrade their licenses on the AWS Marketplace Management Portal. After they
make an additional purchase, AWS Marketplace generates a new version of the license that reflects the
new entitlements. Your software reads the new entitlements by using the same API operations. You don't
have to do anything different in terms of License Manager integration to handle renewals and upgrades.

Due to license renewals, upgrades, cancellations, and so on, we recommend that your product calls
the CheckoutLicense API operation at a regular cadence while the product is in use. By using the
CheckoutLicense API operation at a regular cadence, the product can detect changes in entitlements
such as upgrades and expiry.

We recommend that you perform the CheckoutLicense API call every 15 minutes.

Integrating an AWS Marketplace for Containers Anywhere
product with License Manager
Follow these instructions to integrate AWS License Manager with an AWS Marketplace for Containers
Anywhere product for Amazon EKS Anywhere, Amazon ECS Anywhere, Amazon EC2, or on-premises
infrastructure.

For general information about the License Manager integration with AWS Marketplace, including
available license models, see Contract pricing with AWS License Manager (p. 152). For more
information about AWS License Manager, see the AWS License Manager User Guide and the AWS License
Manager section of the AWS CLI Command Reference.

157

https://docs.aws.amazon.com/license-manager/latest/userguide/license-manager.html
https://docs.aws.amazon.com/cli/latest/reference/license-manager/index.html
https://docs.aws.amazon.com/cli/latest/reference/license-manager/index.html

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

Integrating an AWS Marketplace for Containers Anywhere product with License
Manager

Use the following instructions to integrate your AWS Marketplace for Containers Anywhere product with
AWS License Manager.

To integrate your AWS Marketplace for Containers Anywhere product with License Manager

1. Open a web browser and sign into the AWS Marketplace Management Portal.
2. Create a product ID for your container product by performing the following steps. You will use this

ID in your container image for license checks in a later step.

a. From the menu bar, expand Assets, and choose Container.
b. Enter a customer-facing name for your product, and choose Create. You can change this name

later.
c. Make a note of the Product ID. You will use it when you create or update the product pricing

details.

Tip
If you lose your product ID, you can find it in the AWS Marketplace Management Portal
by choosing Container from the Assets menu. The Containers page shows a list of your
products with their associated product IDs.

3. Download the latest public AWS SDK and then include it in your container application. You can find
installation instructions for your preferred AWS SDK at Tools to Build on AWS.

Note
To call the License Manager API operations from Amazon EKS Anywhere or a Kubernetes
cluster that isn't provided by AWS, you must use a supported AWS SDK. To view a list of
supported AWS SDKs, see Using a supported AWS SDK.

4. Create an AWS License Manager client with a custom credential provider so that it can provide
credentials to the container application deployed on AWS as well as on-premises. For complete
source code for a custom credential provider, LicenseCredentialProvider, see the following
sections:

• LicenseManagerCredentialsProvider - Java implementation (p. 166)
• LicenseManagerCredentialsProvider - Golang implementation (p. 171)

LicenseCredentialsProvider extends the AWS SDK’s default credential provider chain for on-
premises use by adding LicenseManagerTokenCredentialsProvider. This provides credentials
by using License Manager OIDC issued identity tokens in on-premises environments. You must
include the source code for LicenseCredentialsProvider in your application classpath.

Note
Extending the DefaultCredentialsProvider allows the same container
application to obtain credentials when running on AWS and when running in
an on-premises environment. If the container application already uses a custom
credential provider chain instead of the default, it can also be extended by adding
LicenseManagerTokenCredentialsProvider to the custom chain.

The following code snippet is an example of creating an AWS License Manager client using Java.

LicenseManagerClientBuilder clientBuilder =
 LicenseManagerClient.builder().credentialsProvider(LicenseCredentialsProvider.create());

5. Call the CheckoutLicense API operation by using the aws license-manager checkout-
license command from each paid container image in your product offering. This checks that the
buyer is entitled to use a license for your application. If the buyer is entitled to the application,

158

http://aws.amazon.com/marketplace/management/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts-minimum-sdk.html

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

CheckLicense succeeds and returns the requested entitlements and their values. If the buyer isn't
entitled to the application, CheckLicense throws an exception.

The following parameters are required when calling the CheckoutLicense API operation:

• CheckoutType – The valid values are PROVISIONAL or PERPETUAL:

• Use PERPETUAL when the quantity of entitlements checked out will be exhausted from the
pool.

Example: Buyer is entitled to process 500 GB of data. As they continue to process data, the
quantity is drawn down and exhausted from the pool of 500 GB.

• Use PROVISIONAL for floating license entitlements where the entitlements are checked out of
the pool and returned after use.

Example: User is entitled to 500 simultaneous users on the application. As users log in or log
out, the users are drawn or returned to the pool of 500 users. To learn more about floating
license entitlements, see Floating license entitlements with License Manager (p. 165).

• ClientToken – A unique, case-sensitive identifier. We recommend using a random UUID for each
unique request.

• Entitlements – A list of entitlements to be checked out.

• For feature entitlements, provide the Name and Unit properties as follows.

{
 "Name": "<Entitlement_Name>",
 "Unit": "None"
}

• For counted entitlements, provide the Name, Unit, and Count properties as follows.

{
 "Name": "<Entitlement_Name>",
 "Unit": "<Entitlement_Unit>",
 "Value": <Desired_Count>
}

• KeyFingerprint – The key fingerprint for licenses issued by AWS Marketplace is
aws:294406891311:AWS/Marketplace:issuer-fingerprint. Using this key fingerprint
ensures that the license is issued by AWS Marketplace and not by an unreliable entity.

• ProductSKU – The Product ID generated on AWS Marketplace Management Portal in previous
steps.

The following snippet is an example of a call using the CheckoutLicense API operation using the
AWS CLI.

aws license-manager checkout-license \
--product-sku "2205b290-19e6-4c76-9eea-377d6bf71a47" \
--checkout-type "PROVISIONAL" \
--client-token "79464194dca9429698cc774587a603a1" \
--entitlements "Name=AWS::Marketplace::Usage/Drawdown/DataConsumption, Value=10,
 Unit=Gigabytes" \
--key-fingerprint "aws:294406891311:AWS/Marketplace:issuer-fingerprint"

Note
To check licenses, container applications require outbound network access to use License
Manager. Applications deployed on-premises might experience unreliable or slow outbound
network access. These applications should include adequate retries when calling License

159

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

Manager. For more information, see Best practices for integrating with License Manager for
on-premises deployments (p. 165).

6. Call the CheckoutLicense API operation at a regular cadence to identify any changes to
customers' licenses due to renewals, upgrades, or cancellations made on AWS Marketplace. The
cadence depends on the application. We recommend checking licenses once a day to pick up
changes automatically without any buyer intervention.

An application deployed on-premises might have unreliable outbound network access to check
licenses on a regular cadence. In such cases, the application should use a cached licenses for
sufficient resiliency. For more information, see Best practices for integrating with License Manager
for on-premises deployments (p. 165).

7. After you integrate the CheckoutLicense call with your container application, build a new version
of your Docker container image with the changes.

8. Update your application’s Helm chart to accept a Kubernetes secret as optional input that contains
configuration to access licenses using License Manager APIs. The configuration secret will contain
an identity token issued by License Manager and an AWS Identity and Access Management role
which will be used by the custom credential provider described previously to get AWS credentials for
calling License Manager APIs when the container application is deployed on-premises. Also, add the
AWS Region as an input with a default value of us-east-1.

Buyers deploying the container application on-premises can create the Kubernetes secret through
the AWS Marketplace buyer experience for container products. The Kubernetes secret name can then
be provided as input to the helm install command. The configuration secret can be expected in
the following format.

apiVersion: v1
kind: Secret
metadata:
 name: aws-marketplace-license-config
type: Opaque
stringData:
 license_token: <token_value> // License Manager issued JWT token
 iam_role: <role_arn> // AWS Identity and Access Management role to assume with
 license token

9. Update the application deployment template in the Helm chart for container images integrated with
AWS License Manager to include the following:

• Service account for pod – The service account is required for Helm deployments on Amazon EKS.
It's used to get permissions to call License Manager API operations by setting up IAM roles for
the service account on the container image. For more information about IAM roles for service
accounts, see IAM roles for service accounts.

• License access for on-premises deployments – The license configuration secret is required to
provide credentials and appropriate permissions to call License Manager API operations for Helm
deployments in on-premises environments. Buyers will generate and provide the license secret to
Helm from the AWS Marketplace buyer experience.

The following code snippet is a sample deployment specification with the service account, license
configuration, and image pull secret.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: example-app
spec:
 replicas: 1
 selector:

160

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

 matchLabels:
 app: example-app
 template:
 metadata:
 labels:
 app: example-app
spec:
 // Service account for pod
 serviceAccountName: {{ .Values.serviceAccountName }}
 containers:
 - name: example-app
 image: example-app
 ports:
 - containerPort: 8001
// Add the following conditional attributes
{{ - if .Values.awsmp.licenseConfigSecretName }}
 //Mount the license volume to the container image
 volumeMounts:
 - name: awsmp-product-license
 mountPath: "/var/run/secrets/product-license"
 //Add following environment variable to container for credential
provider
 env:
 - name: AWS_WEB_IDENTITY_REFRESH_TOKEN_FILE
 value: "/var/run/secrets/product-license/license_token"
 - name: AWS_ROLE_ARN
 valueFrom:
 secretKeyRef:
 name: {{ .Values.aws.licenseConfigSecretName }}
 key: iam_role
 //Mount the license secret as a volume to the pod
 volumes:
 - name: awsmp-product-license
 secret:
 secretName: {{ .Values.aws.licenseConfigSecretName }}
 optional: true
{{ - end }}

Note
The license configuration secret is optional. Buyers only use the value for on-premises
deployments. For AWS deployments, the deployment specification should include a service
account for the License Manager integrated images.

10. Test the License Manager integration locally and on Amazon EKS by performing the steps in the
following sections:

a. Testing License Manager integration locally (p. 161)

b. Testing License Manager integration on Amazon EKS (p. 163)

11. After you successfully verify License Manager integration both on AWS and on-premises,
you can create your container product listing by following the steps in Creating a container
product (p. 117).

Testing License Manager integration locally

You can use minikube or any other setup to test License Manager integration on any Kubernetes cluster
locally. Make sure that the Kubernetes cluster has outbound internet access to call License Manager API
operations.

161

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

To test a License Manager integration locally

1. Create a test license in a test seller account with desired entitlements. To set up a test license, see
CreateLicense in the AWS License Manager API Reference. Or, use the following script to create a test
license and then create a license grant to a test buyer account to consume the license. The following
script uses test seller account credentials.

read -p 'AWS Account for test buyer: ' TEST_BUYER_ACCOUNT_ID
read -p 'License entitlements: ' ENTITLEMENTS

TEST_SELLER_ACCOUNT_ID="109876543210"
ENTITLEMENTS="{\"Name\": \"ByData\",\"MaxCount\": 1000,\"Overage\":true,\"Unit\":
 \"Gigabits\",\"AllowCheckIn\": true}"

Create License

NOW=$(date +"%Y-%m-%dT00:00:00+00:00")

PRODUCT_NAME="My awesome product"
PRODUCT_SKU="c97b7825-44c4-4f42-b025-12baa4c171e0"

LICENSE_BENEFICIARY=" arn:aws:iam::$TEST_BUYER_ACCOUNT_ID:root "
LICENSE_ISSUER_NAME="test-seller"
LICENSE_NAME="test-seller-license"

CLIENT_TOKEN="b3920968-a94f-4547-af07-3dd232319367"
CONSUMPTION_TTL=180
CONSUMPTION_RENEW_TYPE="None"

HOME_REGION="us-east-1"

LICENSE_ARN=$(aws license-manager create-license --license-name
 "$LICENSE_NAME" --product-name "$PRODUCT_NAME" --product-sku
 "$PRODUCT_SKU" --issuer Name="$LICENSE_ISSUER_NAME" --home-region
 "$HOME_REGION" --validity Begin="$NOW" --entitlements "$ENTITLEMENTS"
 --beneficiary "$LICENSE_BENEFICIARY" --consumption-configuration
 RenewType="$CONSUMPTION_RENEW_TYPE",ProvisionalConfiguration={MaxTimeToLiveInMinutes=
$CONSUMPTION_TTL} --client-token "$CLIENT_TOKEN" | jq -r ".LicenseArn")

echo "License arn: $LICENSE_ARN"

Create Grant

GRANT_TOKEN="e9a14140-4fca-4219-8230-57511a6ea6"
GRANT_NAME="test-grant"

GRANT_ARN=$(aws license-manager create-grant --grant-name "$GRANT_NAME" --license-arn
 "$LICENSE_ARN" --principals "$LICENSE_BENEFICIARY" --home-region "$HOME_REGION" --
client-token "$GRANT_TOKEN" --allowed-operations "CheckoutLicense" "CheckInLicense"
 "ExtendConsumptionLicense" "CreateToken" | jq -r ".GrantArn")

echo "Grant arn: $GRANT_ARN"

2. Create a K8 secret with the license token and IAM role using the secret format defined previously.
Use the License Manager CreateToken API operation to generate a license token. Then, use the
IAM CreateRole API operation to create an IAM role with permissions and a trust policy. See the
example in the following script. The following script uses test buyer account credentials.

read -p 'AWS Account for test license: ' TEST_ACCOUNT_ID
read -p 'License Arn' LICENSE_ARN
Create IAM Role
ROLE_NAME="AWSLicenseManagerConsumptionTestRole"
ROLE_DESCRIPTION="Role to test AWS License Manager integration on-prem"

162

https://docs.aws.amazon.com/license-manager/latest/APIReference/API_CreateLicense.html

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

ROLE_POLICY_ARN="arn:aws:iam::aws:policy/service-role/
AWSLicenseManagerConsumptionPolicy"
ROLE_TRUST_POLICY="{\"Version\": \"2012-10-17\",\"Statement\": [{ \"Effect\":\"Allow\",
 \"Principal\": { \"Federated\": \"openid-license-manager.amazonaws.com\" }, \"Action
\": \"sts:AssumeRoleWithWebIdentity\",\"Condition\": { \"ForAnyValue:StringLike\":
 { \"openid-license-manager.amazonaws.com:amr\": \"aws:license-manager:token-issuer-
account-id:${TEST_ACCOUNT_ID}\" }}}]}"
ROLE_SESSION_DURATION=3600

ROLE_ARN=$(aws iam create-role --role-name "$ROLE_NAME" --description
 "$ROLE_DESCRIPTION" --assume-role-policy-document "$ROLE_TRUST_POLICY" --max-session-
duration $ROLE_SESSION_DURATION | jq ".Role" | jq -r ".Arn")

aws iam attach-role-policy --role-name "$ROLE_NAME" --policy-arn "$ROLE_POLICY_ARN"

echo "Role arn: $ROLE_ARN"

Create Token
CLIENT_TOKEN="b3920968-a94f-4547-af07-3dd232319367"

TOKEN=$(aws license-manager create-token --license-arn $LICENSE_ARN --role-arns
 $ROLE_ARN --client-token $CLIENT_TOKEN | jq '.Token')

echo "License access token: $TOKEN"c

3. Set up any Kubernetes cluster hosted outside AWS. Use it to test that the container applications can
connect to the AWS License Manager API from environments other than AWS and that the custom
credential provider is well integrated in the application.

4. Deploy the license token and IAM role generated previously into the local Kubernetes cluster.

kubectl create secret generic "awsmp-license-access-config" \
--from-literal=license_token=${TOKEN} \
--from-literal=iam_role=${ROLE_ARN}

5. Deploy your application through Helm with the secret name as input and verify that the application
can call License Manager API operations to perform entitlement checks. For Helm and deployment
specification changes, refer to Step 9 in Integrating an AWS Marketplace for Containers Anywhere
product with License Manager (p. 158).

Testing License Manager integration on Amazon EKS

You can also test License Manager integration on Amazon EKS. Test to make sure that the application
can call License Manager API operations without the license configuration secret. Also make sure that the
service account can be used to set up IRSA and provide relevant credentials to the application.

To test a License Manager integration on Amazon EKS

1. Create a test license in a test seller account with the desired entitlements. See CreateLicense API
reference to set up your test license or use the following script to create one and create a license
grant to a test buyer account to consume the license. The following script uses test seller account
credentials.

read -p 'AWS Account for test buyer: ' TEST_BUYER_ACCOUNT_ID
read -p 'License entitlements: ' ENTITLEMENTS

TEST_SELLER_ACCOUNT_ID="109876543210"
ENTITLEMENTS="{\"Name\": \"ByData\",\"MaxCount\": 1000,\"Overage\": true,\"Unit\":
 \"Gigabits\",\"AllowCheckIn\": true}"

Create License

163

https://docs.aws.amazon.com/license-manager/latest/APIReference/API_CreateLicense.html
https://docs.aws.amazon.com/license-manager/latest/APIReference/API_CreateLicense.html

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

NOW=$(date +"%Y-%m-%dT00:00:00+00:00")

PRODUCT_NAME="My awesome product"
PRODUCT_SKU="c97b7825-44c4-4f42-b025-12baa4c171e0"

LICENSE_BENEFICIARY=" arn:aws:iam::$TEST_BUYER_ACCOUNT_ID:root "
LICENSE_ISSUER_NAME="test-seller"
LICENSE_NAME="test-seller-license"

CLIENT_TOKEN="b3920968-a94f-4547-af07-3dd232319367"
CONSUMPTION_TTL=180
CONSUMPTION_RENEW_TYPE="None"

HOME_REGION="us-east-1"

LICENSE_ARN=$(aws license-manager create-license --license-name
 "$LICENSE_NAME" --product-name "$PRODUCT_NAME" --product-sku
 "$PRODUCT_SKU" --issuer Name="$LICENSE_ISSUER_NAME" --home-region
 "$HOME_REGION" --validity Begin="$NOW" --entitlements "$ENTITLEMENTS"
 --beneficiary "$LICENSE_BENEFICIARY" --consumption-configuration
 RenewType="$CONSUMPTION_RENEW_TYPE",ProvisionalConfiguration={MaxTimeToLiveInMinutes=
$CONSUMPTION_TTL} --client-token "$CLIENT_TOKEN" | jq -r ".LicenseArn")

echo "License arn: $LICENSE_ARN"

Create Grant

GRANT_TOKEN="e9a14140-4fca-4219-8230-57511a6ea6"
GRANT_NAME="test-grant"

GRANT_ARN=$(aws license-manager create-grant --grant-name "$GRANT_NAME" --license-arn
 "$LICENSE_ARN" --principals "$LICENSE_BENEFICIARY" --home-region "$HOME_REGION" --
client-token "$GRANT_TOKEN" --allowed-operations "CheckoutLicense" "CheckInLicense"
 "ExtendConsumptionLicense" "CreateToken" | jq -r ".GrantArn")

echo "Grant arn: $GRANT_ARN"

2. Create a test Amazon EKS cluster of desired configurations, or run the following commands to use a
default configuration.

aws ec2 create-key-pair --region us-west-2 --key-name eks-key-pair

eksctl create cluster \
--name awsmp-eks-test-example \
--region us-west-2 \
--with-oidc \
--ssh-access \
--ssh-public-key eks-key-pair

3. Create a service account for an existing cluster and associate it with an IAM role. The following
command creates an IAM role with the AWSLicenseManagerConsumptionPolicy. Then, the
command attaches it to the test_sa service account of the Amazon EKS cluster where the License
Manager integrated images should be deployed. As a result, the service account can get appropriate
credentials to call License Manager API operations.

eksctl create iamserviceaccount \
--name test_sa \
--namespace test_namespace \
--cluster awsmp-eks-test-example \
--attach-policy-arn "arn:aws:iam::aws:policy/service-role/
AWSLicenseManagerConsumptionPolicy" \
--approve \

164

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

--override-existing-serviceaccounts

4. Deploy the application through Helm in the service account where the IAM role is associated from
the previous command. Verify that the application can call License Manager API operations to
perform entitlement checks.

Floating license entitlements with License Manager

With floating licenses, as users log into the application, a license is drawn from the pool of available
licenses. As users log out, the licenses are added back to the pool of available licenses.

For floating licenses, the application uses the CheckoutLicense API operation to check out
entitlements from the entitlements pool when the resource is being used. The response of the
CheckoutLicense API operation includes a license consumption token which is a unique identifier for
the checkout. The license consumption token can perform additional actions on the entitlements that
are checked out, such as checking them back into the license pool or extending the checkout.

When the resource is no longer in use, the application uses the CheckInLicense API operation to check
the entitlement back into the pool.

aws license-manager check-in-license \
--license-consumption-token "f1603b3c1f574b7284db84a9e771ee12"

If checking a license back into the pool fails, for example, if the application crashes during the operation,
the entitlement is checked back into the pool automatically after 60 minutes. Because of this, if the
resource is in use longer than 60 minutes, it's a best practice to keep the entitlement checked out of the
pool. To do this, use the ExtendLicenseConsumption API operation as long as the resource is being
used.

aws license-manager extend-license-consumption \
--license-consumption-token "f1603b3c1f574b7284db84a9e771ee12"

Best practices for integrating with License Manager for on-premises
deployments

Container application deployments in an on-premises environment might encounter unreliable outbound
network access. Use the following best practices to add resiliency to avoid service disruption to buyers
due to potential issues caused by poor internet connectivity:

• Adequate retry – Transient network issues can keep your application from connecting to AWS License
Manager. Implement retries for up to 30 minutes, with exponential back off. This can help avoid short-
term outages or network issues.

• Avoid hard limit – Applications deployed in connected clusters can regularly check licenses to identify
any changes due to upgrades or renewals. With unreliable outbound access, the application might
not be able to identify those changes. Whenever possible, the application should avoid disruption of
service to buyers due to inability to check licenses through License Manager. Applications can fall back
on a free-trial or open-source experience when the license expires and they can’t check if a license is
valid.

• Notify customers – When using a cached license, any changes to the license (including renewal or
upgrades) are not automatically reflected on the running workload. Notify your customers (that
they must allow outbound access to the application again temporarily so the application can update
its cached license. For example, notify customers through the application itself or through its
documentation. Similarly, when falling back to a lower set of functionalities, notify customers that
their entitlements are exhausted or the license is expired. Then, they can choose to either upgrade or
renew.

165

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

LicenseManagerCredentialsProvider - Java implementation

LicenseCredentialsProvider extends the AWS SDK’s default credential provider chain for on-
premises use by adding LicenseManagerTokenCredentialsProvider.

LicenseCredentialsProvider

package com.amazon.awsmp.license;

import software.amazon.awssdk.auth.credentials.AwsCredentials;
import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.AwsCredentialsProviderChain;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.auth.credentials.internal.LazyAwsCredentialsProvider;
import software.amazon.awssdk.utils.SdkAutoCloseable;

public class LicenseCredentialsProvider implements AwsCredentialsProvider, SdkAutoCloseable
 {
 private static final LicenseCredentialsProvider CREDENTIALS_PROVIDER = new
 LicenseCredentialsProvider();
 private final LazyAwsCredentialsProvider providerChain;

 private LicenseCredentialsProvider() {
 this.providerChain = createChain();
 }

 public static LicenseCredentialsProvider create() {
 return CREDENTIALS_PROVIDER;
 }

 @Override
 public AwsCredentials resolveCredentials() {
 return this.providerChain.resolveCredentials();
 }

 @Override
 public void close() {
 this.providerChain.close();
 }

 private LazyAwsCredentialsProvider createChain() {
 return LazyAwsCredentialsProvider.create(() -> {
 AwsCredentialsProvider[] credentialsProviders = new AwsCredentialsProvider[]{
 DefaultCredentialsProvider.create(),
 LicenseManagerTokenCredentialsProvider.create()};

 return AwsCredentialsProviderChain.builder().reuseLastProviderEnabled(true)
 .credentialsProviders(credentialsProviders).build();
 });
 }
}

LicenseManagerTokenCredentialsProvider

LicenseManagerTokenCredentialsProvider provides credentials by using License Manager
OIDC issued identity tokens in on-premises environments. You must include the source code for
LicenseCredentialsProvider in your application classpath.

package com.amazon.awsmp.license;

import software.amazon.awssdk.auth.credentials.AnonymousCredentialsProvider;
import software.amazon.awssdk.auth.credentials.AwsCredentials;

166

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.core.SdkSystemSetting;
import software.amazon.awssdk.core.client.config.ClientOverrideConfiguration;
import software.amazon.awssdk.core.retry.RetryPolicyContext;
import software.amazon.awssdk.core.retry.conditions.OrRetryCondition;
import software.amazon.awssdk.core.retry.conditions.RetryCondition;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.regions.providers.DefaultAwsRegionProviderChain;
import software.amazon.awssdk.services.licensemanager.LicenseManagerClient;
import software.amazon.awssdk.services.licensemanager.model.GetAccessTokenRequest;
import software.amazon.awssdk.services.licensemanager.model.GetAccessTokenResponse;
import software.amazon.awssdk.services.sts.StsClient;
import
 software.amazon.awssdk.services.sts.auth.StsAssumeRoleWithWebIdentityCredentialsProvider;
import software.amazon.awssdk.services.sts.model.AssumeRoleWithWebIdentityRequest;
import software.amazon.awssdk.services.sts.model.IdpCommunicationErrorException;
import software.amazon.awssdk.utils.IoUtils;
import software.amazon.awssdk.utils.SdkAutoCloseable;
import software.amazon.awssdk.utils.StringUtils;
import software.amazon.awssdk.utils.SystemSetting;

import java.io.IOException;
import java.io.InputStream;
import java.io.UncheckedIOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.time.Duration;
import java.util.function.Supplier;

public class LicenseManagerTokenCredentialsProvider implements AwsCredentialsProvider,
 SdkAutoCloseable {

 private final StsAssumeRoleWithWebIdentityCredentialsProvider credentialsProvider;
 private final RuntimeException loadException;

 private Path licenseAccessTokenFile;
 private String roleArn;
 private String roleSessionName;
 private StsClient stsClient;
 private LicenseManagerClient lmClient;

 public static LicenseManagerTokenCredentialsProvider create() {
 return new Builder().build();
 }

 @Override
 public AwsCredentials resolveCredentials() {
 if (this.loadException != null) {
 throw this.loadException;
 }
 return this.credentialsProvider.resolveCredentials();
 }

 @Override
 public void close() {
 IoUtils.closeQuietly(this.credentialsProvider, null);
 IoUtils.closeQuietly(this.stsClient, null);
 IoUtils.closeIfCloseable(this.lmClient, null);
 }

 private LicenseManagerTokenCredentialsProvider(Builder builder) {
 StsAssumeRoleWithWebIdentityCredentialsProvider credentialsProvider = null;
 RuntimeException loadException = null;

 try {

167

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

 this.licenseAccessTokenFile =
 Paths.get(StringUtils.trim(LicenseSystemSetting.AWS_WEB_IDENTITY_REFRESH_TOKEN_FILE.getStringValueOrThrow()));
 this.roleArn = SdkSystemSetting.AWS_ROLE_ARN.getStringValueOrThrow();
 this.roleSessionName =
 SdkSystemSetting.AWS_ROLE_SESSION_NAME.getStringValue().orElse("aws-sdk-java-" +
 System.currentTimeMillis());
 this.stsClient = builder.stsClient != null ? builder.stsClient :
 StsClientFactory.create();
 this.lmClient = builder.lmClient != null ? builder.lmClient :
 LicenseManagerClientFactory.create();

 AssumeRoleWithWebIdentityRequest request =
 AssumeRoleWithWebIdentityRequest.builder()
 .roleArn(this.roleArn).roleSessionName(this.roleSessionName).build();

 Supplier<AssumeRoleWithWebIdentityRequest> supplier = new
 AssumeRoleRequestSupplier(request,
 this.licenseAccessTokenFile, this.lmClient);

 credentialsProvider = StsAssumeRoleWithWebIdentityCredentialsProvider.builder()
 .stsClient(this.stsClient).refreshRequest(supplier).build();
 } catch (RuntimeException ex) {
 loadException = ex;
 }

 this.credentialsProvider = credentialsProvider;
 this.loadException = loadException;
 }

 public static final class Builder {
 private Path licenseAccessTokenFile;
 private String roleArn;
 private String roleSessionName;
 private StsClient stsClient;
 private LicenseManagerClient lmClient;

 public LicenseManagerTokenCredentialsProvider build() {
 return new LicenseManagerTokenCredentialsProvider(this);
 }

 public LicenseManagerTokenCredentialsProvider.Builder licenseAccessTokenFile(Path
 licenseAccessTokenFile) {
 this.licenseAccessTokenFile = licenseAccessTokenFile;
 return this;
 }

 public LicenseManagerTokenCredentialsProvider.Builder roleArn(String roleArn) {
 this.roleArn = roleArn;
 return this;
 }

 public LicenseManagerTokenCredentialsProvider.Builder roleSessionName(String
 roleSessionName) {
 this.roleSessionName = roleSessionName;
 return this;
 }

 public LicenseManagerTokenCredentialsProvider.Builder stsClient(StsClient
 stsClient) {
 this.stsClient = stsClient;
 return this;
 }

 public LicenseManagerTokenCredentialsProvider.Builder lmClient(LicenseManagerClient
 lmClient) {
 this.lmClient = lmClient;

168

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

 return this;
 }
 }

 private static final class AssumeRoleRequestSupplier implements Supplier {
 private final LicenseManagerClient lmClient;
 private final AssumeRoleWithWebIdentityRequest request;
 private final Path webIdentityRefreshTokenFile;

 AssumeRoleRequestSupplier(final AssumeRoleWithWebIdentityRequest request,
 final Path webIdentityRefreshTokenFile,
 final LicenseManagerClient lmClient) {
 this.lmClient = lmClient;
 this.request = request;
 this.webIdentityRefreshTokenFile = webIdentityRefreshTokenFile;
 }

 public AssumeRoleWithWebIdentityRequest get() {
 return this.request.toBuilder()
 .webIdentityToken(getIdentityToken())
 .build();
 }

 private String getIdentityToken() {
 return refreshIdToken(readRefreshToken(this.webIdentityRefreshTokenFile));
 }

 private String readRefreshToken(Path file) {
 try (InputStream webIdentityRefreshTokenStream = Files.newInputStream(file)) {
 return IoUtils.toUtf8String(webIdentityRefreshTokenStream);
 } catch (IOException e) {
 throw new UncheckedIOException(e);
 }
 }

 private String refreshIdToken(String licenseRefreshToken) {
 final GetAccessTokenRequest request = GetAccessTokenRequest.builder()
 .token(licenseRefreshToken)
 .build();

 GetAccessTokenResponse response = this.lmClient.getAccessToken(request);
 return response.accessToken();
 }
 }

 private static final class LicenseManagerClientFactory {
 private static final Duration DEFAULT_API_TIMEOUT = Duration.ofSeconds(30);
 private static final Duration DEFAULT_API_ATTEMPT_TIMEOUT = Duration.ofSeconds(10);

 public static LicenseManagerClient create() {
 return getLicenseManagerClient();
 }

 private static LicenseManagerClient getLicenseManagerClient() {
 ClientOverrideConfiguration configuration =
 ClientOverrideConfiguration.builder()
 .apiCallTimeout(DEFAULT_API_TIMEOUT)
 .apiCallAttemptTimeout(DEFAULT_API_ATTEMPT_TIMEOUT)
 .build();

 LicenseManagerClient client = LicenseManagerClient.builder()
 .region(configureLicenseManagerRegion())
 .credentialsProvider(AnonymousCredentialsProvider.create())
 .overrideConfiguration(configuration).build();
 return client;
 }

169

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

 private static Region configureLicenseManagerRegion() {
 Region defaultRegion = Region.US_EAST_1;

 Region region;
 try {
 region = (new DefaultAwsRegionProviderChain()).getRegion();
 } catch (RuntimeException ex) {
 region = defaultRegion;
 }
 return region;
 }
 }

 private static final class StsClientFactory {
 private static final Duration DEFAULT_API_TIMEOUT = Duration.ofSeconds(30);
 private static final Duration DEFAULT_API_ATTEMPT_TIMEOUT = Duration.ofSeconds(10);

 public static StsClient create() {
 return getStsClient();
 }

 private static StsClient getStsClient() {
 OrRetryCondition retryCondition = OrRetryCondition.create(new
 StsRetryCondition(),
 RetryCondition.defaultRetryCondition());

 ClientOverrideConfiguration configuration =
 ClientOverrideConfiguration.builder()
 .apiCallTimeout(DEFAULT_API_TIMEOUT)
 .apiCallAttemptTimeout(DEFAULT_API_ATTEMPT_TIMEOUT)
 .retryPolicy(r -> r.retryCondition(retryCondition))
 .build();

 return StsClient.builder()
 .region(configureStsRegion())
 .credentialsProvider(AnonymousCredentialsProvider.create())
 .overrideConfiguration(configuration).build();
 }

 private static Region configureStsRegion() {
 Region defaultRegion = Region.US_EAST_1;
 Region stsRegion;
 try {
 stsRegion = (new DefaultAwsRegionProviderChain()).getRegion();
 } catch (RuntimeException ex) {
 stsRegion = defaultRegion;
 }
 return stsRegion;
 }

 private static final class StsRetryCondition implements RetryCondition {
 public boolean shouldRetry(RetryPolicyContext context) {
 return context.exception() instanceof IdpCommunicationErrorException;
 }
 }
 }

 private enum LicenseSystemSetting implements SystemSetting {
 AWS_WEB_IDENTITY_REFRESH_TOKEN_FILE("aws.webIdentityRefreshTokenFile");

 private String systemProperty;
 private String defaultValue = null;

 LicenseSystemSetting(String systemProperty) {
 this.systemProperty = systemProperty;

170

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

 }

 @Override
 public String property() {
 return this.systemProperty;
 }

 @Override
 public String environmentVariable() {
 return this.name();
 }

 @Override
 public String defaultValue() {
 return this.defaultValue;
 }
 }
}

LicenseManagerCredentialsProvider - Golang implementation

LicenseCredentialsProvider

LicenseCredentialsProvider extends the AWS SDK’s default credential provider chain for on-
premises use by adding LicenseManagerTokenCredentialsProvider.

package lib

import (
 "context"
 "fmt"
 "sync"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
)

// LicenseCredentialsProvider is the custom credential provider that can retrieve valid
 temporary aws credentials
type LicenseCredentialsProvider struct {
 fallBackProvider aws.CredentialsProvider
 mux sync.RWMutex
 licenseCredentials aws.Credentials
 err error
}

// NewLicenseCredentialsProvider method will create a LicenseCredentialProvider Object
 which contains valid temporary aws credentials
func NewLicenseCredentialsProvider() (*LicenseCredentialsProvider, error) {
 licenseCredentialProvider := &LicenseCredentialsProvider{}
 fallBackProvider, err := createCredentialProvider()
 if err != nil {
 return licenseCredentialProvider, fmt.Errorf("failed to create
 LicenseCredentialsProvider, %w", err)
 }
 licenseCredentialProvider.fallBackProvider = fallBackProvider
 return licenseCredentialProvider, nil
}

// Retrieve method will retrieve temporary aws credentials from the credential provider
func (l *LicenseCredentialsProvider) Retrieve(ctx context.Context) (aws.Credentials, error)
 {
 l.mux.RLock()
 defer l.mux.RUnlock()

171

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

 l.licenseCredentials, l.err = l.fallBackProvider.Retrieve(ctx)
 return l.licenseCredentials, l.err
}

func createCredentialProvider() (aws.CredentialsProvider, error) {
 // LoadDefaultConfig will examine all "default" credential providers
 ctx := context.TODO()
 cfg, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 return nil, fmt.Errorf("failed to create FallBackProvider, %w", err)
 }

 var useFallbackProvider bool
 if cfg.Credentials != nil {
 if _, err := cfg.Credentials.Retrieve(ctx); err != nil {
 // If the "default" credentials provider cannot retrieve credentials, enable fallback to
 customCredentialsProvider.
 useFallbackProvider = true
 }
 } else {
 useFallbackProvider = true
 }

 if useFallbackProvider {
 customProvider, err := newLicenseManagerTokenCredentialsProvider()
 if err != nil {
 return cfg.Credentials, fmt.Errorf("failed to create fallBackProvider, %w", err)
 }
 // wrap up customProvider with CredentialsCache to enable caching
 cfg.Credentials = aws.NewCredentialsCache(customProvider)
 }
 return cfg.Credentials, nil
}

LicenseManagerTokenCredentialsProvider

LicenseManagerTokenCredentialsProvider provides credentials by using License Manager
OIDC issued identity tokens in on-premises environments. You must include the source code for
LicenseCredentialsProvider in your application classpath.

package lib

import (
 "context"
 "fmt"
 "io/ioutil"
 "os"
 "sync"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/sts"
)

const awsRefreshTokenFilePathEnvVar = "AWS_LICENSE_ACCESS_FILE"

// licenseManagerTokenCredentialsProvider defines and contains
 StsAssumeRoleWithWebIdentityProvider
type licenseManagerTokenCredentialsProvider struct {
 stsCredentialProvider *stsAssumeRoleWithWebIdentityProvider
 mux sync.RWMutex
 licenseCredentials aws.Credentials
 err error

172

AWS Marketplace Seller Guide
Contract pricing with AWS License Manager

}

// Retrieve method will retrieve credentials from credential provider.
// Make this method public to make this provider satisfies CredentialProvider interface
func (a *licenseManagerTokenCredentialsProvider) Retrieve(ctx context.Context)
 (aws.Credentials, error) {
 a.mux.RLock()
 defer a.mux.RUnlock()
 a.licenseCredentials, a.err = a.stsCredentialProvider.Retrieve(ctx)
 return a.licenseCredentials, a.err
}

// newLicenseManagerTokenCredentialsProvider will create and return
 a LicenseManagerTokenCredentialsProvider Object which wraps up
 stsAssumeRoleWithWebIdentityProvider
func newLicenseManagerTokenCredentialsProvider() (*licenseManagerTokenCredentialsProvider,
 error) {
 // 1. Retrieve variables From yaml environment
 envConfig, err := config.NewEnvConfig()
 if err != nil {
 return &licenseManagerTokenCredentialsProvider{}, fmt.Errorf("failed to create
 LicenseManagerTokenCredentialsProvider, %w", err)
 }
 roleArn := envConfig.RoleARN
 var roleSessionName string
 if envConfig.RoleSessionName == "" {
 roleSessionName = fmt.Sprintf("aws-sdk-go-v2-%v", time.Now().UnixNano())
 } else {
 roleSessionName = envConfig.RoleSessionName
 }
 tokenFilePath := os.Getenv(awsRefreshTokenFilePathEnvVar)
 b, err := ioutil.ReadFile(tokenFilePath)
 if err != nil {
 return &licenseManagerTokenCredentialsProvider{}, fmt.Errorf("failed to create
 LicenseManagerTokenCredentialsProvider, %w", err)
 }
 refreshToken := aws.String(string(b))

 // 2. Create stsClient
 cfg, err := config.LoadDefaultConfig(context.TODO())
 if err != nil {
 return &licenseManagerTokenCredentialsProvider{}, fmt.Errorf("failed to create
 LicenseManagerTokenCredentialsProvider, %w", err)
 }
 stsClient := sts.NewFromConfig(cfg, func(o *sts.Options) {
 o.Region = configureStsClientRegion(cfg.Region)
 o.Credentials = aws.AnonymousCredentials{}
 })

 // 3. Configure StsAssumeRoleWithWebIdentityProvider
 stsCredentialProvider := newStsAssumeRoleWithWebIdentityProvider(stsClient, roleArn,
 roleSessionName, refreshToken)

 // 4. Build and return
 return &licenseManagerTokenCredentialsProvider{
 stsCredentialProvider: stsCredentialProvider,
 }, nil
}

func configureStsClientRegion(configRegion string) string {
 defaultRegion := "us-east-1"
 if configRegion == "" {
 return defaultRegion
 } else {
 return configRegion
 }

173

AWS Marketplace Seller Guide
Amazon SNS notifications for container products

}

Amazon SNS notifications for container products
To receive notifications, you subscribe to the AWS Marketplace Amazon Simple Notification Service
(Amazon SNS) topics provided to you during product creation. The topics provide notifications about
changes to customers’ subscriptions for your products. For example, you can use this to know when
customers accept a private offer.

The following Amazon SNS topic is available for container products:

• Amazon SNS topic: aws-mp-subscription-notification (p. 174) – This topic notifies you when
a buyer subscribes or unsubscribes to a product. This is available for hourly pricing models, including
hourly and hourly with long term.

Amazon SNS topic: aws-mp-subscription-
notification
Each message in the aws-mp-subscription-notification topic has the following format.

{
 "action": "<action-name>",
 "customer-identifier": " X01EXAMPLEX",
 "product-code": "n0123EXAMPLEXXXXXXXXXXXX",
 "offer-identifier": "offer-abcexample123"
}

The <action-name> will vary depending on the notification. Possible actions are:

• subscribe-success

• subscribe-fail

• unsubscribe-pending

• unsubscribe-success

The offer-identifier only appears in the notification if the offer is a private offer.

Subscribing an Amazon SQS queue to the Amazon
SNS topic
We recommend subscribing an Amazon SQS queue to the provided SNS topics. For detailed instructions
on creating an SQS queue and subscribing the queue to a topic, see Subscribing an Amazon SQS queue
to an Amazon SNS topic in the Amazon Simple Notification Service Developer Guide.

Note
You can only subscribe to AWS Marketplace SNS topics from the AWS account used to sell the
products. However, you can forward the messages to a different account. For more information,
see Sending Amazon SNS messages to an Amazon SQS queue in a different account in the
Amazon Simple Notification Service Developer Guide.

174

https://docs.aws.amazon.com/sns/latest/dg/subscribe-sqs-queue-to-sns-topic.html
https://docs.aws.amazon.com/sns/latest/dg/subscribe-sqs-queue-to-sns-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-send-message-to-sqs-cross-account.html

AWS Marketplace Seller Guide
Subscribing an Amazon SQS

queue to the Amazon SNS topic

Polling the SQS queue for notifications
After you subscribe your SQS queue to an SNS topic, the messages are stored in SQS. You must define a
service that continually polls the queue, looks for messages, and handles them accordingly.

175

AWS Marketplace Seller Guide
Getting started with machine learning products

Machine learning products
As a seller, you can use AWS Marketplace to create machine learning (ML) algorithms and models that
your buyers can deploy in AWS. There are two types of Amazon SageMaker products listed in AWS
Marketplace:

Model package

A pre-trained model for making predictions that does not require any further training by the buyer.
Algorithm

A model that requires the buyer to supply training data before it makes predictions. The training
algorithm is included.

These products are available to buyers through the Amazon SageMaker console or AWS Marketplace.
Buyers can review product descriptions, documentation, customer reviews, pricing, and support
information. When they subscribe to either a model package product or algorithm product, it’s added
to their product list on the SageMaker console. Buyers can also use AWS SDKs, the AWS Command Line
Interface (AWS CLI), or the SageMaker console to create a fully managed REST inference endpoint or
perform inference on batches of data.

For support with creating machine learning products with Amazon SageMaker, contact AWS Marketplace
Seller Operations.

Getting started with machine learning products
AWS Marketplace supports two machine learning product types, using Amazon SageMaker. Both types,
the model package products and the algorithm products, produce a deployable inference model for
making predictions.

SageMaker model package
An Amazon SageMaker model package product contains a pre-trained model. Pre-trained models can
be deployed in SageMaker to make inferences or predictions in real time or in batches. This product
contains a trained inference component with model artifacts, if any. As a seller, you can train a model
using SageMaker or bring your own model.

SageMaker algorithm
Buyers can use a SageMaker algorithm product to perform complete machine learning workloads. An
algorithm product has two logical components: training and inference. In SageMaker, buyers use their
own datasets to create a training job with your training component. When the algorithm in your training
component completes, it generates the model artifacts of the machine learning model. SageMaker saves
the model artifacts in the buyers’ Amazon Simple Storage Service (Amazon S3) bucket. In SageMaker,
buyers can then deploy your inference component along with those generated model artifacts to
perform inference (or prediction) in real time or in batches.

Deploying an inference model
Whether the inference model is created from a model package or an algorithm, there are two methods
to deploy them:

176

http://aws.amazon.com/marketplace/management/contact-us/
http://aws.amazon.com/marketplace/management/contact-us/
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html#sagemaker-mkt-model-package
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-marketplace.html#sagemaker-mkt-algorithm

AWS Marketplace Seller Guide
Security and intellectual property

• Endpoint – This method uses SageMaker to deploy the model and create an API endpoint. The buyer
can use this endpoint as part of their backend service to power their applications. When data is sent to
the endpoint, SageMaker passes it to the model container and returns the results in an API response.
The endpoint and the container continue to run until stopped by the buyer.

Note
In AWS Marketplace, the endpoint method is referred to as real-time inference, and in the
SageMaker documentation, it is referred to as hosting services. For more information, see
Deploy a Model in Amazon SageMaker.

• Batch transform job – In this method, a buyer stores datasets for inference in Amazon S3. When
the batch transform job starts, SageMaker deploys the model, passes data from an S3 bucket to the
model’s container, and then returns the results to an S3 bucket. When the job completes, SageMaker
stops the job. For more information, see Get Inferences for an Entire Dataset with Batch Transform.

Note
Both methods are transparent to the model because SageMaker passes data to the model and
returns results to the buyer.

Security and intellectual property
Amazon SageMaker protects both your intellectual property and buyer data for models and algorithms
obtained from AWS Marketplace.

Protecting intellectual property
When you create a product, the code is packaged in Docker container images. For more information,
see Prepare your product in SageMaker (p. 180), later in this guide. When you upload a container
image, the image and artifacts are encrypted in transit and at rest. The images are also scanned for
vulnerabilities before being published.

To help safeguard your intellectual property, SageMaker allows only buyers to access your product
through AWS service endpoints. Buyers cannot directly access or pull container images or model
artifacts, nor can they access the underlying infrastructure.

No network access
Unlike SageMaker models and algorithms that buyers create, when buyers launch your product from
AWS Marketplace, the models and algorithms are deployed without network access. SageMaker deploys
images in an environment with no access to the network or AWS service endpoints. For example, a
container image can't make outbound API calls to services on the internet, VPC endpoints, or any other
AWS services.

Security of customer data
Your product runs in SageMaker within the buyer’s AWS account. So, when a buyer uses your product to
perform data inference, you as the seller can't access their data.

For algorithm products, model artifacts are outputted by your training image after each training job.
Model artifacts are stored in the buyer’s account. The model artifacts from the training job are used
when the buyer deploys the model with your inference image. To protect any intellectual property that
may be contained in the model artifact, encrypt them before outputting them.

Important
This security model prevents your code from accessing the internet during runtime. Therefore,
your code can't use resources or libraries from the internet, so package your dependencies in the

177

https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-deployment.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-batch.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

AWS Marketplace Seller Guide
Machine learning product pricing

Docker container image. This is especially important if you choose to encrypt your outputted
artifacts from the training job. The keys to encrypt and decrypt artifacts can't be accessed over
the internet at runtime. They must be packaged with your image.

For more information, see Security in Amazon SageMaker.

Machine learning product pricing
You can choose from several available pricing models for your Amazon SageMaker products. Buyers who
subscribe to your product run it in SageMaker within their own AWS account. The price for your buyers is
a combination of the infrastructure costs for the resources running in their AWS account and the product
pricing that you set.

Infrastructure pricing
Buyers are responsible for all the infrastructure costs of SageMaker while using your product. These costs
are set by AWS and are available on the Amazon SageMaker pricing page.

Software pricing
You determine the software prices that AWS Marketplace charges the buyer for using your product. You
set the pricing and terms when you are adding your machine learning product to AWS Marketplace.

All infrastructure and software prices per instance type are presented to the buyer on the product listing
pages in AWS Marketplace before the buyer subscribes.

Free pricing
You can choose to offer your product for free. In this case, the buyer only pays for infrastructure costs.

Hourly pricing
You can offer your product with a price per hour per instance of your software running in SageMaker. You
can charge a different hourly price for each instance type that your software runs on. While a buyer runs
your software, AWS Marketplace tracks usage and then bills the buyer accordingly. Usage is prorated to
the minute.

For model package products, buyer can run your software in two different ways. They can host an
endpoint continuously to perform real-time inference or run a batch transform job on a dataset. You can
set different pricing for both of the ways a buyer can run your software.

For algorithm products, in addition to determining the prices for performing inference, as mentioned
earlier, you also determine an hourly price for training jobs. You can charge a different hourly price for
each instance type that your training image supports.

Inference pricing
When the buyer runs your software by hosting an endpoint to continuously perform real-time inference,
you can choose to set a price per inference.

Note
Batch transform processes always use hourly pricing. Training jobs for algorithm products also
always use hourly pricing. You can set these prices independently of the inference pricing, and of
each other.

178

https://docs.aws.amazon.com/sagemaker/latest/dg/security.html
https://aws.amazon.com/sagemaker/pricing/

AWS Marketplace Seller Guide
Software pricing

By default, with inference pricing, AWS Marketplace charges your buyer for each invocation of your
endpoint. However, in some cases, your software processes a batch of inferences in a single invocation
(also known as a mini-batch). For an endpoint deployment, you can indicate a custom number of
inferences that AWS Marketplace should charge the buyer for that single invocation. To do this, include a
custom metering header in the HTTP response headers of your invocation, as in the following example.

X-Amzn-Inference-Metering: {"Dimension": "inference.count", "ConsumedUnits": 3}

This example shows an invocation that charges the buyer for three inferences.

Note
For inference pricing, AWS Marketplace only charges buyer for requests where the HTTP
response code is 2XX.

Free trial
Optionally, you can create a free trial for your product and define the number of days of the free trial.
Free trials can be 5–120 days. During the free trial, buyers can run your software as much as they want
and aren't charged for your software. Buyers are charged for the infrastructure costs during the free trial.
After the trial ends, they are charged your normal software price, along with the infrastructure costs.

Note
You can only create a free trial for offers that are charged hourly. You can't create a free trial for
a product with inference pricing.

When buyers subscribe to a product with a free trial, they receive a welcome email message. The
message includes the term of the free trial, a calculated expiration date, and details on unsubscribing. A
reminder email message is sent three days before the expiration date.

If you offer a free trial for your product in AWS Marketplace, you agree to the specific refund policy for
free trials.

Private offers
You can create private offers for your machine learning products. A private offer gives specific buyers a
different price than your publicly displayed price.

Private offers work in one of two ways:

• Hourly – Private offers can be an hourly rate that is different from the publicly displayed hourly rate.
• Contract – Private offers can be a contract with a fixed upfront fee for a specified number of days. The

buyer is allowed to use an unlimited number of instances for the entire duration of the contract. At the
end of the contract, any instances that continue to run are billed at the hourly rate that you set in the
private offer. For example, you can create a contract with a fixed upfront fee for 365 days of unlimited
use. You also set an hourly rate for the private offer. When the buyer accepts this private offer, they
pay that upfront fee. When the contract ends, any instances still running are billed at that hourly rate.

The set of terms and agreement between you and the buyer in private offers can differ from the one in
the public offer or other private offers.

You can create and extend multiple private offers to a single buyer. Buyers that you extend the private
offers to have the option to choose between the private offers and the public offer. Buyers can only be
subscribed to one offer at any given time. They can't be subscribed to both a private offer and the public
offer at the same time.

To create a private offer for a specific buyer for SageMaker products, contact AWS Marketplace Seller
Operations.

179

https://docs.aws.amazon.com/marketplace/latest/userguide/refunds.html#refund-policy
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Prepare your product in SageMaker

Note
For more details about limitations of private offers, see Notes about private offers (p. 45).

Prepare your product in SageMaker
Before publishing your product in AWS Marketplace, you must prepare it in Amazon SageMaker. There
are three steps to preparing your product:

1. Packaging your code into images (p. 180) – To prepare a model package or algorithm product, you
must create the Docker container images for your product.

2. Uploading your images (p. 194) – After packaging your code in container images and testing them
locally, upload the images and scan them for known vulnerabilities. Fix any vulnerabilities before
continuing.

3. Creating your Amazon SageMaker resource (p. 196) – After your images are scanned successfully,
they can be used to create a model package or algorithm resource in SageMaker.

Packaging your code into images
Machine learning products in AWS Marketplace use Amazon SageMaker to create and run the machine
learning logic you provide for buyers. SageMaker runs Docker container images that contain your logic.
SageMaker runs these containers in a secure and scalable infrastructure. For more information, see
Security and intellectual property (p. 177).

Topics
• Which type of container image do I create? (p. 180)

• Model package images (p. 181)

• Algorithm images (p. 185)

Which type of container image do I create?
The two types of container images are an inference image and a training image.

To create a model package product, you need only an inference image. For detailed instructions, see
Model package images (p. 181).

To create an algorithm product, you need both training and inference images. For detailed instructions,
see Algorithm images (p. 185).

To package code properly into a container image, the container must adhere to the SageMaker file
structure. The container must expose the correct endpoints to ensure that the service can pass data to
and from your container. The following sections explain the details of this process.

Important
For security purposes, when a buyer subscribes to your containerized product, the Docker
containers run in an isolated environment without an internet connection. When you create your
containers, don't rely on outgoing calls over the internet because they will fail. Calls to AWS
services will also fail. For more information, see the Security and intellectual property (p. 177)
section.

Optionally, when creating your inference and training images, use a container from Available Deep
Learning Containers Images as a starting point. The images are already properly packaged with different
machine learning frameworks.

180

http://aws.amazon.com/releasenotes/available-deep-learning-containers-images/
http://aws.amazon.com/releasenotes/available-deep-learning-containers-images/

AWS Marketplace Seller Guide
Packaging your code into images

Model package images
An Amazon SageMakerSageMaker model package is a pre-trained model that makes predictions and
does not require any further training by the buyer.

A model package includes the following components:

• An inference image stored in Amazon Elastic Container Registry (Amazon ECR)
• (Optional) Model artifacts, stored separately in Amazon S3

Note
Model artifacts are files your model uses to make predictions and are generally the result of
your own training processes. Artifacts can be any file type that is needed by your model, but
must use.tar.gz compression. For model packages, they can either be bundled within your
inference image or be stored separately in Amazon S3. The model artifacts stored in Amazon
S3 are loaded into the inference container at runtime. When publishing your model package,
those artifacts are published and stored in AWS Marketplace owned Amazon S3 buckets that are
inaccessible by the buyer directly.

The following is an overview of how buyers use a model package and its components:

1. The buyer subscribes to a model package and deploys the model. SageMaker runs the inference
image. Any seller-provided model artifacts not bundled in the inference image are loaded
dynamically at runtime.

2. SageMaker passes the buyer’s inference data to the container via the container’s HTTP endpoints
and returns the prediction results.

Note
Your model can be deployed as an endpoint for single inferences or as a batch job to get
predictions for an entire dataset at once. For more information, see Deploy Models for Inference.

Creating an inference image for model packages

This section provides a walkthrough for packaging your inference code into an inference image for your
model package product.

The inference image is a Docker image containing your inference logic. The container at runtime exposes
HTTP endpoints to allow SageMaker to pass data to and from your container.

Note
The following is only one example of packaging code for an inference image. For more
information, see Using Docker containers with SageMaker and the AWS Marketplace SageMaker
examples on GitHub.
The following example uses a web service, Flask, for simplicity, and is not considered
production-ready.

Step 1: Creating the container image

For the inference image to be compatible with SageMaker, the Docker image must expose HTTP
endpoints. While your container is running, SageMaker passes buyer inputs for inference to the
container’s HTTP endpoint. The inference results are returned in the body of the HTTP response.

The following walkthrough uses the Docker CLI in a development environment using a Linux Ubuntu
distribution.

• Create the web server script (p. 182)
• Create the script for the container run (p. 183)

181

http://aws.amazon.com/ecr/
http://aws.amazon.com/s3/
https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
https://github.com/aws/amazon-sagemaker-examples/tree/master/aws_marketplace
https://github.com/aws/amazon-sagemaker-examples/tree/master/aws_marketplace
https://pypi.org/project/Flask/

AWS Marketplace Seller Guide
Packaging your code into images

• Create the Dockerfile (p. 183)
• Package or upload the model artifacts (p. 183)

Create the web server script

This example uses a Python server called Flask, but you can use any web server that works for your
framework.

Note
Flask is used here for simplicity. It is not considered a production-ready web server.

Create a Flask web server script that serves the two HTTP endpoints on TCP port 8080 that SageMaker
uses. The following are the two expected endpoints:

• /ping – SageMaker makes HTTP GET requests to this endpoint to check if your container is ready.
When your container is ready, it responds to HTTP GET requests at this endpoint with an HTTP 200
response code.

• /invocations – SageMaker makes HTTP POST requests to this endpoint for inference. The input
data for inference is sent in the body of the request. The user-specified content type is passed in
the HTTP header. The body of the response is the inference output. For details about timeouts, see
Requirements and best practices for creating machine learning products (p. 204).

./web_app_serve.py

Import modules
import json
import re
from flask import Flask
from flask import request
app = Flask(__name__)

Create a path for health checks
@app.route("/ping")
def endpoint_ping():
 return ""

Create a path for inference
@app.route("/invocations", methods=["POST"])
def endpoint_invocations():

 # Read the input
 input_str = request.get_data().decode("utf8")

 # Add your inference code between these comments.
 #
 #
 #
 #
 #
 # Add your inference code above this comment.

 # Return a response with a prediction
 response = {"prediction":"a","text":input_str}
 return json.dumps(response)

In the previous example, there is no actual inference logic. For your actual inference image, add the
inference logic into the web app so it processes the input and returns the actual prediction.

Your inference image must contain all of its required dependencies because it will not have internet
access, nor will it be able to make calls to any AWS services.

182

https://pypi.org/project/Flask/
https://pypi.org/project/Flask/

AWS Marketplace Seller Guide
Packaging your code into images

Note
This same code is called for both real-time and batch inferences

Create the script for the container run

Create a script named serve that SageMaker runs when it runs the Docker container image. The
following script starts the HTTP web server.

./serve

#!/bin/bash

Run flask server on port 8080 for SageMaker
flask run --host 0.0.0.0 --port 8080

Create the Dockerfile

Create a Dockerfile in your build context. This example uses Ubuntu 18.04, but you can start from any
base image that works for your framework.

./Dockerfile

FROM ubuntu:18.04

Specify encoding
ENV LC_ALL=C.UTF-8
ENV LANG=C.UTF-8

Install python-pip
RUN apt-get update \
&& apt-get install -y python3.6 python3-pip \
&& ln -s /usr/bin/python3.6 /usr/bin/python \
&& ln -s /usr/bin/pip3 /usr/bin/pip;

Install flask server
RUN pip install -U Flask;

Add a web server script to the image
Set an environment to tell flask the script to run
COPY /web_app_serve.py /web_app_serve.py
ENV FLASK_APP=/web_app_serve.py

Add a script that Amazon SageMaker will run
Set run permissions
Prepend program directory to $PATH
COPY /serve /opt/program/serve
RUN chmod 755 /opt/program/serve
ENV PATH=/opt/program:${PATH}

The Dockerfile adds the two previously created scripts to the image. The directory of the serve script
is added to the PATH so it can run when the container runs.

Package or upload the model artifacts

The two ways to provide the model artifacts from training the model to the inference image are as
follows:

• Packaged statically with the inference image.
• Loaded dynamically at runtime. Because it's loaded dynamically, you can use the same image for

packaging different machine learning models.

183

AWS Marketplace Seller Guide
Packaging your code into images

If you want to package your model artifacts with the inference image, include the artifacts in the
Dockerfile.

If you want to load your model artifacts dynamically, store those artifacts separately in a compressed
file (.tar.gz) in Amazon S3. When creating the model package, specify the location of the compressed
file, and SageMaker extracts and copies the contents to the container directory /opt/ml/model/ when
running your container. When publishing your model package, those artifacts are published and stored in
AWS Marketplace owned Amazon S3 buckets that are inaccessible by the buyer directly.

Step 2: Building and testing the image locally

In the build context, the following files now exist:

• ./Dockerfile

• ./web_app_serve.py

• ./serve

• Your inference logic and (optional) dependencies

Next build, run, and test the container image.

Build the image

Run the Docker command in the build context to build and tag the image. This example uses the tag my-
inference-image.

sudo docker build --tag my-inference-image ./

After running this Docker command to build the image, you should see output as Docker builds the
image based on each line in your Dockerfile. When it finishes, you should see something similar to the
following.

Successfully built abcdef123456
Successfully tagged my-inference-image:latest

Run locally

After your build has completed, you can test the image locally.

sudo docker run \
 --rm \
 --publish 8080:8080/tcp \
 --detach \
 --name my-inference-container \
 my-inference-image \
 serve

The following are details about the command:

• --rm – Automatically remove the container after it stops.

• --publish 8080:8080/tcp – Expose port 8080 to simulate the port that SageMaker sends HTTP
requests to.

• --detach – Run the container in the background.

• --name my-inference-container – Give this running container a name.

• my-inference-image – Run the built image.

184

AWS Marketplace Seller Guide
Packaging your code into images

• serve – Run the same script that SageMaker runs when running the container.

After running this command, Docker creates a container from the inference image you built and runs
it in the background. The container runs the serve script, which launches your web server for testing
purposes.

Test the ping HTTP endpoint

When SageMaker runs your container, it periodically pings the endpoint. When the endpoint returns an
HTTP response with status code 200, it signals to SageMaker that the container is ready for inference.
You can test this by running the following command, which tests the endpoint and includes the response
header.

curl --include http://127.0.0.1:8080/ping

Example output is as follows.

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 0
Server: MyServer/0.16.0 Python/3.6.8
Date: Mon, 21 Oct 2019 06:58:54 GMT

Test the inference HTTP endpoint

When the container indicates it is ready by returning a 200 status code to your ping, SageMaker passes
the inference data to the /invocations HTTP endpoint via a POST request. Test the inference point by
running the following command.

curl \
 --request POST \
 --data "hello world" \
 http://127.0.0.1:8080/invocations

Example output is as follows.

{"prediction": "a", "text": "hello world"}

With these two HTTP endpoints working, the inference image is now compatible with SageMaker.

Note
The model of your model package product can be deployed in two ways: real time and batch.
In both deployments, SageMaker uses the same HTTP endpoints while running the Docker
container.

To stop the container, run the following command.

sudo docker container stop my-inference-container

When your inference image is ready and tested, you can continue to Uploading your images (p. 194).

Algorithm images
An Amazon SageMaker algorithm requires that the buyer bring their own data to train before it makes
predictions.

185

AWS Marketplace Seller Guide
Packaging your code into images

An algorithm includes the following components:

• A training image stored in Amazon ECR

• An inference image stored in Amazon Elastic Container Registry (Amazon ECR)

Note
For algorithm products, the training container generates model artifacts that are loaded into the
inference container on model deployment.

The following is an overview of how buyers use an algorithm and its components:

1. The buyer creates a training job with a compatible dataset and appropriate hyperparameter values.
SageMaker runs the training image and loads the training data and hyperparameters into the training
container. When the training job completes, the model artifacts located in /opt/ml/model/ are
compressed and copied to the buyer’s Amazon S3 bucket.

2. The buyer creates a model package with the model artifacts from the training stored in Amazon S3
and deploys the model. SageMaker runs the inference image, extracts the compressed model artifacts,
and loads the files into the inference container directory path /opt/ml/model/ where it is consumed
by the code that serves the inference.

3. Whether the model deploys as an endpoint or a batch transform job, SageMaker passes the data for
inference on behalf of the buyer to the container via the container’s HTTP endpoint and returns the
prediction results.

Note
For more information, see Train Models.

Creating a training image for algorithms

This section provides a walkthrough for packaging your training code into a training image. A training
image is required to create an algorithm product.

A training image is a Docker image containing your training algorithm. The container adheres to a
specific file structure to allow SageMaker to copy data to and from your container.

Both the training and inference images are required when publishing an algorithm product. After
creating your training image, you must create an inference image. The two images can be combined into
one image or remain as separate images. Whether to combine the images or separate them is up to you.
Typically, inference is simpler than training, and you might want separate images to help with inference
performance.

Note
The following is only one example of packaging code for a training image. For more
information, see Use your own algorithms and models with the AWS Marketplace and the AWS
Marketplace SageMaker examples on GitHub.

Step 1: Creating the container image

For the training image to be compatible with Amazon SageMaker, it must adhere to a specific file
structure to allow SageMaker to copy the training data and configuration inputs to specific paths in your
container. When the training completes, the generated model artifacts are stored in a specific directory
path in the container where SageMaker copies from.

The following uses Docker CLI installed in a development environment on an Ubuntu distribution of
Linux.

• Prepare your program to read configuration inputs (p. 187)

186

http://aws.amazon.com/ecr/
http://aws.amazon.com/s3/
https://docs.aws.amazon.com/sagemaker/latest/dg/train-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-marketplace.html
https://github.com/aws/amazon-sagemaker-examples/tree/master/aws_marketplace
https://github.com/aws/amazon-sagemaker-examples/tree/master/aws_marketplace

AWS Marketplace Seller Guide
Packaging your code into images

• Prepare your program to read data inputs (p. 187)

• Prepare your program to write training outputs (p. 187)

• Create the script for the container run (p. 188)

• Create the Dockerfile (p. 188)

Prepare your program to read configuration inputs

If your training program requires any buyer-provided configuration input, the following is where those
are copied to inside your container when ran. If required, your program must read from those specific file
paths.

• /opt/ml/input/config is the directory that contains information which controls how your program
runs.

• hyperparameters.json is a JSON-formatted dictionary of hyperparameter names and values.
The values are strings, so you may need to convert them.

• resourceConfig.json is a JSON-formatted file that describes the network layout used for
distributed training. If your training image does not support distributed training, you can ignore this
file.

Note
For more information about configuration inputs, see How Amazon SageMaker Provides
Training Information.

Prepare your program to read data inputs

Training data can be passed to the container in one of the following two modes. Your training program
that runs in the container digests the training data in one of those two modes.

File mode

• /opt/ml/input/data/<channel_name>/ contains the input data for that channel. The channels
are created based on the call to the CreateTrainingJob operation, but it's generally important that
channels match what the algorithm expects. The files for each channel are copied from Amazon S3 to
this directory, preserving the tree structure indicated by the Amazon S3 key structure.

Pipe mode

• /opt/ml/input/data/<channel_name>_<epoch_number> is the pipe for a given epoch. Epochs
start at zero and increase by one each time you read them. There is no limit to the number of epochs
that you can run, but you must close each pipe before reading the next epoch.

Prepare your program to write training outputs

The output of the training is written to the following container directories:

• /opt/ml/model/ is the directory where you write the model or the model artifacts that your training
algorithm generates. Your model can be in any format that you want. It can be a single file or a whole
directory tree. SageMaker packages any files in this directory into a compressed file (.tar.gz). This file is
available at the Amazon S3 location returned by the DescribeTrainingJob API operation.

• /opt/ml/output/ is a directory where the algorithm can write a failure file that describes
why the job failed. The contents of this file are returned in the FailureReason field of the
DescribeTrainingJob result. For jobs that succeed, there is no reason to write this file because it’s
ignored.

187

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html#your-algorithms-training-algo-running-container-dist-training
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html#your-algorithms-training-algo-running-container-dist-training
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html
http://aws.amazon.com/s3/

AWS Marketplace Seller Guide
Packaging your code into images

Create the script for the container run

Create a train shell script that SageMaker runs when it runs the Docker container image. When the
training completes and the model artifacts are written to their respective directories, exit the script.

./train

#!/bin/bash

Run your training program here
#
#
#
#

Create the Dockerfile

Create a Dockerfile in your build context. This example uses Ubuntu 18.04 as the base image, but you
can start from any base image that works for your framework.

./Dockerfile

FROM ubuntu:18.04

Add training dependencies and programs
#
#
#
#
#
Add a script that SageMaker will run
Set run permissions
Prepend program directory to $PATH
COPY /train /opt/program/train
RUN chmod 755 /opt/program/train
ENV PATH=/opt/program:${PATH}

The Dockerfile adds the previously created train script to the image. The script’s directory is added
to the PATH so it can run when the container runs.

In the previous example, there is no actual training logic. For your actual training image, add the training
dependencies to the Dockerfile, and add the logic to read the training inputs to train and generate
the model artifacts.

Your training image must contain all of its required dependencies because it will not have internet
access.

For more information, see Use your own algorithms and models with the AWS Marketplace and the AWS
Marketplace SageMaker examples on GitHub.

Step 2: Building and testing the image locally

In the build context, the following files now exist:

• ./Dockerfile

• ./train

• Your training dependencies and logic

Next you can build, run, and test this container image.

188

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-marketplace.html
https://github.com/aws/amazon-sagemaker-examples/tree/master/aws_marketplace
https://github.com/aws/amazon-sagemaker-examples/tree/master/aws_marketplace

AWS Marketplace Seller Guide
Packaging your code into images

Build the image

Run the Docker command in the build context to build and tag the image. This example uses the tag my-
training-image.

sudo docker build --tag my-training-image ./

After running this Docker command to build the image, you should see output as Docker builds the
image based on each line in your Dockerfile. When it finishes, you should see something similar to the
following.

Successfully built abcdef123456
Successfully tagged my-training-image:latest

Run locally

After that has completed, test the image locally as shown in the following example.

sudo docker run \
 --rm \
 --volume '<path_to_input>:/opt/ml/input:ro' \
 --volume '<path_to_model>:/opt/ml/model' \
 --volume '<path_to_output>:/opt/ml/output' \
 --name my-training-container \
 my-training-image \
 train

The following are command details:

• --rm – Automatically remove the container after it stops.
• --volume '<path_to_input>:/opt/ml/input:ro' – Make test input directory available to

container as read-only.
• --volume '<path_to_model>:/opt/ml/model' – Bind mount the path where the model artifacts

are stored on the host machine when the training test is complete.
• --volume '<path_to_output>:/opt/ml/output' – Bind mount the path where the failure

reason in a failure file is written to on the host machine.
• --name my-training-container – Give this running container a name.
• my-training-image – Run the built image.
• train – Run the same script SageMaker runs when running the container.

After running this command, Docker creates a container from the training image you built and runs it.
The container runs the train script, which starts your training program.

After your training program finishes and the container exits, check that the output model artifacts are
correct. Additionally, check the log outputs to confirm that they are not producing logs that you do not
want, while ensuring enough information is provided about the training job.

This completes packaging your training code for an algorithm product. Because an algorithm product
also includes an inference image, continue to the next section, Creating an inference image for
algorithms (p. 189).

Creating an inference image for algorithms

This section provides a walkthrough for packaging your inference code into an inference image for your
algorithm product.

189

AWS Marketplace Seller Guide
Packaging your code into images

The inference image is a Docker image containing your inference logic. The container at runtime exposes
HTTP endpoints to allow SageMaker to pass data to and from your container.

Both the training and inference images are required when publishing an algorithm product. If you have
not already done so, see the previous section about Creating a training image for algorithms (p. 186).
The two images can be combined into one image or remain as separate images. Whether to combine the
images or separate them is up to you. Typically, inference is simpler than training, and you might want
separate images to help with inference performance.

Note
The following is only one example of packaging code for an inference image. For more
information, see Use your own algorithms and models with the AWS Marketplace and the AWS
Marketplace SageMaker examples on GitHub.
The following example uses a web service, Flask, for simplicity, and is not considered
production-ready.

Step 1: Creating the inference image

For the inference image to be compatible with SageMaker, the Docker image must expose HTTP
endpoints. While your container is running, SageMaker passes inputs for inference provided by the
buyer to your container’s HTTP endpoint. The result of the inference is returned in the body of the HTTP
response.

The following uses Docker CLI installed in a development environment on an Ubuntu distribution of
Linux.

• Create the web server script (p. 190)

• Create the script for the container run (p. 191)

• Create the Dockerfile (p. 191)

• Preparing your program to dynamically load model artifacts (p. 192)

Create the web server script

This example uses a Python server called Flask, but you can use any web server that works for your
framework.

Note
Flask is used here for simplicity. It is not considered a production-ready web server.

Create the Flask web server script that serves the two HTTP endpoints on TCP port 8080 that SageMaker
uses. The following are the two expected endpoints:

• /ping – SageMaker makes HTTP GET requests to this endpoint to check if your container is ready.
When your container is ready, it responds to HTTP GET requests at this endpoint with an HTTP 200
response code.

• /invocations – SageMaker makes HTTP POST requests to this endpoint for inference. The input
data for inference is sent in the body of the request. The user-specified content type is passed in the
HTTP header. The body of the response is the inference output.

./web_app_serve.py

Import modules
import json
import re
from flask import Flask
from flask import request

190

https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-marketplace.html
https://github.com/aws/amazon-sagemaker-examples/tree/master/aws_marketplace
https://github.com/aws/amazon-sagemaker-examples/tree/master/aws_marketplace
https://pypi.org/project/Flask/
https://pypi.org/project/Flask/
https://pypi.org/project/Flask/

AWS Marketplace Seller Guide
Packaging your code into images

app = Flask(__name__)

Create a path for health checks
@app.route("/ping")
def endpoint_ping():
 return ""

Create a path for inference
@app.route("/invocations", methods=["POST"])
def endpoint_invocations():

 # Read the input
 input_str = request.get_data().decode("utf8")

 # Add your inference code here.
 #
 #
 #
 #
 #
 # Add your inference code here.

 # Return a response with a prediction
 response = {"prediction":"a","text":input_str}
 return json.dumps(response)

In the previous example, there is no actual inference logic. For your actual inference image, add the
inference logic into the web app so it processes the input and returns the prediction.

Your inference image must contain all of its required dependencies because it will not have internet
access.

Create the script for the container run

Create a script named serve that SageMaker runs when it runs the Docker container image. In this
script, start the HTTP web server.

./serve

#!/bin/bash

Run flask server on port 8080 for SageMaker
flask run --host 0.0.0.0 --port 8080

Create the Dockerfile

Create a Dockerfile in your build context. This example uses Ubuntu 18.04, but you can start from any
base image that works for your framework.

./Dockerfile

FROM ubuntu:18.04

Specify encoding
ENV LC_ALL=C.UTF-8
ENV LANG=C.UTF-8

Install python-pip
RUN apt-get update \
&& apt-get install -y python3.6 python3-pip \
&& ln -s /usr/bin/python3.6 /usr/bin/python \

191

AWS Marketplace Seller Guide
Packaging your code into images

&& ln -s /usr/bin/pip3 /usr/bin/pip;

Install flask server
RUN pip install -U Flask;

Add a web server script to the image
Set an environment to tell flask the script to run
COPY /web_app_serve.py /web_app_serve.py
ENV FLASK_APP=/web_app_serve.py

Add a script that Amazon SageMaker will run
Set run permissions
Prepend program directory to $PATH
COPY /serve /opt/program/serve
RUN chmod 755 /opt/program/serve
ENV PATH=/opt/program:${PATH}

The Dockerfile adds the two created previously scripts to the image. The directory of the serve script
is added to the PATH so it can run when the container runs.

Preparing your program to dynamically load model artifacts

For algorithm products, the buyer uses their own datasets with your training image to generate unique
model artifacts. When the training process completes, your training container outputs model artifacts
to the container directory /opt/ml/model/. SageMaker compresses the contents in that directory into
a .tar.gz file and stores it in the buyer’s AWS account in Amazon S3.

When the model deploys, SageMaker runs your inference image, extracts the model artifacts from
the .tar.gz file stored in the buyer’s account in Amazon S3,and loads them into the inference container in
the /opt/ml/model/ directory. At runtime, your inference container code uses the model data.

Note
To protect any intellectual property that might be contained in the model artifact files, you can
choose to encrypt the files before outputting them. For more information, see Security and
intellectual property (p. 177).

Step 2: Building and testing the image locally

In the build context, the following files now exist:

• ./Dockerfile

• ./web_app_serve.py

• ./serve

Next you can build, run, and test this container image.

Build the image

Run the Docker command to build and tag the image. This example uses the tag my-inference-image.

sudo docker build --tag my-inference-image ./

After running this Docker command to build the image, you should see output as Docker builds the
image based on each line in your Dockerfile. When it finishes, you should see something similar to the
following.

Successfully built abcdef123456

192

AWS Marketplace Seller Guide
Packaging your code into images

Successfully tagged my-inference-image:latest

Run locally

After your build has completed, you can test the image locally.

sudo docker run \
 --rm \
 --publish 8080:8080/tcp \
 --volume '<path_to_model>:/opt/ml/model:ro' \
 --detach \
 --name my-inference-container \
 my-inference-image \
 serve

The following are command details:

• --rm – Automatically remove the container after it stops.

• --publish 8080:8080/tcp – Expose port 8080 to simulate the port SageMaker sends HTTP
requests to.

• --volume '<path_to_model>:/opt/ml/model:ro' – Bind mount the path to where the test
model artifacts are stored on the host machine as read-only to make them available to your inference
code in the container.

• --detach – Run the container in the background.

• --name my-inference-container – Give this running container a name.

• my-inference-image – Run the built image.

• serve – Run the same script SageMaker runs when running the container.

After running this command, Docker creates a container from the inference image and runs it in the
background. The container runs the serve script, which starts your web server for testing purposes.

Test the ping HTTP endpoint

When SageMaker runs your container, it periodically pings the endpoint. When the endpoint returns an
HTTP response with status code 200, it signals to SageMaker that the container is ready for inference.

Run the following command to test the endpoint and include the response header.

curl --include http://127.0.0.1:8080/ping

Example output is shown in the following example.

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 0
Server: MyServer/0.16.0 Python/3.6.8
Date: Mon, 21 Oct 2019 06:58:54 GMT

Test the inference HTTP endpoint

When the container indicates it is ready by returning a 200 status code, SageMaker passes the inference
data to the /invocations HTTP endpoint via a POST request.

Run the following command to test the inference endpoint.

193

AWS Marketplace Seller Guide
Uploading your images

curl \
 --request POST \
 --data "hello world" \
 http://127.0.0.1:8080/invocations

Example output is shown in the following example..

{"prediction": "a", "text": "hello world"}

With these two HTTP endpoints working, the inference image is now compatible with SageMaker.

Note
The model of your algorithm product can be deployed in two ways: real time and batch.
For both deployments, SageMaker uses the same HTTP endpoints while running the Docker
container.

To stop the container, run the following command.

sudo docker container stop my-inference-container

After both your training and inference images for your algorithm product are ready and tested, continue
to Uploading your images (p. 194).

Uploading your images
This section provides a walkthrough for uploading your inference and training images to Amazon Elastic
Container Registry. Amazon ECRis a fully managed Docker registry. This is where Amazon SageMaker
pulls images from to create a model package for inference or algorithm for training jobs. This is also
where AWS Marketplace retrieves the images to publish your model package and algorithm products.

Which images must I upload?
If you're publishing a model package, upload only an inference image. If you're publishing an algorithm,
upload both an inference image and a training image. If the inference and training images are combined,
upload the combined image only once.

What IAM permissions are required?
The following steps assume that the local machine has the correct AWS credentials for an AWS Identity
and Access Management (IAM) role or user in the seller AWS account. The role or user must have the
correct policies in place for both AWS Marketplace and Amazon ECR. For example, you could use the
following AWS managed policies:

• AWSMarketplaceSellerProductsFullAccess – For access to AWS Marketplace

• AmazonEC2ContainerRegistryFullAccess – For access to Amazon ECR

Log your Docker client into AWS
Set a variable for the AWS Region that you want to publish from (see Supported AWS Regions for
publishing (p. 211)). For this example, use the US East (Ohio) Region.

region=us-east-2

194

http://aws.amazon.com/ecr/

AWS Marketplace Seller Guide
Uploading your images

Run the following command to set a variable with your AWS account ID. This example assumes that the
current AWS Command Line Interface (AWS CLI) credentials belong to the seller’s AWS account.

account=$(aws sts get-caller-identity --query Account --output text)

To authenticate your Docker CLI client with your AWS account Amazon ECR Docker registry for your
Region, run the following command.

aws ecr get-login-password \
--region ${region} \
| sudo docker login \
--username AWS \
--password-stdin \
${account}.dkr.ecr.${region}.amazonaws.com

Create repository and upload image

Set a variable for the tag of the uploaded image and another variable for the name of the uploaded
image repository.

image=my-inference-image
repo=my-inference-image

Note
In previous sections of this guide where the inference and training images were built, they were
tagged as my-inference-image and my-training-image, respectively. For this example, create
and upload the inference image to a repository with the same name.

Run the following command to create the image repository in Amazon ECR.

aws ecr --region ${region} create-repository --repository-name "${repo}"

The full name of the Amazon ECR repository location is made up of the following parts: <account-
id>.dkr.ecr.<region>.amazonaws.com/<image-repository-name>

To push the image to the repository, you must tag it with the full name of the repository location.

Set a variable for the full name of the image repository location along with the latest tag.

fullname="${account}.dkr.ecr.${region}.amazonaws.com/${repo}:latest"

Tag the image with the full name.

sudo docker tag ${image} ${fullname}

Finally, push the inference image to the repository in Amazon ECR.

sudo docker push ${fullname}

After the upload completes, the image appears in the repository list of the Amazon ECR console in the
Region that you are publishing from. In the previous example, the image was pushed to a repository in
the US East (Ohio) Region.

195

https://console.aws.amazon.com/ecr/repositories?region=us-east-2

AWS Marketplace Seller Guide
Creating your Amazon SageMaker resource

Scan your uploaded image
In the Amazon ECR console, choose the AWS Region that you are publishing from, and open the
repository that the image was uploaded to. Select your uploaded image and start a scan to check for
known vulnerabilities. AWS Marketplace checks the Amazon ECR scan results of the container images
used in your Amazon SageMaker resource before publishing it. Before you can create your product, you
must fix container images that have vulnerabilities with either a Critical or High severity.

After your images are scanned successfully, they can be used to create a model package or algorithm
resource.

If you believe that your product had errors in the scan that are false positives, contact AWS Marketplace
Seller Operations with information about the error.

Next steps

• See size limits in Requirements and best practices for creating machine learning products (p. 204)
• Continue to Creating your Amazon SageMaker resource (p. 196)

Creating your Amazon SageMaker resource
To publish a model package or algorithm product, you must create the respective model package
resource or algorithm resource in Amazon SageMaker.

When you create your resource for an AWS Marketplace product, it must be certified through a validation
step. The validation step requires that you provide data to test your model package or algorithm
resource before it can be published.

Note
If you haven't yet created the images for your product and uploaded them to Amazon Elastic
Container Registry (Amazon ECR), see Packaging your code into images (p. 180) and Uploading
your images (p. 194) for information about how to do so.

Creating your model package
The following are requirements for creating a model package for AWS Marketplace:

• An inference image stored in Amazon ECR
• (Optional) Model artifacts, stored separately in Amazon S3
• Your test data used for inferences, stored in Amazon Simple Storage Service (Amazon S3)

Note
The following is about creating a model package product. For more information about model
packages in SageMaker, see Create a Model Package Resource.

Creating the model package resources

The following procedures step you through creating the model package resources.

Step 1: To create the model package resources

1. Open the Amazon SageMaker console.
2. Ensure that you are in the AWS Region that you want to publish from by looking at the top right

of the page. For publishing, see the Supported AWS Regions for publishing (p. 211) section. The
inference image you uploaded to Amazon ECR in previous steps must be in the same Region.

3. In the left navigation menu, choose Model packages.

196

https://console.aws.amazon.com/ecr/repositories?region=us-east-2
http://aws.amazon.com/marketplace/management/contact-us
http://aws.amazon.com/marketplace/management/contact-us
https://docs.aws.amazon.com/marketplace/latest/userguide/ml-creating-your-amazon-sagemaker-resource.html#ml-creating-your-model-package-product
https://docs.aws.amazon.com/marketplace/latest/userguide/ml-creating-your-amazon-sagemaker-resource.html#ml-creating-your-model-package-product
https://docs.aws.amazon.com/marketplace/latest/userguide/ml-creating-your-amazon-sagemaker-resource.html#ml-creating-your-algorithm-product
http://aws.amazon.com/ecr/
http://aws.amazon.com/s3/
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-create-model-package.html
https://us-east-2.console.aws.amazon.com/sagemaker/home

AWS Marketplace Seller Guide
Creating your Amazon SageMaker resource

4. Choose Create model package.

After you create the package, you need to set the specifications of the inference package.

Step 2: To set inference specifications

1. Provide a Name for your model package (for example, my-model-package).
2. For Location of inference image, enter the URI of your inference image that was uploaded to

Amazon ECR. You can retrieve the URI by locating your image in the Amazon ECR console.
3. If your model artifacts from training are bundled with your logic in your inference image, leave the

Location of model data artifacts empty. Otherwise, specify the full Amazon S3 location of the
compressed file (.tar.gz) of your model artifacts.

4. Using the dropdown box, choose the supported instance types of your inference image for both real-
time inference (also known as endpoint) and batch-transform jobs.

5. Choose Next.

Before your model package can be created and published, validation is necessary to ensure that it
functions as expected. This requires that you run a batch transform job with test data for inference that
you provide. The validation specifications tell SageMaker how to perform the validation.

Step 3: To set validation specifications

1. Set Publish this model package in AWS Marketplace to Yes. If you set this to No, you can't publish
this model package later. Choosing Yes certifies your model package for AWS Marketplace and
requires the validation step.

2. If this is the first time completing this process, choose Create a new role for the IAM role. Amazon
SageMaker uses this role when it deploys your model package. This includes actions, such as pulling
images from Amazon ECR and artifacts from Amazon S3. Review the settings, and choose Create
role. Creating a role here grants permissions described by the AmazonSageMakerFullAccess IAM
policy to the role that you create.

3. Edit the JSON in the validation profile. For details about allowed values, see TransformJobDefinition.

1. TransformInput.DataSource.S3Uri: Set to where your test data for inference is stored.
2. TransformInput.ContentType: Specify your test data content type (for example,

application/json, text/plain, image/png , or any other value). SageMaker does not
validate the actual input data. This value is passed to your container HTTP endpoint in the
Content-type header value.

3. TransformInput.CompressionType: Set to None if your test data for inference in Amazon S3
is not compressed.

4. TransformInput.SplitType: Set to None to pass each object in Amazon S3 as a whole for
inference.

5. TransformOutput.S3OutputPath: Set to the location that the inference output is stored.
6. TransformOutput.AssembleWith: Set to None to output each inference as separate objects in

Amazon S3.
4. Choose Create model package.

SageMaker pulls the inference image from Amazon ECR, copies any artifacts to the inference container,
and runs a batch transform job using your test data for inference. After the validation succeeds, the
status changes to Completed.

Note
The validation step does not evaluate the accuracy of the model with your test data. The
validation step checks if the container runs and responds as expected.

197

https://us-east-2.console.aws.amazon.com/ecr/repositories
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackage.html#sagemaker-CreateModelPackage-request-CertifyForMarketplace
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformJobDefinition.html

AWS Marketplace Seller Guide
Creating your Amazon SageMaker resource

You have completed creating your model product resources. Continue to Publishing your product in AWS
Marketplace (p. 200).

Creating your algorithm
The following are requirements for creating an algorithm for AWS Marketplace:

• An inference image, stored in Amazon ECR
• A training image, stored in Amazon ECR
• Your test data for training, stored in Amazon S3
• Your test data for inference, stored in Amazon S3

Note
The following walkthrough creates an algorithm product. For more information, see Create an
Algorithm Resource.

Creating the algorithm resources

The following procedures step you through creating the resources in your algorithm package.

Step 1: To create the algorithm resources

1. Open the Amazon SageMaker console.
2. Ensure that you are in the AWS Region that you want to publish from by looking at the top right of

the page (see Supported AWS Regions for publishing (p. 211)). The training and inference images
you uploaded to Amazon ECR in previous steps must be in this same Region.

3. In the left navigation menu, choose Algorithms.
4. Choose Create algorithm.

After you have created the algorithm package, you must set the specifications for the training and tuning
of your model.

Step 2: To set the training and tuning specifications

1. Enter the Name for your algorithm (for example, my-algorithm).
2. For Training image, paste the full URI location of your training image that was uploaded to Amazon

ECR. You can retrieve the URI by locating your image in the Amazon ECR console.
3. Using the dropdown box, choose the instance types for training that your training image supports.
4. Under the Channel specification section, add a channel for each input dataset that your algorithm

supports, up to 20 channels of input sources. For more information, see Input Data Configuration.
5. Choose Next.
6. If your algorithm supports hyperparameters and hyperparameter tuning, you must specify the

tuning parameters.
7. Choose Next.

Note
We highly recommend that your algorithm supports hyperparameter tuning and makes
appropriate parameters tunable. This allows data scientists to tune models to get the best
results.

After you have set the tuning parameters, if any, you must set the specifications for your inference
image.

198

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-create-algo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-create-algo.html
https://us-east-2.console.aws.amazon.com/sagemaker/home
https://us-east-2.console.aws.amazon.com/ecr/repositories
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html#your-algorithms-training-algo-running-container-inputdataconfig

AWS Marketplace Seller Guide
Creating your Amazon SageMaker resource

Step 3: To set inference image specification

1. For Location of inference image, paste the URI of the inference image that was uploaded to
Amazon ECR. You can retrieve the URI by locating your image in the Amazon ECR Console.

2. Using the dropdown box, choose the supported instance types for your inference image for both
real-time inference (also known as endpoint) and batch-transform jobs.

3. Choose Next.

Before your algorithm can be created and published, validation is necessary to ensure that it functions as
expected. This requires that you run both a training job with test data for training and a batch transform
job with test data for inference that you provide. The validation specifications tell SageMaker how to
perform the validation.

Step 4: To set validation specifications

1. Set Publish this algorithm in AWS Marketplace to Yes. If you set this to No, you can't publish
this algorithm later. Choosing Yes certifies your algorithm for AWS Marketplace and requires the
validation specification.

2. If this is your first time creating a machine learning package for AWS Marketplace, choose Create
a new role for the IAM role. Amazon SageMaker uses this role when training your algorithm and
deploying the subsequent model package. This includes actions such as pulling images from
Amazon ECR, storing artifacts in Amazon S3, and copying training data from Amazon S3. Review
the settings, and choose Create role. Creating a role here grants permissions described by the
AmazonSageMakerFullAccess IAM policy to the role that you create.

3. Edit the JSON file in the validation profile for Training job definition. For more information about
allowed values, see TrainingJobDefinition.

1. InputDataConfig: In this JSON array, add a Channel object for each channel that you specified
in the training-specification step. For each channel, specify where your test data for training is
stored.

2. OutputDataConfig: After the training completes, the model artifacts in the training container
directory path /opt/ml/model/ are compressed and copied out to Amazon S3. Specify the
Amazon S3 location of where the compressed file (.tar.gz) is stored.

4. Edit the JSON file in the validation profile for Transform job definition. For more information about
allowed values, see TransformJobDefinition.

1. TransformInput.DataSource.S3Uri: Set to where your test data for inference is stored.

2. TransformInput.ContentType: Specify your test data content type. For example,
application/json, text/plain, image/png, or any other value. Amazon SageMaker does
not validate the actual input data. This value is passed to your container HTTP endpoint in the
Content-type header value.

3. TransformInput.CompressionType: Set to None if your test data for inference in Amazon S3
is not compressed.

4. TransformInput.SplitType: Choose how you want objects in S3 split. For example, None
passes each object in Amazon S3 as a whole for inference. For more details, see SplitType in the
Amazon SageMaker API Reference.

5. TransformOutput.S3OutputPath: Set to the location where the inference output is stored.

6. TransformOutput.AssembleWith: Set to None to output each inference as separate objects in
Amazon S3.

5. Choose Create algorithm package.

SageMaker pulls the training image from Amazon ECR, runs a test-training job using your data, and
stores the model artifacts in Amazon S3. It then pulls the inference image from Amazon ECR, copies the

199

https://us-east-2.console.aws.amazon.com/ecr/repositories
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAlgorithm.html#sagemaker-CreateAlgorithm-request-CertifyForMarketplace
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonSageMakerFullAccess
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformJobDefinition.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TransformInput.html#sagemaker-Type-TransformInput-SplitType

AWS Marketplace Seller Guide
Publishing your product in AWS Marketplace

artifacts from Amazon S3 into the inference container, and runs a batch transform job using your test
data for inference. After the validation succeeds, the status changes to Completed.

Note
The validation step does not evaluate the accuracy of the training or the model with your test
data. The validation step checks if the containers run and respond as expected.
The validation step only validates batch processing. It is up to you to validate that real-time
processing works with your product.

You have completed creating your algorithm product resources. Continue to Publishing your product in
AWS Marketplace (p. 200).

Publishing your product in AWS Marketplace
Before you can publish your model package or algorithm, the following are required:

• An AWS account that is registered as an AWS Marketplace seller. You can do this in the AWS
Marketplace Management Portal.

• A completed seller profile under the Settings page in the AWS Marketplace Management Portal.

• For publishing paid products, you must complete the tax interview and bank forms. This is not required
for publishing free products. For more information, see Seller registration process.

• You must have permissions to access the AWS Marketplace Management Portal and Amazon
SageMaker. For more information, see Permissions required (p. 200).

Overview of publishing process
There are four steps in the publishing process:

1. Submit product – Create a listing with the description, usage information, and other details of your
model package or algorithm product. After you submit your product for publishing, it takes about an
hour until the status changes to the next step.

2. Test product – Use your AWS account that is registered as an AWS Marketplace seller to preview the
listing in the AWS Marketplace, subscribe to it, and test the product. In addition, other allowed AWS
accounts can preview and test the product. If any changes are necessary, you can go back and edit
the listing details.

3. Sign off for publishing – When your product is ready to go live, return to the AWS Marketplace
Management Portal, and choose Sign off and publish.

4. Product goes live – Your product is now live in the AWS Marketplace. You can maintain your product
by publishing new versions with updates or product fixes.

Permissions required
To publish an Amazon SageMaker product, the AWS Identity and Access Management (IAM) user or role
you are logged in as requires one or both of the following IAM actions:

• sagemaker:DescribeModelPackage – For listing a model package

• sagemaker:DescribeAlgorithm – For listing an algorithm

For the AWS Marketplace permissions needed, or for managing your seller account, see Policies and
permissions for AWS Marketplace sellers.

200

http://aws.amazon.com/marketplace/management/
http://aws.amazon.com/marketplace/management/
http://aws.amazon.com/marketplace/management/seller-settings
https://docs.aws.amazon.com/marketplace/latest/userguide/seller-registration-process.html
https://docs.aws.amazon.com/marketplace/latest/userguide/detailed-management-portal-permissions.html
https://docs.aws.amazon.com/marketplace/latest/userguide/detailed-management-portal-permissions.html

AWS Marketplace Seller Guide
Creating your product listing

Creating your product listing
The following is a walkthrough for creating your product listing in the AWS Marketplace for both model
package and algorithm products.

Note
Before creating your listing, ensure that you have the required resources specified in
Requirements and best practices for creating machine learning products (p. 204).

To create a machine learning product

1. While logged into your seller AWS account, navigate to the AWS Marketplace Management Portal.
2. In the top menu, navigate to Products and then Machine learning.
3. Choose Create new listing.

After you have created your listing, you must provide general product information, set up the launch
option for the first version of your product, set up the pricing for your product, and finally submit the
product. The following procedures take you through each of these steps.

Step 1: To provide general product information

1. Choose Add for Product descriptions.

a. For the Product visibility section, choose one of the following options:

• Public – The product will initially be available to a limited set of AWS accounts for testing.
After you sign off and publish it, the product will be publicly discoverable and available for
subscription by all customers.

• Private – The product will only be visible to the AWS accounts that you specify. You will not
be able to make this product public in the future.

b. Enter Product title, Short product description, Product overview, Product category 1, and
other details. For product descriptions, see Requirements and best practices for creating
machine learning products (p. 204).

c. Choose Continue when complete. You can change these values later.
2. Continue to Promotional Resources, and provide a product logo and relevant links. Choose

Continue when complete. You can change these values later.
3. Continue to Support Information, provide support and contact details. Choose Continue when

complete. You can change these values later.
4. Continue to Region Availability, and choose the specific AWS Regions you want to list your

product in. The default value is Make available in all current and future supported Regions.
Choose Continue when complete. After you submit your draft for publishing, you can't change this
selection.

Next, you're ready to provide the launch option, which is the model or algorithm that you're selling.

Step 2: To add your launch option

1. For Enter ARN, paste the Amazon Resource Name (ARN) of your model package or algorithm. You
can find these in the Amazon SageMaker console Model Packages or Algorithms pages.

1. An ARN for a model package appears as the following:
arn:aws:sagemaker:<region>:<account-id>:model-package/<model-package-name>

2. An ARN for an algorithm appears as the following:
arn:aws:sagemaker:<region>:<account-id>:algorithm/<algorithm-name>

201

http://aws.amazon.com/marketplace/management
https://us-east-2.console.aws.amazon.com/sagemaker/home?region=us-east-2#/model-packages/my-resources
https://us-east-2.console.aws.amazon.com/sagemaker/home?region=us-east-2#/algorithms/my-resources

AWS Marketplace Seller Guide
Creating your product listing

2. Choose Add.

3. This step differs depending on if you publish a model package or algorithm product. With the
exception of the buyer-facing version number, you can change the version details later.

1. Provide the version number, release notes, and URLs to the sample Jupyter notebook and GitHub
repository.

2. For algorithm products only, on the next page, describe the training data and include an example
training data resource along with an overview of the training algorithm. The algorithm metrics,
channel specification, and hyperparameters will be automatically displayed on the product detail
page based on the values you provided when you created the algorithm resource in SageMaker.

3. On the next page, provide model input details and URLs for the sample input files.

4. On the next page, provide the model output details and sample outputs as text or URLs.
For usage information, see Requirements and best practices for creating machine learning
products (p. 204).

5. On the next page, set the recommended instances. If this is a model package product, choose
the recommended instance type from your supported instances for both the batch transform
and real-time deployments. If this is an algorithm product, choose the recommended instance
type training jobs, as well. You can't choose instance types that your model package or algorithm
resource doesn't support. The supported instance types were selected when you created those
resources in Amazon SageMaker.

4. Choose Continue when complete.

Note
Clear usage information that describes the expected inputs and outputs of your product (with
examples) is crucial for supporting a positive buyer experience. For more information, see
Requirements and best practices for creating machine learning products (p. 204).

The next step in publishing your product is to set the pricing and terms.

Step 3: To set the pricing and terms

1. Choose Add offer.

2. Set your Pricing. You can provide your software for free, set your paid pricing, or enable a free trial
period. For more information, see Machine learning product pricing (p. 178).

3. Upload a plaintext file to use as your End User License Agreement (EULA).

4. Choose Save and close.

You have provided all the information for your product. The next step is to publish it to limited
availability so that you can test the product.

Step 5: To submit your product for publishing

• For Product overview, choose Submit for publishing. This starts the publishing process by creating
a preview listing in AWS Marketplace that you can subscribe to and use for testing.

Note
For more information about testing your machine learning product, see Testing your
product (p. 203).

After testing your product, you can redo the steps above if there are any changes that need to be made.
When you're ready for your product to be available to buyers in AWS Data Exchange, you can sign off for
publishing.

202

AWS Marketplace Seller Guide
Testing your product

Step 4: To sign off for publishing

• After testing your product and writing your descriptions, pricing, and usage information, return to
the product overview, and choose Sign off and publish.

Testing your product
After the initial submission of your product, it takes about an hour for your preview listing to be ready.
After the status changes to Test Product, your seller account and other allow-listed AWS accounts can
preview the listing in AWS Marketplace, subscribe to the product, and test it. To see a preview of your
listing, in the AWS Marketplace Management Portal, navigate to the product overview page, and choose
Go to staged product.

To add other AWS accounts to test your product before publishing, contact AWS Marketplace Seller
Operations and provide the AWS account IDs. Allow-listed accounts display a Limited badge alongside
the product version on the product detail page.

If you want to make changes, choose Edit product and follow the same steps as creating your product.
When you're ready for your product to be published publicly for all buyers to see, return to the
management portal, and choose Sign off and publish.

Updating your product
To update your model package or algorithm product, navigate to the Machine Learning Listings page
in the AWS Marketplace Management Portal. You can add new model package or algorithm resources
as new versions of your existing product. You can also restrict previous versions or remove your entire
product.

Adding new versions
To add new versions of your model package or algorithm resources, navigate to the Product Overview of
your existing product, and then use the follow procedure.

To add a new version

1. Choose Edit product.

2. Under Launch option, choose Edit.

3. To add the ARN of your resource, navigate to the Version page, and choose Add new version. For
more information about adding a launch option, see Creating your product listing (p. 201).

Note
Usage information is specific to each product version. Continue to follow the Requirements and
best practices for creating machine learning products (p. 204) when adding usage information
to new versions.

When your buyers launch your product from its AWS Marketplace listing, they can choose different
versions. When your buyers launch your product from the Amazon SageMaker console, only the latest
version is visible.

Restricting versions
To restrict versions of your model package or algorithm resources, navigate to the Product
Overview page of your existing product, and then use the following procedure.

203

http://aws.amazon.com/marketplace/management/contact-us
http://aws.amazon.com/marketplace/management/contact-us
http://aws.amazon.com/marketplace/management/ml-products

AWS Marketplace Seller Guide
Requirements and best practices for
creating machine learning products

To restrict a version

1. Choose Edit product.
2. Under Launch option, choose Edit.
3. On the Version page, choose Restrict version.
4. Return to the Product Overview, and choose Submit for publishing.

Note
Buyers that have already subscribed to your product can continue to use restricted versions of
your model package or algorithm. However, new buyers will not be able to see those restricted
versions as options.

Remove a product
To remove a product, navigate to your list of published products in the Machine Learning Listings page in
the AWS Marketplace Management Portal. Choose the product you want to remove, and in the Actions
dropdown list, choose Unpublish listing.

Provide an email address and a reason to remove your listing, in the event that an AWS Marketplace
representative contacts you regarding your request.

Note
When you remove a product from AWS Marketplace, new buyers can no longer subscribe to your
product. However, existing buyers can continue using your product, which must be supported
for a minimum of 90 days. If you plan to have another product replace the unpublished listing,
indicate the new listing in the details of your removal request.

Requirements and best practices for creating
machine learning products

It is important that your buyers find it easy to test your model package and algorithm products. The
following sections describe the requirements for creating machine learning (ML) product listings and
best practices for ML products. For a complete summary of requirements and recommendations, see the
Summary of requirements and recommendations for ML product listings (p. 207).

Note
An AWS Marketplace representative might contact you to help you meet these requirements if
your published products don't meet them.

Topics
• Required assets (p. 204)
• General best practices for ML products (p. 205)
• Requirements for usage information (p. 205)
• Requirements for inputs and outputs (p. 205)
• Requirements for Jupyter notebook (p. 206)
• Summary of requirements and recommendations for ML product listings (p. 207)

Required assets
Before creating a machine learning product listing, ensure that you have the following required assets:

204

http://aws.amazon.com/marketplace/management/ml-products

AWS Marketplace Seller Guide
General best practices for ML products

• Amazon Resource Name (ARN) – Provide the ARN of the model package or algorithm resource in the
AWS Region that you are publishing from (see Supported AWS Regions for publishing (p. 211)).
• An ARN for a model package has this form: arn:aws:sagemaker:<region>:<account-
id>:model-package/<model-package-name>

• An ARN for an algorithm has this form: arn:aws:sagemaker:<region>:<account-
id>:algorithm/<algorithm-name>

• the section called “Requirements for usage information” (p. 205) – Provide details about inputs,
outputs, and code examples.

• the section called “Requirements for inputs and outputs” (p. 205) – Provide either files or text.
• the section called “Requirements for Jupyter notebook” (p. 206) – Demonstrate complete product

usage.

General best practices for ML products
Provide the following information for your machine learning product:

• For product descriptions, include the following:
• What your model does
• Who the target customer is
• What the most important use case is
• How your model was trained or the amount of data that was used
• What the performance metrics are and the validation data used
• If medical, whether or not your model is for diagnostic use

• Optionally, for paid products, offer a free trial of 14–30 days for customers to try your product. For
more information, see Machine learning product pricing (p. 178).

• Optionally, for model package products, if you want to enable a real-time product demo on your
product listing page, contact AWS Marketplace Seller Operations. The product demo allows a
prospective buyer to try your model directly on the listing page without subscribing to or deploying
the model themselves.

Requirements for usage information
Clear usage information that describes the expected inputs and outputs of your product (with examples)
is crucial for driving a positive buyer experience.

With each new version of your resource that you add to your product listing, you must provide usage
information.

To add usage information for a new product that you are publishing for the first time, sign into the
AWS Marketplace Management Portal console. From the Products dropdown, choose Machine learning.
Select your product. In the Product Overview under Launch option, provide the ARN of your model
package or algorithm resource, and choose Add.

To edit the existing usage information for a specific version, choose Edit under Launch option and then
Edit version.

Requirements for inputs and outputs
A clear explanation of your format, with examples of inputs and outputs, is important to help your
buyers to understand and use your product. This understanding helps your buyers to perform any
necessary transformations on the input data to get the best inference results.

205

http://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Requirements for Jupyter notebook

You will be prompted for the following when adding your SageMaker resource to your product listing.

Inference inputs and outputs
For inference input, provide the input format for both the real-time endpoint and batch transform job.
Include code snippets for any necessary preprocessing of the data. Include supported MIME content
types (for example, image/jpeg, image/png, image/bmp), descriptions of values if applicable, and
limitations. Include input samples hosted on GitHub.

For inference output, provide the output format for the both real-time endpoint and batch transform
job. Include output MIME content type (for example, application/json, image/jpeg) and description of
values if applicable. Include output samples hosted on GitHub.

For samples, provide input files that work with your product. If your model performs multiclass
classification, provide at least one sample input file for each class.

Training inputs
In the Information to train a model section, provide the input data format and code snippets for any
necessary preprocessing of the data. Include supported MIME content types (for example, image/jpeg,
image/png, image/bmp), description of values if applicable, and limitations. Ensure to include input
samples hosted on GitHub.

Explain both optional and mandatory features that can be provided by the buyer, and specify whether
the PIPE input mode is supported. If distributed training (training with more than 1 CPU/GPU instance) is
supported, specify this. For tuning, list the recommend hyperparameters.

Requirements for Jupyter notebook
When adding your SageMaker resource to your product listing, provide a link to a sample Jupyter
notebook hosted on GitHub that demonstrates the complete workflow without asking the buyer to
upload or find any data.

Use the AWS SDK for Python (Boto). A well-developed sample notebook makes it easier for buyers to try
and use your listing.

For model package products, your sample notebook demonstrates the preparation of input data,
creation of an endpoint for real-time inference, and performance of batch-transform jobs. For more
information, see Model Package listing and Sample notebook on GitHub. For sample notebooks, see
generic_sample_notebook and auto_insurance. The latter sample notebook works in all Regions, without
entering any parameters and without a buyer needing to locate sample data.

Note
An underdeveloped sample Jupyter notebook that does not show multiple possible inputs and
data preprocessing steps might make it difficult for the buyer to fully understand your product's
value proposition.

For algorithm products, the sample notebook demonstrates complete training, tuning, model creation,
the creation of an endpoint for real-time inference, and the performance of batch-transform jobs (see
Algorithm listing and Sample notebook on GitHub). For sample notebooks, see amazon_demo_product
and automl on GitHub. These sample notebooks work in all Regions without entering any parameters
and without a buyer needing to locate sample data.

Note
A lack of example training data might prevent your buyer from running the Jupyter notebook
successfully. An underdeveloped sample notebook might prevent your buyers from using your
product and hinder adoption.

206

https://github.com
https://github.com
https://github.com
https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html#your-algorithms-training-algo-running-container-dist-training
https://github.com
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/aws_marketplace/curating_aws_marketplace_listing_and_sample_notebook/ModelPackage
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/aws_marketplace/using_model_packages/generic_sample_notebook
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/aws_marketplace/using_model_packages/auto_insurance
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/aws_marketplace/curating_aws_marketplace_listing_and_sample_notebook/Algorithm
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/aws_marketplace/using_algorithms/amazon_demo_product
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/aws_marketplace/using_algorithms/automl

AWS Marketplace Seller Guide
Summary of requirements and

recommendations for ML product listings

Summary of requirements and recommendations for
ML product listings
The following table provides a summary of the requirements and recommendations for a machine
learning product listing page.

Details For model package listings For algorithm listings

Product descriptions

Explain in detail what the
product does for supported
content types (for example,
“detects X in images").

Required Required

Provide compelling and
differentiating information
about the product (avoid
adjectives like "best" or
unsubstantiated claims).

Recommended Recommended

List most important use case(s)
for this product.

Required Required

Describe the data (source and
size) it was trained on and list
any known limitations.

Required Not applicable

Describe the core framework
that the model was built on.

Recommended Recommended

Summarize model performance
metric on validation data
(for example, "XX.YY percent
accuracy benchmarked using the
Z dataset").

Required Not applicable

Summarize model latency
and/or throughput metrics on
recommended instance type.

Required Not applicable

Describe the algorithm category.
For example, “This decision
forest regression algorithm
is based on an ensemble of
tree-structured classifiers that
are built using the general
technique of bootstrap
aggregation and a random
choice of features.”

Not applicable Required

Usage information

For inference, provide the input
format for both the real-time
endpoint and batch transform
job. Include supported MIME
content types (for example,

Required Required

207

AWS Marketplace Seller Guide
Summary of requirements and

recommendations for ML product listings

Details For model package listings For algorithm listings

image/jpeg, image/png,
image/bmp), description
of values if applicable, and
limitations. See Requirements
for inputs and outputs (p. 205).

For inference, provide input
samples for both the real-time
endpoint and batch transform
job. Samples must be hosted on
GitHub. See Requirements for
inputs and outputs (p. 205).

Required Required

For inference, provide the
output format for both the
real-time endpoint and batch
transform job. Include output
MIME content type (for example,
application/json, image/jpeg)
and description of values if
applicable. See Requirements for
inputs and outputs (p. 205).

Required Required

For inference, provide output
samples for both the real-time
endpoint and batch transform
job. Samples must be hosted on
GitHub. See Requirements for
inputs and outputs (p. 205).

Required Required

For inference, provide an
example of using an endpoint
or batch transform job. Include
a code example using the AWS
Command Line Interface (AWS
CLI) commands or using an AWS
SDK.

Required Required

For training, provide input
format. Include supported MIME
content types (for example,
image/jpeg, image/png,
image/bmp), description
of values if applicable, and
limitations (for example,
minimum rows of data required).
See Requirements for inputs and
outputs (p. 205).

Not applicable Required

For training, provide input
samples hosted on GitHub. See
Requirements for inputs and
outputs (p. 205).

Not applicable Required

208

AWS Marketplace Seller Guide
Service restrictions and quotas

Details For model package listings For algorithm listings

For training, provide an
example of performing training
jobs. Describe the supported
hyperparameters, their ranges,
and their overall impact. Specify
if the algorithm supports
hyperparameter tuning,
distributed training, or GPU
instances. Include code example
such as AWS CLI commands or
using an AWS SDK, for example.

Not applicable Required

Provide a Jupyter notebook
hosted on GitHub demonstrating
complete use of your product.
See Requirements for Jupyter
notebook (p. 206).

Required Required

Provide technical information
related to the usage of the
product, including user manuals
and sample data.

Recommended Recommended

Service restrictions and quotas
This section describes restrictions and quotas on your machine learning (ML) products in AWS
Marketplace.

Network isolation
For security purposes, when a buyer subscribes to your containerized product, the Docker
containers are run in an isolated environment without network access. When you create your containers,
don't rely on making outgoing calls over the internet because they will fail. Calls to AWS services will also
fail.

Image size
Your Docker image size is governed by the Amazon Elastic Container Registry (Amazon ECR) service
quotas. The Docker image size affects the startup time during training jobs, batch-transform jobs, and
endpoint creation. For better performance, maintain an optimal Docker image size.

Storage size
When you create an endpoint, Amazon SageMaker attaches an Amazon Elastic Block Store (Amazon EBS)
storage volume to each ML compute instance that hosts the endpoint. (An endpoint is also known as
real-time inference or Amazon SageMaker hosting service.) The size of the storage volume depends on
the instance type. For more information, see Host Instance Storage Volumes. For batch transform, keep
these limits in mind.

209

https://docs.aws.amazon.com/AmazonECR/latest/userguide/service_limits.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/service_limits.html
https://docs.aws.amazon.com/sagemaker/latest/dg/host-instance-storage.html

AWS Marketplace Seller Guide
Instance size

Instance size
SageMaker provides a selection of instance types that are optimized to fit different ML use cases.
Instance types are comprised of varying combinations of CPU, GPU, memory, and networking capacity.
Instance types give you the flexibility to choose the appropriate mix of resources for building, training,
and deploying your ML models. For more information, see Amazon SageMaker ML Instance Types.

Payload size for inference
For an endpoint, the maximum size of the input data per invocation is 25 MB. This value can't be
adjusted. If your software expects larger input sizes, your buyers can deploy endpoints configured for
Amazon SageMaker Asynchronous Inference. If Asynchronous Inference is needed, provide detailed usage
information so that your buyers configure the endpoint properly.

For batch transform, the maximum size of the input data per invocation is 100 MB. This value can't be
adjusted.

Processing time for inference
For an endpoint, the maximum processing time per invocation is 60 seconds. If your software requires
longer processing times, your buyers can deploy endpoints configured for Amazon SageMaker
Asynchronous Inference. If Asynchronous Inference is needed, provide detailed usage information so that
your buyers configure the endpoint properly.

For batch transform, the maximum processing time per invocation is 60 minutes. This value can't be
adjusted.

Service quotas
For more information about quotas related to training and inference, see Amazon SageMaker Service
Quotas.

Managed spot training
For all algorithms from AWS Marketplace, the value of MaxWaitTimeInSeconds is set to 3,600 seconds
(60 minutes), even if the checkpoint for managed spot training is implemented. This value can't be
adjusted.

Docker images and AWS accounts
For publishing, images must be stored in Amazon ECR repositories owned by the AWS account of the
seller. It isn't possible to publish images that are stored in a repository owned by another AWS account.

Publishing model packages from built-in algorithms
or AWS Marketplace
Model packages created from training jobs using an Amazon SageMaker built-in algorithm or an
algorithm from an AWS Marketplace subscription can't be published.

You can still use the model artifacts from the training job, but your own inference image is required for
publishing model packages.

210

http://aws.amazon.com/sagemaker/pricing/instance-types/
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/async-inference.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html#limits_sagemaker
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html#limits_sagemaker
https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

AWS Marketplace Seller Guide
Supported AWS Regions for publishing

Supported AWS Regions for publishing
AWS Marketplace supports publishing model package and algorithm resources from AWS Regions where
the following are both true:

• A Region that Amazon SageMaker supports
• An available Region that is opted-in by default (for example, describe-regions returns
"OptInStatus": "opt-in-not-required")

All assets required for publishing a model package or algorithm product must be stored in the same
Region that you choose to publish from. This includes the following:

• Model package and algorithm resources that are created in Amazon SageMaker
• Inference and training images that are uploaded to Amazon ECR repositories
• Model artifacts (if any) that are stored in Amazon Simple Storage Service (Amazon S3) and

dynamically loaded during model deployment for model package resources
• Test data for inference and training validation that are stored in Amazon S3

You can develop and train your product in any Region that is supported by SageMaker. But, before
you can publish, you must copy all assets to and re-create resources in a Region that AWS Marketplace
supports publishing from.

During the listing process, regardless of the AWS Region that you publish from, you can choose the
Regions that you want to publish to and make your product available in.

Troubleshooting
This section provides help for some common errors that you might encounter during the publishing
process of your machine learning product. If your issue isn't listed, contact AWS Marketplace Seller
Operations.

General: I get a 400 error when I add the Amazon Resource Name (ARN) of my model package or
algorithm in the AWS Marketplace Management Portal

If you used the Amazon SageMaker console to create your resource, you must choose Yes on the final
page of the process for Publish this model package in AWS Marketplace or Yes for Publish this
algorithm in AWS Marketplace. You can't choose No and later publish it. Selecting Yes doesn't publish
the model package or algorithm. However, it validates your model package or algorithm resource when it
is created, which is necessary for use in AWS Marketplace.

If you're using the AWS SDK to create a model package or create an algorithm, ensure that the
parameter CertifyForMarketplace is set to true.

After you re-create your certified and validated model package or algorithm resource, add the new ARN
in the AWS Marketplace Management Portal.

General: I get a 404 error when I add the ARN of my model package or algorithm in the AWS
Marketplace Management Portal

This error can happen for several reasons:

• The ARN might be invalid. Ensure that you are using the correct ARN.
• For model packages, the ARNs should look similar to arn:aws:sagemaker:us-
east-2:000123456789:model-package/my-model-package-name.

211

http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html#ec2-describe-regions
http://aws.amazon.com/marketplace/management/contact-us/
http://aws.amazon.com/marketplace/management/contact-us/
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModelPackage.html#sagemaker-CreateModelPackage-request-CertifyForMarketplace
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAlgorithm.html#sagemaker-CreateAlgorithm-request-CertifyForMarketplace

AWS Marketplace Seller Guide
Reporting

• For algorithms, the ARNs should look similar to arn:aws:sagemaker:us-
east-2:000123456789:algorithm/my-algorithm.

• The model package or algorithm resource wasn't created in the same AWS account as the seller
account. Ensure that all resources and assets for publishing are in the seller account that you are
publishing from.

• The AWS Identity and Access Management (IAM) user or role that you use for publishing doesn't have
the correct IAM permissions to access the model package or algorithm resource. Ensure that your IAM
user or role has the following permissions:
• For model packages, the action sagemaker:DescribeModelPackage on the model package

resource must be allowed.
• For algorithms, the action sagemaker:DescribeAlgorithm on the algorithm resource must be

allowed.

General: I get a 500 error when I specify the pricing for my algorithm product in the AWS
Marketplace Management Portal

This error can happen when you attempt to publish an algorithm resource with only a training image and
without an accompanying inference image. Algorithm resources that are published on AWS Marketplace
must have both components. For more information, see Prepare your product in SageMaker (p. 180).

Amazon SageMaker: I get a “Client error: Access denied for registry” failure message when I create a
model package or algorithm resource

This error can happen when the image that is being used to create the model package or algorithm is
stored in an Amazon ECR repository that belongs to another AWS account. Model package or algorithm
validation does not support cross-account images. Copy the image to an Amazon ECR repository owned
by the AWS account that you are using to publish. Then, proceed with creating the resource using the
new image location.

Amazon SageMaker: I get “Not Started” and “Client error: No scan scheduled...” failure messages
when I create a model package or algorithm resource

This error can happen when SageMaker fails to start a scan of your Docker container image stored in
Amazon ECR. If this happens, open the Amazon ECR console, find the repository where your image was
uploaded to, choose the image, and then choose Scan.

Reporting
AWS Marketplace produces reports for your Amazon SageMaker products that include data about buyers,
financials, usage, and taxes. All reports are available in the AWS Marketplace Management Portal on the
Reports page. For more information, see Seller Reports.

The following subsections summarize how financials for your machine learning products that use
SageMaker are reported.

Daily business report
The daily business report provides the instance type, hours of usage, revenue from software charges, and
other details for each buyer and product. Buyers are identified by a unique and anonymous Customer
Reference ID. For more information, see Daily business report.

Monthly revenue report
The monthly revenue report provides you with the monthly revenue that has been billed to your buyers
for using your software. For more information, see Monthly billed revenue report.

212

http://aws.amazon.com/ecr/
https://console.aws.amazon.com/ecr/repositories?region=us-east-2
http://aws.amazon.com/marketplace/management/reports
https://docs.aws.amazon.com/marketplace/latest/userguide/Reporting.html
https://docs.aws.amazon.com/marketplace/latest/userguide/daily-business-report.html
https://docs.aws.amazon.com/marketplace/latest/userguide/monthly-billed-revenue-report.html

AWS Marketplace Seller Guide
Disbursement report

Disbursement report
The monthly disbursement report provides a breakdown of all funds collected on your behalf during the
settlement period for your software charges. The total settlement amount reflected in the report should
match the amount deposited to your bank account. For more information, see Disbursement report.

Other reports and analysis
For other available reports, see Seller reports.

You can also create custom reports using the available Data feeds (p. 299) from AWS Marketplace.

213

https://docs.aws.amazon.com/marketplace/latest/userguide/monthly-disbursement-report.html
https://docs.aws.amazon.com/marketplace/latest/userguide/Reporting.html

AWS Marketplace Seller Guide
Getting started with SaaS products

Software as a service (SaaS)–based
products

With software as a service (SaaS) products, you deploy software hosted on AWS infrastructure and grant
buyers access to the software in your AWS environment. You are responsible for managing customer
access, account creation, resource provisioning, and account management within your software.

For assistance with your SaaS products, contact us.

Topics

• Getting started with SaaS products (p. 214)

• Plan your SaaS product (p. 224)

• SaaS product guidelines (p. 226)

• SaaS product pricing (p. 227)

• SaaS customer onboarding (p. 232)

• Amazon SNS notifications for SaaS products (p. 234)

• Accessing the AWS Marketplace Metering and Entitlement Service APIs (p. 236)

• Reporting (p. 242)

• Code examples for SaaS product integration (p. 243)

• Using AWS PrivateLink with AWS Marketplace (p. 247)

Getting started with SaaS products
This chapter outlines how Software as a service (SaaS) products work for sellers who create and maintain
them. This section describes how to get your SaaS product on AWS Marketplace and how to integrate it
with the appropriate AWS Marketplace APIs, based on the SaaS product's billing model.

Prerequisites
Before you get started, you must complete the following prerequisites:

1. Access and use the AWS Marketplace Management Portal. This is the tool that you use to register as
a seller and manage the products that you sell on AWS Marketplace. For more information, see AWS
Marketplace Management Portal (p. 5).

2. Register as a seller, and submit your tax and banking information. For more information, see Seller
registration process (p. 6).

3. Plan how you'll create and integrate your SaaS product in AWS Marketplace. For more information, see
Plan your SaaS product (p. 224).

Topics

• Creating a SaaS product (p. 215)

• Create an initial SaaS product page (p. 216)

214

https://aws.amazon.com/marketplace/management/contact-us/
http://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Creating a SaaS product

• Integrate your SaaS subscription product (p. 216)

• Integrate your SaaS contract product (p. 219)

• Integrate your SaaS contract with pay-as-you-go product (p. 221)

• Deploy a serverless SaaS integration solution (p. 223)

Creating a SaaS product
To sell software as a service (SaaS) products, you create the SaaS product in AWS Marketplace, integrate
it with AWS Marketplace, test the integration, and release the product to customers. The following steps
explain the process in more detail.

To create a SaaS product in AWS Marketplace

1. Decide to list a SaaS product

Have a SaaS product that you would like to sell in AWS Marketplace. Review and understand how to
Plan your SaaS product (p. 224).

2. Determine pricing and offer type

There are three offer types for SaaS products: subscriptions, contracts, and contracts with pay-
as-you-go . Your choice of offer type affects how you integrate your SaaS product with AWS
Marketplace. For more information, see Plan your pricing (p. 224).

3. Collect assets

Collect the assets that you will need to use to submit your product. Assets for your product include:

• Product logo URL – A publicly accessible URL that contains a clear image of the logo for the
product you are providing.

• End User License Agreement (EULA) URL – Your product must have a EULA, and you must provide
a link to it for customers to read and review on your product's AWS Marketplace page.

• Product registration URL – This URL is where customers are sent after subscribing to your product
in AWS Marketplace.

• Metadata about your product – You provide the metadata in the product creation wizard of the
AWS Marketplace Management Portal.

• Support information for your product – This includes email addresses and URLs for your product's
support channels.

4. Submit your product for integration

Create an initial SaaS product page (p. 216) from your seller account using AWS Marketplace
Management Portal. AWS Marketplace will publish your product as a limited product, which means
that it's only available to your accounts to use for integration and testing. The AWS Marketplace
Operations Team will send you an email message with your product code, Amazon Simple
Notification Service (Amazon SNS) topics, and product page URL. With that information, you will
have an environment to use for creating and testing your integration with AWS Marketplace in your
product. Use the email message that you received from the AWS Marketplace Operations team for
correspondence regarding the product.

5. Integrate with AWS Marketplace

Your product must support customers onboarding and using your product, including validating
their subscription before giving them access, and, in some cases, metering for their usage. How you
integrate with AWS Marketplace depends on the offer type you're using for your product. For more
information about integration, based on offer type, see the following topics:

• Subscription integration

215

https://docs.aws.amazon.com/marketplace/latest/userguide/saas-integrate-subscription.html

AWS Marketplace Seller Guide
Create an initial SaaS product page

• Contract integration

• Contract with pay-as-you-go integration

The final step of integrating your product with AWS Marketplace is to test it to ensure that the
integration works properly.

6. Submit your product for launch

After you have verified your integration, and you're ready for the product to be live, submit it to the
AWS Marketplace Operations team (using the email case created earlier) for end-to-end testing and
launch.

7. Launch

After end-to-end testing is complete, you need to review the product page with the original prices.
Approve the page by responding to the email case you received when you created your product (see
Creating a SaaS product (p. 215)). After your approval, the AWS Marketplace Operations team will
make the product page live on AWS Marketplace. At this point, customers can start discovering and
subscribing to your product.

Create an initial SaaS product page
Take your software as a service (SaaS) application metadata, and create a new SaaS product in AWS
Marketplace catalog, using the AWS Marketplace Management Portal.

1. Sign in to the AWS Marketplace Management Portal.

2. For Products, choose SaaS.

3. For Create SaaS product, choose SaaS Subscriptions or SaaS Contracts,depending on the type of
product you want to create, and then choose Start.

Note
If you choose SaaS Contracts, you will set a contract price, or a contract with pay-as-you-go
pricing when you set the pricing information for your product.

4. Review and complete the product creation wizard using the metadata and product assets you
gathered. For assistance with creating your SaaS product, contact the AWS Marketplace Operations
team.

5. The AWS Marketplace Operations team publishes your product as a limited product that is visible to
you and any AWS accounts you have allowed to view the product.

Note
Prices can be temporarily reduced so that you can test the purchase flow without incurring
high charges. For more information, contact us.

6. The AWS Marketplace Operations team sends an email message to the address associated with your
AWS account to enable testing of product codes, Amazon Simple Notification Service (Amazon SNS)
topics, and product page URLs. This is the first of several tests for your product that are required
before the product can go live. You can respond to the email from the AWS Marketplace Operations
team for support and requests about your product, for example, requesting that more accounts have
access to the product for testing purposes. If you lose this information, or have questions, contact us.

Integrate your SaaS subscription product
Integrating your product with AWS Marketplace is one step in Creating a SaaS product (p. 215). To
integrate your software as a service (SaaS) subscription product with AWS Marketplace, you must write
code and demonstrate that it can respond successfully to several customer scenarios. The following

216

https://docs.aws.amazon.com/marketplace/latest/userguide/saas-integrate-contract.html
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-integrate-contract-consumption.html
http://aws.amazon.com/marketplace/management/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Integrate your SaaS subscription product

sections describe these scenarios, how to respond to them, and provide an overview of testing your
integration.

Note
Before you begin, make sure you've chosen the right pricing model for your software as
a service (SaaS) product in AWS Marketplace. For more information, see Plan your SaaS
product (p. 224).

Topics
• Scenario: Your service validates new customers (p. 217)
• Scenario: Meter usage (p. 217)
• Scenario: Monitor changes to user subscriptions (p. 217)
• Scenario: Verify customer subscription (p. 218)
• Testing your SaaS subscription product integration (p. 218)

Scenario: Your service validates new customers
When a customer subscribes to your product, they are redirected to your registration URL which is an
HTTP POST request with a temporary x-amzn-marketplace-token token. Respond to this request in
the following ways:

1. Exchange the token for a CustomerIdentifier, CustomerAWSAccountId, and ProductCode by
calling the ResolveCustomer API operation in the AWS Marketplace Metering Service.

2. Persist the CustomerIdentifier, CustomerAWSAccountID, and ProductCode in your system
for future calls. You must store whether the customer has a valid subscription, along with whatever
information you need about the customer.

3. As a response to the request, you must show your user's first use experience (as applicable for your
service).

Scenario: Meter usage
When the customer starts to use your service, you must send metering records hourly. For details on how
to meter, see Metering for usage (p. 236).

We recommend that you use AWS CloudTrail to monitor activity to ensure that billing information is
being sent to AWS. Keep the following in mind when sending metering records:

• Metering requests are de-duplicated on the hour.
• Records sent every hour are cumulative.
• We strongly recommend as a best practice that, even if there were no records in the last hour, you send

metering records every hour, with usage of 0.

Scenario: Monitor changes to user subscriptions
Set up an Amazon Simple Queue Service (Amazon SQS) queue, and subscribe to your product's Amazon
SNS topic. Your SNS topic information was included in the email message that you received from the
AWS Marketplace Operations team when you created your product. For more information, see Creating
a SaaS product (p. 215). By subscribing to your SNS topic, you receive notifications about changes to
customer subscriptions, including providing or revoking access for specific customers.

Note
An Amazon SNS topic Amazon Resource Name (ARN) looks like arn:aws:sns:us-
east-1:<account id>:aws-mp-subscription-notification-<product code>.

217

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_ResolveCustomer.html

AWS Marketplace Seller Guide
Integrate your SaaS subscription product

The notifications that you must respond to are:

• subscribe-success – The customer is subscribed, and you can successfully meter against their
customer ID.

• unsubscribe-pending – The customer is in the process of unsubscribing. You should send any last
metering records.

• unsubscribe-success – The customer has unsubscribed. Metering records for the customer will
no longer be accepted. Follow your practices for shutting down customer resources, adhering to your
retention policies.

• subscribe-fail – The customer subscription failed. You should not meter against their customer ID
or create resources on behalf of the customer.

Scenario: Verify customer subscription
Before creating resources on the customer's behalf, verify that the customer should have access to your
product. Store the latest status of the customer from the notifications you receive via Amazon SQS to
know if the customer has access.

Testing your SaaS subscription product integration
After you've integrated your SaaS subscription product with AWS Marketplace, you must conduct in-
depth testing to ensure that the integration is successful. The following procedure outlines the steps to
verify your product integration.

Note
Use your own accounts to subscribe to your product and test that the integration is successful.
Prices can be temporarily reduced so that you can test the purchase flow without incurring
high charges in those accounts. For more information about temporarily reducing the prices or
allowing additional test accounts to access your product, contact us.
After your product is launched, the service must continue to respond to these scenarios for new
customers.

1. Use an allowed account to test the customer experience by subscribing to your product.

2. After you've subscribed with the allowed account, ensure that the account is redirected to the
registration URL, and that the redirect is a POST request that includes a temporary token. Make
sure that your application persists the customer ID for future calls. This tests part of Scenario: Your
service validates new customers (p. 217).

3. After verifying the test account in the previous step, onboard the account into your application. For
example, you can have the test customer fill out a form to create a new user account. Or, provide
them with other next steps to get access to your SaaS application. This tests part of Scenario: Your
service validates new customers (p. 217).

4. After the test customer is onboarded, make requests that will send metering records to AWS for
billing purposes by using the BatchMeterUsage API operation in the AWS Marketplace Metering
Service. This tests Scenario: Meter usage (p. 217).

5. Test for subscription changes. Possible scenarios include unsubscribes, successful subscriptions, and
failed subscriptions. This tests Scenario: Monitor changes to user subscriptions (p. 217).

6. Verify a successful subscription. After you receive an Amazon SNS notification for your test account
with a successful subscription message, metering can begin. Records that are sent to the AWS
Marketplace Metering Service before you receive the Amazon SNS notification aren't metered. This
tests Scenario: Verify customer subscription (p. 218).

Note
To prevent billing issues, we strongly recommend programmatically waiting for this
notification before launching resources on behalf of your customers.

218

https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Integrate your SaaS contract product

7. After you have completed all of the integration requirements and tested the solution, notify the
AWS Marketplace Operations team. They will run a series of final tests on the solution by verifying
that you have successfully sent metered records with the BatchMeterUsage API operation.

After your integration and testing is complete, you can perform a final review and list your product on
the public AWS Marketplace. For more information, see Creating a SaaS product (p. 215).

Integrate your SaaS contract product
Integrating your product with AWS Marketplace is one step in Creating a SaaS product (p. 215). To
integrate your software as a service (SaaS) contract product with AWS Marketplace, you must write code
and demonstrate that it can respond successfully to several customer scenarios. The following sections
describe these scenarios, how to respond to them, and provide an overview of testing your integration.

Note
Before you begin, make sure you've chosen the right pricing model for your software as
a service (SaaS) product in AWS Marketplace. For more information, see Plan your SaaS
product (p. 224).

Topics
• Scenario: Your service validates new customers (p. 219)
• Scenario: Your service handles customer requests (p. 219)
• Scenario: Monitor changes to user subscriptions (p. 220)
• Testing your SaaS contract product integration (p. 220)

Scenario: Your service validates new customers
When a customer subscribes to your product, they are redirected to your registration URL, which is an
HTTP POST request with a temporary x-amzn-marketplace-token token. Respond to this request in
the following ways:

1. Exchange the token for a CustomerIdentifier, CustomerAWSAccountId, and ProductCode by
calling the ResolveCustomer API operation in the AWS Marketplace Metering Service.

2. Verify the subscription and quantity (if applicable) the customer has access to by calling the
GetEntitlements API operation in the AWS Marketplace Entitlement Service.

3. Persist the CustomerIdentifier, CustomerAWSAccountId, and ProductCode in your system for
future calls. Store whether the customer has a valid subscription, along with whatever information
you need about the customer.

4. As a response to the request, you must show your user's first use experience (as applicable for your
service).

Scenario: Your service handles customer requests
When a customer makes a request to your service, you must respond to the following scenarios with
appropriate actions or messaging:

• They don't have a customer ID in your system. This means that they have not yet subscribed. You
should tell the user how to subscribe.

• They have a customer ID, and the GetEntitlements API operation returns an appropriate
entitlement. In this scenario, you should fulfill the request.

• They do have a customer ID, but the GetEntitlements API operation returns no entitlement, or not
enough quantity to fulfill the request. In this scenario, you must determine how to handle access and
manage their experience.

219

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_ResolveCustomer.html
https://docs.aws.amazon.com/marketplaceentitlement/latest/APIReference/API_GetEntitlements.html
https://docs.aws.amazon.com/marketplaceentitlement/latest/APIReference/API_GetEntitlements.html

AWS Marketplace Seller Guide
Integrate your SaaS contract product

Scenario: Monitor changes to user subscriptions
Set up an Amazon Simple Queue Service (Amazon SQS) queue, and subscribe to your product's Amazon
SNS topic. Your SNS topic information was included in the email message that you received from the
AWS Marketplace Operations Team when you created your product. For more information, see Creating
a SaaS product (p. 215). By subscribing to your SNS topic, you receive notifications about changes to
customer entitlements, including providing or revoking access for specific customers.

Note
An SNS topic Amazon Resource Name (ARN) looks like arn:aws:sns:us-east-1:<account
id>:aws-mp-entitlement-notification-<product code>.

The only notification that you must respond to is:

• entitlement-updated – The customer entitlement has changed, and you must call the
GetEntitlements API operation to see the new status. Update your customer store, and, if
applicable (for example, the customer's contract has lapsed), follow your practices for shutting down
customer resources, adhering to your retention policies.

Note
For additional information, see Checking entitlements (p. 239).

Testing your SaaS contract product integration
After you've integrated your SaaS contract product with AWS Marketplace, you must conduct in-depth
testing to ensure that the integration is successful. The following procedure outlines the steps to verify
your product integration.

Note
Use your own accounts to subscribe to your product and test that the integration is successful.
Prices can be temporarily reduced so that you can test the purchase flow without incurring
high charges in those accounts. For more information about temporarily reducing the prices or
allowing additional test accounts to access your product, contact us.
After your product is launched, the service must continue to respond to these scenarios for new
customers.

1. Use an allowed account to test the customer experience by getting a contract for your product.

2. After the account has the contract, ensure that the account is redirected to the registration URL, and
that the redirect is a POST request that includes a temporary token. Make sure that your application
persists the customer ID for future calls and correctly handles the entitlement the customer has. This
tests part of Scenario: Your service validates new customers (p. 219).

3. After verifying the test account in the previous step, onboard the account into your application. For
example, you can have the test customer fill out a form to create a new user account. Or, provide
them with other next steps to get access to your SaaS application. This tests part of Scenario: Your
service validates new customers (p. 219).

4. If no entitlement is returned from the GetEntitlements API operation, either during onboarding
or in your ongoing verification passes, your application must correctly manage access and the
experience for users who are not entitled. This tests Scenario: Your service handles customer
requests (p. 219).

5. Test for subscription changes. Verify that your application correctly handles unsubscribes, successful
subscription, and failed subscription scenarios. This tests Scenario: Monitor changes to user
subscriptions (p. 220).

6. After you have completed all the integration requirements and tested the solution, notify the
AWS Marketplace Operations team. They will then test the solution by verifying that you have
successfully called the GetEntitlements API operation and sufficiently onboarded new customers.

220

https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Integrate your SaaS contract with pay-as-you-go product

After your integration and testing is complete, you can perform a final review and list your product on
the public AWS Marketplace. For more information, see Creating a SaaS product (p. 215).

Integrate your SaaS contract with pay-as-you-go
product
Integrating your product with AWS Marketplace is one step in Creating a SaaS product (p. 215). To
integrate your software as a service (SaaS) contract product with AWS Marketplace, you must write code
and demonstrate that it can respond successfully to several customer scenarios. The following sections
describe these scenarios, how to respond to them, and provide an overview of testing your integration.

Note
Before you begin, make sure you've chosen the right pricing model for your software as
a service (SaaS) product in AWS Marketplace. For more information, see Plan your SaaS
product (p. 224).

Topics
• Scenario: Your service validates new customers (p. 221)

• Scenario: Your service handles customer requests (p. 221)

• Scenario: Meter usage (p. 222)

• Scenario: Monitor changes to user entitlements (p. 222)

• Testing your SaaS contract product integration (p. 222)

Scenario: Your service validates new customers
When a customer subscribes to your product, they are redirected to your registration URL, which is an
HTTP POST request with a temporary x-amzn-marketplace-token token. Respond to this request in
the following ways:

1. Exchange the token for a CustomerIdentifier, CustomerAWSAccountId, and ProductCode by
calling the ResolveCustomer API operation in the AWS Marketplace Metering Service.

2. Verify the subscription and quantity (if applicable) the customer has access to by calling the
GetEntitlements action in the AWS Marketplace Entitlement Service.

3. Persist the CustomerIdentifier, CustomerAWSAccountId, and ProductCode in your system for
future calls. Store whether the customer has a valid subscription, along with whatever information
you need about the customer.

4. As a response to the request, you must show your user's first use experience (as applicable for your
service).

Scenario: Your service handles customer requests
When a customer makes a request to your service, you must respond to the following scenarios with
appropriate actions or messaging:

• They don't have a customer ID in your system. This means that they have not yet subscribed. You
should give them messaging describing how to subscribe.

• They have a customer ID, and the GetEntitlements API operation returns an appropriate
entitlement. In this scenario, you should fulfill the request.

• They do have a customer ID, but the GetEntitlements API operation returns no entitlement, or not
enough quantity to fulfill the request. In this scenario, you must determine how to handle access and
manage their experience.

221

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_ResolveCustomer.html
https://docs.aws.amazon.com/marketplaceentitlement/latest/APIReference/API_GetEntitlements.html
https://docs.aws.amazon.com/marketplaceentitlement/latest/APIReference/API_GetEntitlements.html

AWS Marketplace Seller Guide
Integrate your SaaS contract with pay-as-you-go product

Scenario: Meter usage
When the customer starts to use your service, you must send metering records hourly. For details on how
to meter, see Metering for usage (p. 236).

We recommend that you use AWS CloudTrail to monitor activity to ensure that billing information is
being sent to AWS. Keep the following in mind when sending metering records:

• Metering requests are de-duplicated on the hour.

• Records sent every hour are cumulative.

• We strongly recommend as a best practice that, even if there were no records in the last hour, you send
metering records every hour, with usage of 0.

Scenario: Monitor changes to user entitlements
Set up an Amazon Simple Queue Service (Amazon SQS) queue, and subscribe to your product's
Amazon SNS topics—there are two SNS topics, one for entitlement changes and one for subscription
changes. Your topic information was included in the email message that you received from the AWS
Marketplace Operations Team when you created your product. For more information, see Creating a
SaaS product (p. 215). By subscribing to your SNS topics, you receive notifications about changes to
customer subscriptions, including providing or revoking access for specific customers.

Note
An SNS topic Amazon Resource Name (ARN) for a subscription change looks
like arn:aws:sns:us-east-1:<account id>:aws-mp-subscription-
notification-<product code>. An SNS topic ARN for entitlement changes
looks like arn:aws:sns:us-east-1:<account id>:aws-mp-entitlement-
notification-<product code>.

The notifications that you must respond to are as follows:

• entitlement-updated (in the entitlement SNS topic)– The customer entitlement has changed, and
you must call the GetEntitlements API operation to see the new status. Update your customer
store, and, if applicable (for example, the customer's contract has lapsed), follow your practices for
shutting down customer resources, adhering to your retention policies.

• subscribe-success (in the subscription SNS topic) – The customer is subscribed, and you can
successfully meter against their customer ID.

• unsubscribe-pending (in the subscription SNS topic) – The customer is in the process of
unsubscribing. You should send any last metering records.

• unsubscribe-success (in the subscription SNS topic) – The customer has unsubscribed. Metering
records for the customer will no longer be accepted. Follow your practices for shutting down customer
resources, adhering to your retention policies.

• subscribe-fail (in the subscription SNS topic) – The customer subscription failed. You should not
meter against their customer ID or enable resources on behalf of the customer.

Note
For additional information, see Checking entitlements (p. 239).

Testing your SaaS contract product integration
After you've integrated your contract with pay-as-you-go product with AWS Marketplace, you must
conduct in-depth testing to ensure that the integration is successful. The following procedure outlines
the steps to verify your product integration.

222

AWS Marketplace Seller Guide
Deploy a serverless SaaS integration solution

Note
Use your own accounts to subscribe to your product and test that the integration is successful.
Prices can be temporarily reduced so that you can test the purchase flow without incurring
high charges in those accounts. For more information about temporarily reducing the prices or
allowing additional test accounts to access your product, contact us.
After your product is launched, the service must continue to respond to these scenarios for new
customers.

1. Use an allowed account to test the customer experience by getting a contract for your product.

2. After the account has the contract, ensure that the account is redirected to the registration URL, and
that the redirect is a POST request that includes a temporary token. Make sure that your application
persists the customer ID for future calls and correctly handles the entitlement the customer has. This
tests part of Scenario: Your service validates new customers (p. 221).

3. After verifying the test account in the previous step, onboard the account into your application. For
example, you can have the test customer fill out a form to create a new user account. Or, provide
them with other next steps to get access to your SaaS application. This tests part of Scenario: Your
service validates new customers (p. 221).

4. If no entitlement is returned from the GetEntitlements API operation, either during onboarding
or in your ongoing verification passes, your application must correctly manage access and the
experience for users who are not entitled. This tests Scenario: Your service handles customer
requests (p. 221).

5. After the test customer is onboarded, make requests that will send metering records to AWS for
billing purposes by using the BatchMeterUsage API operation in the AWS Marketplace Metering
Service. This tests Scenario: Meter usage (p. 222).

6. Test for subscription changes. Verify that your application correctly handles unsubscribes, successful
subscription, and failed subscription scenarios. This tests Scenario: Monitor changes to user
entitlements (p. 222).

7. After you have completed all the integration requirements and tested the solution, notify the
AWS Marketplace Operations team. They will then test the solution by verifying that you have
successfully called the GetEntitlements API operation and sufficiently onboarded new customers.
They will also verify that you have successfully sent metered records with the BatchMeterUsage
API operation.

After your integration and testing is complete, you can perform a final review and list your product on
the public AWS Marketplace. For more information, see Creating a SaaS product (p. 215).

Deploy a serverless SaaS integration solution
The AWS Marketplace serverless SaaS integration deployment fulfills the core capabilities required
to successfully integrate a vendor’s SaaS solution with its corresponding listing on AWS Marketplace.
These capabilities include accepting new customer registrations, granting and revoking customer access,
updating customer entitlements, and reporting metered usage.

The following figure shows how the AWS Marketplace serverless SaaS integration on AWS environment
sets up the following workflow of events.

223

https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Plan your SaaS product

For more information about how to deploy a serverlass SaaS integration on the AWS Cloud, reference
the AWS Marketplace Serverless SaaS Integration Quick Start Reference Deployment Guide. This Quick
Start Reference Guide is for registered AWS Marketplace sellers who want a lightweight serverless
solution for completing the required integration on new SaaS listings.

Plan your SaaS product
Before you add your SaaS product to AWS Marketplace, you must first do some planning. This step is
critical to the success of your product. A lack of planning can result in billing issues or you might have to
re-create your product in AWS Marketplace.

Important
Most of your product's settings can’t be changed after you've configured them. If you need to
change them after the product is created in AWS Marketplace, you probably need to create a
new product with the correct settings.

Plan your pricing
There are three pricing options for SaaS products on AWS Marketplace. Choosing the right pricing model
for your product is the most important decision you will make. Choosing the wrong pricing model can
set you back by weeks, because it determines the payment options for your customers and the billing
integration code you'll need to write, test, and deploy.

• SaaS subscriptions – A pay-as-you-go model where buyers are billed for their hourly usage of your
SaaS product.

• SaaS contracts – Buyers are either billed in advance for the use of your software, or you can offer
them a flexible payment schedule.

• SaaS contracts with pay-as-you-go – This option is similar to a standard contract, however your
customers can also pay for additional usage above their contract. This is a blended pricing option, that
gives your customers the most pricing options and it requires the most integration code on your end.

For more information on pricing, see SaaS product pricing (p. 227).

224

https://aws.amazon.com/quickstart/architecture/aws-marketplace-saas/

AWS Marketplace Seller Guide
Plan your billing integration

Plan your billing integration
One of the benefits of having a SaaS product on AWS Marketplace is consolidating billing. In order to
take advantage of this benefit, you must integrate with the AWS Marketplace Metering Service or the
AWS Marketplace Entitlement Service, depending on your chosen pricing model. These two services help
you ensure that your billing and usage reporting is accurate.

After you plan your integration, you must test the integration with your product before it goes live.
For more information about integration and testing, see Accessing the AWS Marketplace Metering and
Entitlement Service APIs (p. 236).

Plan your Amazon SNS integration
There are two Amazon SNS topics that you can subscribe to for your SaaS product. These messages
can help you programmatically handle changes to subscriptions and contracts initiated by AWS or by
your customers. You can use these Amazon SNS notifications as programmatic triggers to enable a
customer to register for a new account in on your product registration website, to deny customers with
expired subscriptions from accessing your product, depending on how you program the handling of
these notifications.

Plan how customers will access your product
This section describes how to make your product accessible to buyers.

Plan your SaaS product registration Website
Customers who buy your SaaS product need to access to it. You must plan and implement how you want
your customers to access the product. SaaS products support the following access options:

• AWS PrivateLink
• Your own product website

Using AWS PrivateLink for customers to access your SaaS product

You can use Using AWS PrivateLink with AWS Marketplace (p. 247) to configure your service as an
Amazon Virtual Private Cloud (Amazon VPC) endpoint service. Your customers can create a VPC endpoint
and access your software across the AWS Cloud virtual network. Alternatively, you can provide access to
your software product through a website you own and maintain, with customers creating a connection
across the internet.

Using your own registration website

Your SaaS product is hosted in your environment and it must be accessed over the internet through
a public endpoint that you manage and maintain, like a website. Typically, you have a website that
customers use to register for your product, sign in to use the product, and access support for your
product. For the sake of simplicity, this endpoint will be referred to as your registration website.

If you choose this access option and your product doesn't already have a registration website, you need
to create one. After you have a registration website, your website must be programmed to validate
customers whenever they access your registration page.

To validate customers using your registration website

1. Accept POST requests that includes the temporary token x-amzn-marketplace-token.

225

AWS Marketplace Seller Guide
SaaS product guidelines

2. Exchange the token for a customerID by calling ResolveCustomer in the AWS Marketplace Metering
Service.

3. After obtaining a customerID, persist it in your application for future calls.

4. With the customerID, call GetEntitlement in the AWS Marketplace Entitlement Service to verify
which dimension the customer is subscribed to and the quantity.

5. After you've verified your customer's access and entitlement, program your application to ensure
that the customer doesn't exceed what they're entitled to.

SaaS product guidelines
AWS Marketplace maintains these guidelines for all SaaS products and offerings on AWS Marketplace to
promote a safe, secure, and trustworthy platform for our customers.

All products and their related metadata are reviewed when submitted to ensure that they meet or
exceed current AWS Marketplace guidelines. These guidelines are reviewed and adjusted to meet our
evolving security requirements. In addition, AWS Marketplace continuously reviews products to verify
that they meet any changes to these guidelines. If products fall out of compliance, we might require
that you update your product and in some cases your product might temporarily be unavailable to new
subscribers until issues are resolved.

Product setup guidelines
All SaaS products must adhere to the following product setup guidelines:

• At least one pricing dimension must have a price greater than $0.00.

• All pricing dimensions must relate to actual software and cannot include any other products or
services unrelated to the software.

• SaaS products offered exclusively in the AWS GovCloud (US) Regions must include GovCloud
somewhere in the product title.

Customer information requirements
All SaaS products must adhere to the following customer information requirements:

• SaaS products must be billed entirely through the listed dimensions on AWS Marketplace.

• You cannot collect customer payment information for your SaaS product at any time, including credit
card and bank account information.

Product usage guidelines
All SaaS products must adhere to the following product usage guidelines:

• After subscribing to the product in AWS Marketplace, customers should be able to create an account
within your SaaS application and gain access to a web console within two business days. If the
customer cannot gain access to the application immediately, you must provide a message with specific
instructions on when they will gain access. When an account has been created, the customer must be
sent a notification confirming that their account has been created along with clear next steps.

• If a customer already has an account in the SaaS application, they must have the ability to log in from
the fulfillment landing page.

226

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_ResolveCustomer.html
https://docs.aws.amazon.com/marketplaceentitlement/latest/APIReference/API_GetEntitlements.html

AWS Marketplace Seller Guide
Architecture guidelines

• Customers must be able to see the status of their subscription within the SaaS application, including
any relevant contract or subscription usage information.

• Customers must be able to easily get help with issues such as: using the application, troubleshooting,
and requesting refunds (if applicable). Support contact options must be specified on the fulfillment
landing page.

• Product software and metadata must not contain language that redirects users to other cloud
platforms, additional products, or up sell services that aren't available on AWS Marketplace.

• If your product is an add-on to another ISV’s product, your product description must indicate that it
extends the functionality of the other product and that without it, your product has very limited utility.
For example, This product extends the functionality of <product name> and without it, this product has
very limited utility. Please note that <product name> might require its own license for full functionality
with this listing.

Architecture guidelines
All SaaS products must adhere to the following architecture guidelines:

• A portion of your application must be hosted in an AWS account that you own.

• All application components should be hosted in infrastructure you manage. Applications that require
additional resources in the customer’s infrastructure must follow these guidelines:

• Provision resources in a secure way, such as using the AWS Security Token Service (AWS STS) or AWS
Identity and Access Management (IAM).

• Provide additional documentation including a description of all provisioned AWS services, IAM policy
statements, and how an IAM role or user is deployed and used in the customer’s account.

• Include a notification in the product description that explains that if the customer incurs additional
AWS infrastructure charges separate from their AWS Marketplace transaction, they're responsible for
paying the additional infrastructure charges.

• If your product deploys an agent, you must provide instructions to the customer that describe how
to deploy it in their AWS account.

• Applications that require resources running in the customer's infrastructure will have an additional
review by AWS Marketplace, which can take 2-4 weeks.

• Successfully call the AWS Marketplace APIs from the AWS account that registered as a provider and
submitted the SaaS publishing request. The SaaS pricing model determines which APIs should be
called:

• SaaS contracts – GetEntitlements in the AWS Marketplace Entitlement Service.

• SaaS contracts with consumption – GetEntitlements in the AWS Marketplace Entitlement Service
and BatchMeterUsage in the AWS Marketplace Metering Service.

• SaaS subscriptions – BatchMeterUsage in the AWS Marketplace Metering Service.

• SaaS products offered exclusively in the AWS GovCloud (US) Regions must outline the architectural
boundaries between other AWS Regions and the AWS GovCloud (US) Regions, use cases for the
product, and the workloads not recommended for the product.

SaaS product pricing
After a buyer purchases your software as a service (SaaS) product on AWS Marketplace, AWS Marketplace
provides you with their billing identifier. You use the billing identifier to call the AWS Marketplace
Entitlement Service and the AWS Marketplace Metering Service. Then, customers access the product in
your AWS environment or through a VPC endpoint connection you create.

227

https://docs.aws.amazon.com/marketplaceentitlement/latest/APIReference/API_GetEntitlements.html
https://docs.aws.amazon.com/marketplaceentitlement/latest/APIReference/API_GetEntitlements.html
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_BatchMeterUsage.html
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_BatchMeterUsage.html

AWS Marketplace Seller Guide
Pricing for SaaS subscriptions

SaaS pricing models

Pricing model Description

SaaS subscriptions A pay-as-you-go model where we bill buyers
for their hourly usage of your SaaS product.
For more information, see Pricing for SaaS
subscriptions (p. 228)

SaaS contracts Buyers are either billed in advance for the
use of your software, or you can offer them a
flexible payment schedule. Customers can also
pay for additional usage above their contract.
For more information, see Pricing for SaaS
contracts (p. 229).

SaaS contracts with pay-as-you-go Buyers are either billed in advance for the use of
your software, or you can offer them a flexible
payment schedule. Buyers are also billed an
additional metered rate for usage on top of the
contract price. For more information, see Pricing
for SaaS contracts (p. 229).

To make your SaaS product available on AWS Marketplace, decide whether you want to offer the SaaS
subscriptions pricing model (p. 228) or the SaaS contracts pricing model (p. 229).

Pricing for SaaS subscriptions
For software as a service (SaaS) subscriptions, AWS Marketplace bills your customers based on the
metering records that you send to us. All charges must be measured and reported every hour from the
software deployed in the customer's account. All usage is then calculated monthly and billed monthly
using the same mechanism as AMI based AWS Marketplace offerings. Our ability to bill customers for
usage of your product is dependent upon receiving metering records from you. You are responsible for
ensuring that your product’s metering records are successfully transmitted and received.

Before you can publish a SaaS product with subscription pricing, you must do the following:

1. Create a new SaaS product in the AWS Marketplace Management Portal, choose New SaaS
Subscription.

2. Complete the fields in the General tab with the necessary information. Make a note of the product
code.

3. On the Pricing tab, under Set Pricing, select the Category that describes your product’s pricing most
accurately. The pricing category appears to customers on the AWS Marketplace website. You can
choose from Bandwidth (GBps, MBps), Data (GB, MB, TB), Hosts (hours), Requests, Tiers (hours), or
Users (hours). If none of the predefined categories fit your needs, you can choose the more generic
Units category.

Next, define your Pricing Dimensions. Each Pricing Dimension represents a feature or service that
you can set a per-unit price for. Examples of dimensions include users, hosts scanned, and GB of logs
ingested. You can define up to 24 dimensions. For each dimension you define, you must add the
following information:
• Dimension API Name – The API name used when sending metering records to the AWS Marketplace

Metering Service. This name indicates which dimension your customer used. This name is visible in
billing reports. The name doesn't need to be reader-friendly because you're the only one with access
to your reports. After you set the name, you can't change it.

228

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html

AWS Marketplace Seller Guide
Pricing for SaaS contracts

• Dimension Description – The customer-facing statement that describes the dimension for the
product. The description can be no more than 70 characters and should be user-friendly. Examples
of descriptions are Administrators per hour, and Per Mbps bandwidth provisioned. After the product
is published, you can't change this description.

• Dimension Rate – The software charge per FCP unit for this product, in USD. This field supports
three decimal places.

When a SaaS subscription ends

A customer can unsubscribe from your SaaS subscription product through the AWS Management
Console. Key points of the SaaS subscription ending process include the following:

1. Your SaaS product is sent an unsubscribe-pending notification through the Amazon SNS topic for
that customer.

2. You have one hour to meter any remaining usage for the customer.

3. After this hour, you receive an unsubscribe-success notification. At this point, you can no longer
send metering records for this customer.

It’s up to you to decide how you want to disable functionality in your SaaS product for unsubscribed
customers. For example, your product might complete the customer's existing work but prevent them
from creating work. You might want to display a message to the customer that their usage has been
disabled. Customers can resubscribe to your product through AWS Marketplace.

When a SaaS subscription is cancelled

Key points of the SaaS subscription cancellation process include the following:

1. A customer can cancel their subscription to your SaaS subscription product the Your Marketplace
Software page of the AWS Marketplace website.

Your SaaS product is sent notification through the Amazon SNS topic for that customer.

2. You have one hour to meter any remaining usage for the customer.

3. You notify the customer from your product that the cancellation is in progress. If a customer indicates
that they want to cancel through your product, direct the customer to AWS Marketplace. To guarantee
that there will be no future charges, customers should confirm the cancellation with AWS Marketplace.

Pricing for SaaS contracts
For software as a service (SaaS) contracts, the customer initiates a purchase of your software and enters
into an agreement with you. Under the agreement, the customer is entitled to a specified quantity of
use of your SaaS product. AWS Marketplace communicates these entitlements to your SaaS application.
This is done through the AWS Marketplace Entitlement Service. When using the SaaS Contract pricing
model, your application never sends metering records. Instead, it verifies entitlement by calling the AWS
Marketplace Entitlement Service. You define the usage categories, dimensions, and the length of the
contract.

AWS Marketplace bills your customers upfront or by the payment schedule that you define, based on
the contract between you and your customer. After that point, they're entitled to use those resources.
For additional usage above their contract, AWS Marketplace bills your customers based on the metering
records received by us through the AWS Marketplace Entitlement Service.

Before you can publish a SaaS product with contract pricing, you must do the following:

229

AWS Marketplace Seller Guide
Pricing for SaaS contracts

1. Create a new SaaS product in the AWS Marketplace Management Portal, and choose New SaaS
Contract.

2. Complete the fields in the General tab with the necessary information. Make a note of the product
code.

3. On the Pricing tab:

a. For Set Pricing, choose the Contract Duration you want offer customers. You can enter different
prices for each contract duration. You can select one or more of the following options: Monthly, 1
year, 2 Years, and 3 Years. If you are creating a private offer, you can choose a custom duration in
months (up to 60 months).

b. For Choose the contract type you want to offer, choose how you want customers to be able to
purchase your product from the following options:

• Buyer can choose one or more options offered – Customers can select a quantity for each
pricing dimension you offer.

• Buyer can choose one tier from multiple tiers offered – Customers choose a tier from options
that include different sets of features, services, and usage amounts.

c. Choose the usage unit category that describes your product’s pricing most accurately. The pricing
category appears to customers on the AWS Marketplace website. You can choose from Bandwidth
(GBps, MBps), Data (GB, MB, TB), Hosts (hours), Requests, Tiers (hours), or Users (hours). If none of
the predefined categories fit your needs, you can choose the more generic Units category.

4. After you choose a category, define your Pricing Dimensions. Each Pricing Dimension represents
a feature or service that you can set a per unit price for. Examples of dimensions are users, hosts
scanned, and GB of logs ingested. For each dimension you define, you add a name, a description, a
price, and an API name. The name, price, and description are displayed to customers. You use the API
name for tracking and reporting with AWS Marketplace as follows:

• Calling the AWS Marketplace Entitlement Service to retrieve the dimensions your customers have
purchased.

• Calling the AWS Marketplace Metering Service to indicate which dimensions customers used.

For each pricing dimension in your contract, you can choose to let customers pay as they go for
additional usage of that dimension above their contract. You can also add additional dimensions
without contract prices that customers only consume by paying as they go.

When using the wizard to create the contracts for your SaaS product, you must define the following
fields for your pricing dimensions:

• Dimension API Name – The name used when calling the Entitlements API. This name is visible in
billing reports and reports that aren't external-facing. The maximum length for the API name is 15
characters. After you set the name, it can't be changed.

• Dimension Display Name: – The customer-facing name of a dimension. This name should help
the customer understand the dimension for the product. The name should be user-friendly, and its
maximum length is 24 characters. This value can be changed.

• Dimension Description: – The customer-facing description of a dimension that provides additional
information about the dimension for the product. The maximum length for the description is 70
characters.

• Dimension - Monthly Price – The software charge per unit for the 1-month option for this
dimension. This field supports three decimal places.

• Dimension - 1 Year Price – The software charge per unit for the 12-month option for this
dimension. This field supports three decimal places. It's not a monthly charge. The price must reflect
the 12-month one-time charge price.

• Dimension - 2 Years Price – The software charge per unit for the 24-month option for this
dimension. This field supports three decimal places.

• Dimension - 3 Years Price – The software charge per unit for the 36-month option for this
dimension. This field supports three decimal places.

230

https://docs.aws.amazon.com/marketplaceentitlement/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/Welcome.html

AWS Marketplace Seller Guide
Pricing for SaaS contracts

Example: Data storage application

Monthly price 12-month price 24-month price Pay-as-you-
go price for
additional usage

Unencrypted data
(GB)

$1.50/GB $16.00/GB $30.00/GB $0.1/GB per hour

Encrypted data
(GB)

$1.55/GB $16.60/GB $31.20/GB $0.11/GB per hour

Example: Log monitoring product

Monthly price 12-month price Pay-as-you-go price
for additional usage

Basic (10 hosts
monitored, 5 containers
monitored)

$100 $1000

Standard (20 hosts
monitored, 10
containers monitored)

$200 $2000

Pro (40 hosts
monitored, 20
containers monitored)

$400 $4000

Additional hosts
monitored per hour

$0.1

Additional containers
monitored per hour

$0.2

Note
The prices can be for the following durations: 1 month, 12 months, 24 months, or 36 months.
You can choose to offer one or more of these options for your product. The durations must
be the same across each dimension. For example, assume that you have ReadOnlyUsers and
AdminUsers dimensions. If you offer a yearly price for ReadOnlyUsers, you must offer a
yearly price for AdminUsers, too.

SaaS contract upgrades
Customers can upgrade a contract to one of a higher value except for longer durations. For example,
they can upgrade to higher quantities or higher-value entitlements. Customers are given a prorated
credit for their existing contract. Customers can't decrease the size of their existing contract. They can
only decrease the size at renewal, or cancel their renewal.

Entitlements are verified by your SaaS product, which makes calls to the AWS Marketplace Entitlement
Service.

Automatic renewals
When a customer purchases your product through AWS Marketplace using SaaS contracts, they can agree
to automatic renewal of the contract terms. The customer continues to pay for the entitlements every

231

AWS Marketplace Seller Guide
SaaS customer onboarding

month or for 1, 2, or 3 years. The customer always has the option to modify the renewal settings. They
can cancel the renewal or renew the contract for different quantities and durations.

When a SaaS contract ends

A SaaS contract product has a contract expiry. When a contract ends, the following events occur:

1. Your SaaS product receives an entitlement-updated notification indicating the buyer's entitlement
has changed. The AWS Marketplace Entitlement Service returns an empty response.

2. You have 1 hour to meter any remaining usage for the customer. After this time has elapsed, you can
no longer send metering records for this customer.

When a SaaS contract is cancelled

Key points of the SaaS contract cancellation process include the following:

1. Customers can request a cancellation and refund for SaaS contract products though AWS Support.

Customers must request refunds within 48 hours through AWS Support.

The full or prorated refund is typically granted in 3–5 business days.

2. Your SaaS product is sent notification through the Amazon SNS topic for that customer.

3. You have one hour to send a final metering record for the customer for any additional usage charges.

4. You notify the customer from your product that the cancellation is in progress. If a customer indicates
that they want to cancel through your product, direct the customer to AWS Marketplace. To guarantee
that there will be no future charges, customers should confirm the cancellation with AWS Marketplace.

SaaS customer onboarding
With software as a service (SaaS) subscriptions and SaaS contracts, your customers subscribe to your
products through AWS Marketplace but access the product in your AWS environment. After subscribing
to the product, your customer is directed to a website you create and manage as a part of your SaaS
product to register their account and configure the product.

When creating your SaaS product listing, you provide a URL to your registration landing page. We use
that URL to redirect customers to your registration landing page after they subscribe. On your software's
registration landing page, you collect whatever information is required to create an account for the
customer. We recommend collecting your customer’s email addresses if you plan to contact them
through email for usage notifications.

The registration landing page must be able to identify and accept the x-amzn-marketplace-
token token in the form data from AWS Marketplace with the customer’s identifier for billing. It
should then pass that token value to the AWS Marketplace Metering Service to resolve for the unique
customer identifier, customer AWS account Id, and corresponding product code. For a code example, see
ResolveCustomer code example (p. 243).

Note
The registration token resolves to a specific subscribed customer and each generated token has
an expiration window of 4 hours. As long as the caller is calling the API with the same token, it
will keep returning the same response values until the token expires.

232

AWS Marketplace Seller Guide
Configuring your SaaS product to accept new buyers

Configuring your SaaS product to accept new buyers
You're responsible for correctly configuring your SaaS software to accept new customers and meter them
appropriately. The following process outlines one recommended way of identifying, implementing, and
metering a new customer's access to your software:

1. When a customer visits your product page on the AWS Marketplace website, they choose to
subscribe to your product.

2. The customer’s AWS account is subscribed to your product. This means subscription and metering
records sent from your product become part of the customer’s AWS bill.

3. A registration token is generated for the customer that contains their customer identifier and your
product code.

4. The customer is redirected to your software's registration landing page. This page must be able to
accept the token with the customer’s identifier.

5. The customer’s browser sends a POST request to your software's registration landing page URL.
The request contains one POST parameter, x-amzn-marketplace-token, containing the customer’s
registration token. From the perspective of your registration website, the customer has submitted a
form with this parameter. The registration token is an opaque string.

6. To redeem this registration token for a customer identifier, customer AWS account Id, and product
code, your website must call ResolveCustomer on the AWS Marketplace Metering Service. The
customer identifier isn't the customer’s AWS account ID, but it's universal between products and
should be saved to an internal source as part of your customer records. The product code is a unique
string for your SaaS product that AWS provides to you. Each AWS product has one unique product
code, which is assigned to you during registration.

Note
To see an example of a ResolveCustomer call, see ResolveCustomer code
example (p. 243).

7. Your website validates that the product code returned matches your SaaS product the customer is
attemping to access and calls GetEntitlement to return the entitlement data for the customer’s
subscription.

8. The customer is instructed to either create an account in your product or sign in to an existing
account.

9. The customer is now signed in to your website using credentials specific to that SaaS product. In
your accounts database, you can have an entry for each customer. Your accounts database must have
a column for the AWS customer identifier, which you populate with the customer identifier that you
obtained in step 6. Verify that no other accounts in your system share this customer identifier. For
customers who subscribe to multiple products through AWS Marketplace, the customer identifier
will remain the same, with each subscription having a unique product code.

10. During your seller registration process, you subscribe to Amazon SNS topics that notify you when
customers subscribe or unsubscribe to your product. These are Amazon SNS notifications in JSON
format that inform you of customer actions:

• Entitlement notification - For products with pricing models that include a contract, you are
notified when buyers create a new contract, upgrade it, renew it, or it expires. Your accounts
database must have an extra column for the subscription state. For more information, see Amazon
SNS topic: aws-mp-entitlement-notification (p. 234).

• Subscription notification – For products with any pricing model, including contracts and
subscriptions, you are notified when a buyer subscribes or unsubscribes to a product. For more
information, see Amazon SNS topic: aws-mp-subscription-notification (p. 235).

We recommend that you use Amazon Simple Queue Service (Amazon SQS) to capture these
messages. After you receive a subscription notification with subscribe-success, the customer
account is ready for metering. Records that you send before this notification aren't metered. For

233

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_ResolveCustomer.html

AWS Marketplace Seller Guide
Amazon SNS notifications for SaaS products

information about how to do this, see Step 2: Give Permission to the Amazon SNS Topic to Send
Messages to the Amazon SQS Queue in the Amazon Simple Notification Service Developer Guide.

Note
Do not activate a product subscription unless you receive a subscribe-success
notification.

11. Use the customer identifier stored in your database to meter for usage through the AWS
Marketplace Metering Service or check for entitlements through the AWS Marketplace Entitlement
Service.

Security and ordering
As a seller, it’s your responsibility to trust only customer identifiers that are immediately returned
from AWS or those that your system has signed. We recommend that you resolve the registration
token immediately because it may expire after approximately 1 hour. After you resolve the registration
token, store the customer identifier as a signed attribute on the customer’s browser session until the
registration is complete.

Amazon SNS notifications for SaaS products
To receive notifications, you subscribe to the AWS Marketplace Amazon Simple Notification Service
(Amazon SNS) topics provided to you during product creation. The topics provide notifications about
changes to customers’ subscriptions and contract entitlements for your products. This enables you to
know when to provide and revoke access for specific customers.

The following Amazon SNS topics are available to software as a service (SaaS) products:

• Amazon SNS topic: aws-mp-entitlement-notification (p. 234) – This topic notifies you when
buyers create a new contract, upgrade it, renew it, or it expires. This is only available for products
with pricing models that include a contract (also known as SaaS Contracts and SaaS Contracts with
Consumption (Overages)).

• Amazon SNS topic: aws-mp-subscription-notification (p. 235) – This topic notifies you when
a buyer subscribes to or unsubscribes from a product and includes the offer-identifier for private
offers. This is available for all pricing models, including contracts and subscriptions (also known as
SaaS Subscriptions and SaaS Contracts with Consumption (Overages)).

To learn more about the scenarios in which you respond to these notifications, see the following topics:

• Integrate your SaaS subscription product (p. 216)
• Integrate your SaaS contract product (p. 219)
• Integrate your SaaS contract with pay-as-you-go product (p. 221)

Amazon SNS topic: aws-mp-entitlement-
notification
Each message in the aws-mp-entitlement-notification topic has the following format.

{
 "action": "<action-name>",
 "customer-identifier": " X01EXAMPLEX",
 "product-code": "n0123EXAMPLEXXXXXXXXXXXX",
}

234

https://docs.aws.amazon.com/sns/latest/dg/subscribe-sqs-queue-to-sns-topic.html#SendMessageToSQS.sqs.permissions
https://docs.aws.amazon.com/sns/latest/dg/subscribe-sqs-queue-to-sns-topic.html#SendMessageToSQS.sqs.permissions

AWS Marketplace Seller Guide
Amazon SNS topic: aws-mp-

subscription-notification

The <action-name> will always be entitlement-updated.

Note

• For entitlement messages, regardless of the action (new, upgrade, renewal, or expired), the
message is the same. A subsequent call to GetEntitlement is required to discover the
content of the update.

• For SaaS Contract with Consumption (Overages), sellers are provided with the aws-mp-
subscription-notification SNS topic (p. 235). This is an extra notification that a seller
receives when they add on overage pricing. When a seller acquires new customers, instead
of only getting entitlement-updated (which may refer to any kind of action), the seller
receives a subscribe message indicating that this is a new customer.

Products with contract pricing (including contracts with pay-as-you-go) must respond to these
messages. For more information about how to respond, see Scenario: Monitor changes to user
subscriptions (p. 220).

Amazon SNS topic: aws-mp-subscription-
notification
Each message in the aws-mp-subscription-notification topic has the following format.

{
 "action": "<action-name>",
 "customer-identifier": " X01EXAMPLEX",
 "product-code": "n0123EXAMPLEXXXXXXXXXXXX",
 "offer-identifier": "offer-abcexample123"
}

The offer-identifier only appears in the notification if the offer is a private offer.

The <action-name> will vary depending on the notification. Possible actions are:

• subscribe-success – The subscribe-success message signals when the seller can begin sending
metering records.

• subscribe-fail – If the subscribe-fail message is generated, payment might have failed even
though the buyer has already transitioned from the AWS Marketplace to the seller's SaaS landing page.
The seller should wait for the subscribe-success message before allowing consumption of the
product.

• unsubscribe-pending – When a buyer unsubscribes, an unsubscribe-pending message is sent
first. This indicates that the seller has a limited time (about one hour) to get final metering records
sent before the buyer is cancelled completely.

• unsubscribe-success – The unsubscribe-success message signals the completion of
cancellation, after which no further metering records will be accepted.

Note

• If a buyer unsubscribes and then immediately successfully re-subscribes before the final
unsubscribe-success message is sent, the final unsubscribe-success message will not
be sent and a subscribe-success message will be sent instead.

Products with subscription pricing (including contracts with pay-as-you-go) must respond to these
messages. For more information about how to respond, see the following topics:

235

AWS Marketplace Seller Guide
Subscribing an SQS queue to the SNS topic

• Integrate your SaaS subscription product (p. 216)
• Integrate your SaaS contract with pay-as-you-go product (p. 221)

Subscribing an SQS queue to the SNS topic
We recommend subscribing an Amazon SQS queue to the provided SNS topics. For detailed instructions
on creating an SQS queue and subscribing the queue to a topic, see Subscribing an Amazon SQS queue
to an Amazon SNS topic in the Amazon Simple Notification Service Developer Guide.

Note
You can only subscribe to AWS Marketplace SNS topics from the AWS account used to sell the
products. However, you can forward the messages to a different account. For more information,
see Sending Amazon SNS messages to an Amazon SQS queue in a different account in the
Amazon Simple Notification Service Developer Guide.

Polling the SQS queue for notifications
After you subscribe your SQS queue to an SNS topic, the messages are stored in SQS. You must define a
service that continually polls the queue, looks for messages, and handles them accordingly.

Accessing the AWS Marketplace Metering and
Entitlement Service APIs

This section outlines the process of integrating with the AWS Marketplace Metering Service or AWS
Marketplace Entitlement Service, used to ensure your billing and reporting of customer usage of your
software as a service (SaaS) products is accurate. It's assumed that you've submitted a SaaS subscriptions
product or a SaaS contracts product that has been published to a limited state. In a limited state, you
can use your test accounts to verify proper configuration and function but your product is not available
publicly.

Note
If your SaaS product is integrated with another AWS managed service that handles metering in
a different way (such as Amazon SageMaker Ground Truth, or AWS WAF), then you do not need
to integrate with AWS Marketplace metering service. Metering for your product should only
happen in one system to avoid double billing your customer.

Topics
• Metering for usage (p. 236)
• Checking entitlements (p. 239)
• SaaS product integration checklist (p. 240)

For information about setting up the AWS CLI, along with credentials, see Configuring the AWS CLI
in the AWS Command Line Interface User Guide. If you're new to the AWS Python SDK, see the Boto 3
Quickstart.

Metering for usage
For software as a service (SaaS) subscriptions, you meter for all usage, and then customers are billed
by AWS based on the metering records that you provide. For SaaS contracts, you only meter for usage
beyond a customer’s contract entitlements. When your application meters usage for a customer,
your application is providing AWS with a quantity of usage accrued. Your application meters for the
pricing dimensions that you defined when you created your product, such as gigabytes transferred or

236

https://docs.aws.amazon.com/sns/latest/dg/subscribe-sqs-queue-to-sns-topic.html
https://docs.aws.amazon.com/sns/latest/dg/subscribe-sqs-queue-to-sns-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-send-message-to-sqs-cross-account.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://boto3.readthedocs.io/en/latest/guide/quickstart.html

AWS Marketplace Seller Guide
Metering for usage

hosts scanned in a given hour. For example, if you charge based on the amount of data sent into your
application, you can measure the amount of data and send a corresponding metering record once an
hour. AWS calculates a customer’s bill using the metering data along with the prices that you provided
when you created your product.

Note
Optionally, you can split the usage across properties that you track. These properties are
exposed to the buyer as tags. These tags allow the buyer to view their costs split into usage
by the tag values. For example, if you charge by the user, and users have a Department
property, you could create a usage allocations with tags that have a key of Department, and
one allocation per value. This doesn't change the price, dimensions, or the total usage that you
report, but allows your customer to view their costs by categories appropriate to your product.
For more information, see Vendor-metered tagging (Optional) (p. 238).

We recommend that you send a metering record every hour to give customers as much granular visibility
into their usage and costs as possible. If you aggregate usage in time periods greater than an hour (for
example, one day), continue sending metering records every hour and record a quantity of 0 if there is
no usage to report for that hour. Report usage to AWS on an hourly basis for all of your customers, in
batches of up to 25 at a time.

AWS can only bill customers for usage of your product upon receiving metering records from you. You're
responsible for ensuring that your product’s metering records are successfully transmitted and received.
You can use AWS CloudTrail to verify the record or records that you send are accurate. You can also use
the information to perform audits over time. For more information, see Logging AWS Marketplace API
calls with AWS CloudTrail (p. 359).

Note
If your SaaS product is integrated with another AWS managed service that handles metering in
a different way (such as Amazon SageMaker Ground Truth, or AWS WAF), then you do not need
to integrate with AWS Marketplace metering service. Metering for your product should only
happen in one system to avoid double billing your customer.

Configure your product to meter usage
You use the BatchMeterUsage operation in the AWS Marketplace Metering Service to deliver metering
records to AWS. Keep the following in mind:

• We require sellers to use batching by using the BatchMeterUsage operation.
• We deduplicate metering requests on the hour.

• Requests are deduplicated per product/customer/hour/dimension.
• You can always retry any request, but if you meter for a different quantity, the original quantity is

billed.
• If you send multiple requests for the same customer/dimension/hour, the records are not

aggregated.
• Sellers can send metering records with a timestamp up to 6 hours in the past if the customer is

subscribed to your product. If the customer unsubscribes, sellers have to send the metering records
within 1 hour of the customer unsubscribing.

• BatchMeterUsage payloads must not exceed 1MB. Choose the number of usage records to send in a
BatchMeterUsage request so that you don't exceed the size of the payload.

• The AWS Marketplace Metering Service is available in the AWS Regions listed in the topic AWS
Marketplace endpoints and quotas in the AWS General Reference. By default, the US East (N. Virginia)
Region is enabled for SaaS metering products when you request your product. If you intend to use
other Regions, contact the AWS Marketplace Seller Operations team. For more information, see
BatchMeterUsage.

For code examples, see Code examples for SaaS product integration (p. 243).

237

https://docs.aws.amazon.com/general/latest/gr/aws-marketplace.html
https://docs.aws.amazon.com/general/latest/gr/aws-marketplace.html
https://aws.amazon.com/marketplace/management/contact-us/
https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_BatchMeterUsage.html

AWS Marketplace Seller Guide
Metering for usage

Example: Host scanning

Your product analyzes computing hardware for known security vulnerabilities. Customers manually
initiate or schedule these scans of their Amazon Elastic Compute Cloud (Amazon EC2) instances. As
your product performs these scans, it tallies the number of unique hosts scanned every hour. In this
example, your product uses the Hosts category. You can declare multiple dimensions for the types of
hosts scanned. For example, you can charge different prices for small, medium, and large hosts.

Example: Log analysis

Your SaaS product digests logs that are generated by customer products, reporting trends, and
anomalies. As customers upload logs to your product, you measure the quantity of data received in
megabytes, gigabytes, or terabytes. On the tenth minute of every hour, a cron job reads this usage for
each customer for the previous hour. The job builds a batch report and uses the BatchMeterUsage
operation to send it to AWS. In this example, your product uses the Data category. Your product can also
meter for the amount of log data stored for any given hour. In this case, your product can meter along
two dimensions: data received in the hour and total data stored in the hour. You can continue to meter
for data stored until the customer deletes this data or it expires.

Vendor-metered tagging (Optional)

Vendor-metered tagging helps Independent Software Vendors (ISVs) give the buyer more granular
insight into their software usage and can help them perform cost allocation.

There are many ways to tag a buyer's software usage. One way is to first ask your buyers what they
want to see in their cost allocation. Then you can split the usage across properties that you track for
the buyer’s account. Examples of properties include Account ID, Business Unit, Cost Centers,
and other relevant metadata for your product. These properties are exposed to the buyer as tags. Using
tags, buyers can view their costs split into usage by the tag values in their AWS Billing Console (https://
console.aws.amazon.com/billing/). Vendor-metered tagging doesn't change the price, dimensions, or the
total usage that you report. It allows your customer to view their costs by categories appropriate to your
product.

In a common use case, a buyer subscribes to your product with one AWS account. The buyer also has
numerous user accounts associated with the same product subscription. You can create usage allocations
with tags that have a key of Account ID, and then allocate usage to each user account. In this case,
buyers can activate the Account ID tag in their Billing and Cost Management console and analyze
individual user account usage.

Seller experience

Sellers can aggregate the metering records for resources with the same set of tags instead of
aggregating usage for all resources. For example, sellers can construct the metering record that includes
different buckets of UsageAllocations. Each bucket represents UsageQuantity for a set of tags,
such as AccountId and BusinessUnit.

In the following diagram, Resource 1 has a unique set of AccountId and BusinessUnit tags, and
appears in the Metering Record as a single entry.

Resource 2 and Resource 3 both have the same AccountId tag, 2222, and the same BusinessUnit
tag, Operations. As a result, they're combined into a single UsageAllocations entry in the Metering
Record.

238

https://console.aws.amazon.com/billing/
https://console.aws.amazon.com/billing/

AWS Marketplace Seller Guide
Checking entitlements

Buyer experience

The following table shows an example of the buyer experience after a buyer activates the AccountId
and BusinessUnit vendor tags.

In this example, the buyer can see allocated usage in their Cost Usage Report. The vendor-metered tags
use the prefix “aws:marketplace:isv”. Buyers can activate them in the Billing and Cost Management,
under Cost Allocation Tags, AWS-generated cost allocation tags.

The first and last rows of the Cost Usage Report are relevant to what the Seller sends to the Metering
Service (as shown in the Seller experience (p. 147) example).

Cost Usage Report (Simplified)

ProductCode Buyer UsageDimensionUsageQuantity aws:marketplace:isv:AccountIdaws:marketplace:isv:BusinessUnit

xyz 111122223333 Network: per
(GB) inspected

70 2222 Operations

xyz 111122223333 Network: per
(GB) inspected

30 3333 Finance

xyz 111122223333 Network: per
(GB) inspected

20 4444 IT

xyz 111122223333 Network: per
(GB) inspected

20 5555 Marketing

xyz 111122223333 Network: per
(GB) inspected

30 1111 Marketing

For a code example, see BatchMeterUsage with usage allocation tagging code example
(Optional) (p. 246).

Checking entitlements
If your product is a SaaS contracts product, your product calls the AWS Marketplace Entitlement Service
to retrieve the customer’s entitlement using the GetEntitlements. Your product should verify subsequent
usage on that account against the AWS Marketplace Entitlement Service. For example, if the customer
provisions 10 users on the account, your product should check the AWS Marketplace Entitlement Service
for entitlement to that capacity.

239

https://docs.aws.amazon.com/marketplaceentitlement/latest/APIReference/API_GetEntitlements.html

AWS Marketplace Seller Guide
SaaS product integration checklist

To verify a customer's entitlement to your product, use the GetEntitlements operation in the
AWS Marketplace Entitlement Service. The AWS Marketplace Entitlement Service is available
only in the US East (N. Virginia) Region, accessible through entitlement.marketplace.us-
east-1.amazonaws.com.

GetEntitlements accepts a customer identifier and dimension as filters. ProductCode is a required
parameter. The operation returns a paginated list of entitlements. The result has an ExpirationDate
field that shows the minimum period of time that the entitlement is valid for. If the customer has set up
automatic renewal, the date in the ExpirationDate field is the renewal date.

For code samples, see Code examples for SaaS product integration (p. 243).

Retrieving entitlement on user actions
The following examples can help you better understand the process for retrieving entitlement on user
actions.

Example: User-based product

You offer a product that allows a number of accounts to exist for a given customer. The customer
can visit a dashboard to provision new users (for example, to assign credentials). When the customer
provisions a new user, your product calls GetEntitlements to verify that the capacity exists. If it does
not, you can call the AWS Marketplace Metering Service to bill for additional users.

Example: Data storage product

You offer a product that enables customers to store a certain amount of data in encrypted or
unencrypted form. The customer can view a dashboard that displays the amount of data existing and
allocated in your product. Your dashboard retrieves the allocation amount through GetEntitlements.

SaaS product integration checklist
Before your SaaS product goes live, use this checklist to verify that you have completed the required
configuration.

Category Requirements

Access Submitted a seller registration form with the
desired AWS account for AWS Marketplace usage.

Access Completed the seller registration, including terms
and conditions, bank account, and W8 or W9 tax
form.

Access Configured cross-account roles for the registered
AWS Marketplace account.

Product Completed the product request form in the AWS
Marketplace Management Portal.

Product Provided AWS account IDs for testing in the Notes
tab of the Create product wizard in the AMMP.

Product Provided a URL of the EULA in .txt format in the
Products tab.

Product Received your product code and Amazon SNS
topic information from AWS Marketplace.

240

AWS Marketplace Seller Guide
SaaS product integration checklist

Category Requirements

Product Subscribed to the Amazon SNS topic and created
an Amazon SQS queue to subscribe to the
Amazon SNS topic.

Billing Solution Validated you can send metering records to the
BatchMeterUsage operation each hour for each
customer for SaaS subscriptions products. Can
send metering records for additional usage by
each customer for SaaS contracts products.

Billing Solution Validated you can verify customer entitlements
from the AWS Marketplace Entitlement Service for
SaaS contracts products.

Billing Solution Validated that the costs appear as expected on
bills generated for test accounts.

Billing Solution Tested for situations such as invalid customer IDs
and canceled subscriptions.

Product Submitted the product request back to AWS
Marketplace for publishing.

Registration Implemented an HTTPS registration page that can
accept HTTP POST requests.

Registration Validated you can accept new customer
registrations.

Registration Validated you are not storing the registration
token in a cookie.

Registration Validated you are using ResolveCustomer
to obtain the ProductCode and
CustomerIdentifier from the AWS token.

Registration Validated you can resolve the registration token
received from AWS with no delays.

Registration Tested that you aren't blocked from registering
with email services addresses such as Gmail.

Registration Tested that you can accept incomplete
registrations and multiple registration attempts.

Subscription Test that you can handle unsubscribe-pending
and unsubscribe-success messages.

Subscription Validated that you send final metering records
within an hour of receiving an unsubscribe-
pending message.

Security Validated the AWS root account doesn't have API
keys, has a strong password, and is associated
with a hardware multi-factor authentication
(MFA) device. All administrative access is through
identities created with AWS Identity and Access
Management (IAM). No shared accounts.

241

AWS Marketplace Seller Guide
Reporting

Category Requirements

Security Validated that IAM roles are used for all
programmatic Amazon Elastic Compute Cloud
(Amazon EC2) access. Credentials aren't hard-
coded into scripts, headers, or source code.

Security Validated you maintain comprehensive logging
and log consolidation.

Security Verified you have well-defined public and private
subnet boundaries that isolate application
services and access to database and file systems.
Distinct data class definitions that demarcate
sensitive data and segregate public and private
data.

Security Verified you have private data encryption in
transit and at rest with scheduled key rotation.

Security Validated you have security incident tools and
access in place and routinely scheduled incident
response exercises that accommodate timely
investigation and recovery.

Reliability Verified the system adapts to changes in demand,
scaling up and down as required, and employs
load balancing to ensure high performance. The
system also provides edge-based caching as
required.

Reliability Validated recovery time and point objectives
are specified, and disaster recovery is scheduled
at regular intervals. Component failure is self-
healing via automated triggers and notifications.

Reporting
AWS Marketplace produces reports for your SaaS products that include data on subscribers, financials,
usage, and taxes. For more information, see the section called “Seller reports” (p. 273). The following
table summarizes how financials for SaaS products are reported.

Report SaaS content

Daily business report Upfront contract charges appear in the Fees
section.

Metered usage charges appear in the Usage
section.

Monthly revenue report Upfront contract charges appear in the Annual
subscriptions section.

Metered usage charges appear in the Billing and
revenue data section.

242

AWS Marketplace Seller Guide
SaaS code examples

Report SaaS content

Sales compensation report Upfront contract charges and monthly additional
usage charges appear as separate line items.

Customer subscriber report New SaaS contracts appear in the Annual
subscriptions section.

New SaaS subscriptions appear in the Hourly/
monthly subscriptions section.

Code examples for SaaS product integration
The following code examples can help you integrate your software as a service (SaaS) product with the
AWS Marketplace APIs that are required for publishing and maintaining your product.

Topics
• ResolveCustomer code example (p. 243)
• GetEntitlement code example (p. 244)
• BatchMeterUsage code example (p. 245)
• BatchMeterUsage with usage allocation tagging code example (Optional) (p. 246)

ResolveCustomer code example
The following code example is relevant for all pricing models. The Python example exchanges
a x-amzn-marketplace-token token for a CustomerIdentifier, ProductCode, and
CustomerAWSAccountId. The CustomerAWSAccountId is the AWS account Id associated with the
subscription. This code runs in an application on your registration website, when you are redirected there
from the AWS Marketplace Management Portal. The redirect is a POST request that includes the token.

For more information about ResolveCustomer, see ResolveCustomer in the AWS Marketplace Metering
Service API Reference.

Import AWS Python SDK and urllib.parse
import boto3
import urllib.parse as urlparse

Resolving Customer Registration Token
formFields = urlparse.parse_qs(postBody)
regToken = formFields['x-amzn-marketplace-token']

If regToken present in POST request, exchange for customerID
if (regToken):
 marketplaceClient = boto3.client('meteringmarketplace')
 customerData = marketplaceClient.resolve_customer(regToken)
 productCode = customerData['ProductCode']
 customerID = customerData['CustomerIdentifier']
 customerAWSAccountId = customerData['CustomerAWSAccountId']

 # TODO: Store customer information
 # TODO: Validate no other accounts share the same customerID

Example response

{

243

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_ResolveCustomer.html

AWS Marketplace Seller Guide
GetEntitlement code example

 'CustomerIdentifier': 'string',
 'CustomerAWSAccountId':'string',
 'ProductCode': 'string'
}

GetEntitlement code example
The following code example is relevant for SaaS products with the contract and SaaS contract with
consumption pricing model. The Python example verifies that a customer has an active entitlement.

For more information about GetEntitlement, see GetEntitlement in the AWS Marketplace Entitlement
Service API Reference.

Import AWS Python SDK
import boto3

marketplaceClient = boto3.client('marketplace-entitlement')

Filter entitlements for a specific customerID
#
productCode is supplied after the AWS Marketplace Ops team has published
the product to limited

customerID is obtained from the ResolveCustomer response
entitlement = marketplaceClient.get_entitlements({
 'ProductCode': 'productCode',
 'Filter' : {
 'CUSTOMER_IDENTIFIER': [
 'customerID',
]
 },
 'NextToken' : 'string',
 'MaxResults': 123
})

TODO: Verify the dimension a customer is subscribed to and the quantity,
if applicable

Example response
The returned value corresponds to the dimensions created when you created the product in the AWS
Marketplace Management Portal.

{
 "Entitlements": [
 {
 "CustomerIdentifier": "string",
 "Dimension": "string",
 "ExpirationDate": number,
 "ProductCode": "string",
 "Value": {
 "BooleanValue": boolean,
 "DoubleValue": number,
 "IntegerValue": number,
 "StringValue": "string"
 }
 }
],
 "NextToken": "string"
}

244

https://docs.aws.amazon.com/marketplaceentitlement/latest/APIReference/API_GetEntitlements.html

AWS Marketplace Seller Guide
BatchMeterUsage code example

BatchMeterUsage code example
The following code example is relevant for SaaS subscription and contract with consumption pricing
models, but not for SaaS contract products without consumption. The Python example sends a metering
record to AWS Marketplace to charge your customers for pay-as-you-go fees.

NOTE: Your application will need to aggregate usage for the
customer for the hour and set the quantity as seen below.
AWS Marketplace can only accept records for up to an hour in the past.
#
productCode is supplied after the AWS Marketplace Ops team has
published the product to limited
#
customerID is obtained from the ResolveCustomer response

Import AWS Python SDK
import boto3

usageRecord = [
 {
 'Timestamp': datetime(2015, 1, 1),
 'CustomerIdentifier': 'customerID',
 'Dimension': 'string',
 'Quantity': 123
 }
]

marketplaceClient = boto3.client('meteringmarketplace')

response = marketplaceClient.batch_meter_usage(usageRecord, productCode)

For more information about BatchMeterUsage, see BatchMeterUsage in the AWS Marketplace Metering
Service API Reference.

Example response

{
 'Results': [
 {
 'UsageRecord': {
 'Timestamp': datetime(2015, 1, 1),
 'CustomerIdentifier': 'string',
 'Dimension': 'string',
 'Quantity': 123
 },
 'MeteringRecordId': 'string',
 'Status': 'Success' | 'CustomerNotSubscribed' | 'DuplicateRecord'
 },
],
 'UnprocessedRecords': [
 {
 'Timestamp': datetime(2015, 1, 1),
 'CustomerIdentifier': 'string',
 'Dimension': 'string',
 'Quantity': 123
 }
]
}

245

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_BatchMeterUsage.html

AWS Marketplace Seller Guide
BatchMeterUsage with usage allocation

tagging code example (Optional)

BatchMeterUsage with usage allocation tagging
code example (Optional)
The following code example is relevant for a SaaS subscription and contract with consumption pricing
models, but not for SaaS contract products without consumption. The Python example sends a metering
record with appropriate usage allocation tags to AWS Marketplace to charge your customers for pay-as-
you-go fees.

NOTE: Your application will need to aggregate usage for the
customer for the hour and set the quantity as seen below.
AWS Marketplace can only accept records for up to an hour in the past.
#
productCode is supplied after the AWS Marketplace Ops team has
published the product to limited
#
customerID is obtained from the ResolveCustomer response

Import AWS Python SDK
import boto3
import time

usageRecords = [
 {
 "Timestamp": int(time.time()),
 "CustomerIdentifier": "customerID",
 "Dimension": "Dimension1",
 "Quantity":3,
 "UsageAllocations": [
 {
 "AllocatedUsageQuantity": 2,
 "Tags":
 [
 { "Key": "BusinessUnit", "Value": "IT" },
 { "Key": "AccountId", "Value": "123456789" },
]

 },
 {
 "AllocatedUsageQuantity": 1,
 "Tags":
 [
 { "Key": "BusinessUnit", "Value": "Finance" },
 { "Key": "AccountId", "Value": "987654321" },
]

 },
]
 }
]

marketplaceClient = boto3.client('meteringmarketplace')

response = marketplaceClient.batch_meter_usage(UsageRecords=usageRecords,
 ProductCode="testProduct")

For more information about BatchMeterUsage, see BatchMeterUsage in the AWS Marketplace Metering
Service API Reference.

Example response

{

246

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_BatchMeterUsage.html

AWS Marketplace Seller Guide
Using AWS PrivateLink with AWS Marketplace

 "Results": [
 {
 "Timestamp": "1634691015",
 "CustomerIdentifier": "customerID",
 "Dimension": "Dimension1",
 "Quantity":3,
 "UsageAllocations": [
 {
 "AllocatedUsageQuantity": 2,
 "Tags":
 [
 { "Key": "BusinessUnit", "Value": "IT" },
 { "Key": "AccountId", "Value": "123456789" },
]

 },
 {
 "AllocatedUsageQuantity": 1,
 "Tags":
 [
 { "Key": "BusinessUnit", "Value": "Finance" },
 { "Key": "AccountId", "Value": "987654321" },
]

 },
]
 },
 "MeteringRecordId": "8fjef98ejf",
 "Status": "Success"
 },
],
 "UnprocessedRecords": [
 {
 "Timestamp": "1634691015",
 "CustomerIdentifier": "customerID",
 "Dimension": "Dimension1",
 "Quantity":3,
 "UsageAllocations": []
 }
]
}

Using AWS PrivateLink with AWS Marketplace
AWS Marketplace supports AWS PrivateLink, a technology that allows you to use the Amazon network
to provide buyers with access to products you sell through AWS Marketplace. This document outlines
the process for configuring and delivering your products through an Amazon Virtual Private Cloud (VPC)
endpoint using AWS PrivateLink technology.

In this document, we assume that you have working knowledge of several AWS services and the AWS
Marketplace environment.

Introduction

As an AWS Marketplace seller, you can provide buyers access to your service through an Amazon VPC
endpoint. This approach provides buyers with access to your service across the Amazon network using
AWS PrivateLink technology. If you use AWS Marketplace to create and deliver this offering, buyers can
discover your service in AWS Marketplace. Your buyers can also find your product in the list of available
services for creating a VPC endpoint.

247

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html#what-is-privatelink

AWS Marketplace Seller Guide
Configuring your product

A VPC endpoint is a virtual device that enables AWS customers to create a private connection between
their VPC and another AWS service without requiring access over the internet, through a NAT device, a
VPN connection, or AWS Direct Connect. You can create an endpoint service through AWS Marketplace
that makes it possible for buyers to use this technology to connect to your service. This connection
method is more secure for your buyers because they access your service through the Amazon private
network rather than through the Internet.

For each region where you want to offer your service, you create or use existing resources to configure
a VPC, set up your service instances, set up a network load balancer, and register your services with the
network load balancer by creating a service endpoint. After you complete those steps and test your
offering, you provide your configuration information to the the AWS Marketplace Seller Operations
team.

AWS recommends that you provide a private DNS name that your buyers can use when they create VPC
endpoints.

When buyers create their VPC endpoints, they have the option to enable a private DNS name. By
choosing this option, the buyer’s VPC service configures a private hosted zone. If you provide the private
DNS name, buyers can use it when configuring VPC endpoints to connect to your service. In the buyer’s
private hosted zone, the private DNS name (api.example.com) will point to the randomly generated
DNS name(s) (vpce-11111111111111111-yyyyyyyy.api.vpce.example.com) created for your endpoint
service(s). The buyer's EC2 instances call the same unified DNS name (api.example.com) across different
VPCs. Also, if public and private DNS names are same, the buyer can use the same public name when
accessing your service from within or outside of the VPC.

For assistance with making your service available through AWS Marketplace, you can contact the AWS
Marketplace Seller Operations team. When an AWS Marketplace buyer subscribes to your service and
creates a VPC endpoint, your service is shown under Your AWS Marketplace Services. The MCO team
uses the user-friendly DNS name for ease of discovery of your service when creating the VPC endpoint.

Your product is created as a software as a service (SaaS) product. Metering and billing is the same as with
other AWS Marketplace SaaS products.

Configuring your product
To configure your product to be available through an Amazon VPC endpoint:

1. Create or use an existing Amazon VPC.

2. Create (or use existing) Amazon EC2 instance(s) for your product.

3. Create a network load balancer in each of the regions where you offer your product. AWS recommends
that you include all Availability Zones (AZs) for a region.

4. Use the Amazon VPC console, the CLI, or supported SDKs to create a VPC endpoint service.

5. Verify that you can access the service through the network load balancer.

248

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-endpoints.html
https://aws.amazon.com/marketplace/management/contact-us/
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/documentation/vpc/
https://aws.amazon.com/documentation/ec2/
http://docs.aws.amazon.com/elasticloadbalancing/latest/network/network-load-balancer-getting-started.html
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-disable-az.html

AWS Marketplace Seller Guide
Submitting your product to AWS Marketplace

6. Request a certificate from AWS Certificate Manager (ACM) for your user-friendly DNS name. Before
ACM issues a certificate, it validates that you own or control the domain names in your certificate
request.

7. Delegate the subdomain of your user-friendly DNS name, such as api.vpce.example.com, to the name
servers provided to you by the MCO team. In your DNS system, you must create a name server (NS)
resource record to point this subdomain to the Amazon Route 53 name servers provided by the
MCO team so that DNS names (such as vpce-0ac6c347a78c90f8.api.vpce.example.com) are publicly
resolvable.

8. Allow access to your buyers' AWS accounts.

Note: You can use a supported SDK or this CLI command to automate access to accounts: aws vpcev2
modify-vpc-endpoint-service-permissions --service-id vpce-svc-0123456789abcdef1 --add-allowed-
principals arn:aws:iam::111111111111:root arn:aws:iam::222222222222:root.

Submitting your product to AWS Marketplace
During the process of publishing your service to AWS Marketplace, you work with the AWS Marketplace
Seller Operations team. To submit your PrivateLink-enabled product:

1. Email the following information to the AWS Marketplace Seller Operations team:
a. The endpoint and the AWS account used to create the endpoint. The endpoint is similar to this:

com.amazonaws.vpce.us-east-1.vpce-svc-0daa010345a21646
b. The user-friendly DNS name for your service. This is the DNS name that AWS Marketplace buyers

use to access your product.
c. The AWS account that you used to request certificates and the private DNS name buyers use to

access the VPC endpoint.

The AWS Marketplace MCO team verifies your company’s identity and the DNS name to use for
the service you are registering (such as api.vpce.example.com). After verification, the DNS name
overrides the default base endpoint DNS name.

Buyer access to VPC endpoints
AWS Marketplace buyers who are creating a VPC endpoint can discover your service in these situations:

• You followed the seller processes described earlier on this page to create or use an existing product.
• The buyer subscribes to your service.
• You added the buyer's AWS account to your list of allowed accounts.

When the buyer creates the VPC endpoint, they have the option to associate a private hosted zone with
their VPC. The hosted zone contains a record set for the default private DNS name for the service that
resolves to the private IP address of the endpoint network interfaces in their VPC.

Any buyer-hosted endpoint, including AWS Marketplace services, can provide permissions to all accounts
(the "*" permission). However, when you use this approach, the services aren't included in the Describe
calls or console unless you search by the service name. To display the services in the Describe calls, the
buyer's AWS account must be explicitly added to the allow list by the service.

To access your service, buyers do the following:

1. Discover and subscribe to your service on AWS Marketplace.
2. Use the AWS Command Line Interface (AWS CLI), API, or the Amazon VPC console to discover your

service and then establish a VPC endpoint to connect to your service in the subnets and AZs they use.

249

http://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Appendix: Checklists

The endpoints are shown as elastic network interfaces in the subnets. Local IP addresses and region
and zonal DNS names are assigned to the endpoints.

Client-side DNS name Name

Regional Vpce<0dc9a211a78c90f8>.api.vpce.example.com

IAD2 (1a) us-east-1a-
Vpce<0dc9a211a78c90f8>.api.vpce.example.com

IAD2 (1b) us-east-1b-
Vpce<0dc9a211a78c90f8>.api.vpce.example.com

If you provided a default private DNS name and the buyer chooses Enable Private DNS Name
(associated a private hosted zone) when creating a VPC endpoint, the buyer sees the regional default
private DNS name to connect to your service.

Name Alias Alias hosted zone ID (Notes)

api.example.com vpce<0dc9a211a78c90f8>.
api.vpce.example.com

Z00AABBCCDD IAD1

IAD2

Appendix: Checklists
Use the following checklists to ensure that you configure and test your product before you submit it to
the MCO team.

Product creation checklist
• Create (or use an existing) VPC and then configure it.
• Create and configure a network load balancer within the VPC.
• Register your service with your network load balancer by creating a VPC endpoint service.
• Provide the AWS account ID you used to configure the VPC endpoint to MCO.
• Provide the default endpoint service name (for example, com.amazonaws.vpce.us-east-1.vpce-

svc-0bbb070044a2164) to MCO.
• Provide a user-friendly service DNS name (required) to override the randomly generated service DNS

name. Request SSL certificates from ACM for the subdomain used for your user-friendly service DNS
name. Provide these certificates and the AWS account ID you used to request them to the MCO team.

• Recommended: Provide a private DNS name.
• Create a process to inform and allow your AWS Marketplace buyers the option to connect to your

service using AWS PrivateLink technology. Add AWS account IDs for your buyers to your allowed list of
accounts.

Product testing
• Verify that your service is configured and discoverable.
• Verify that your service is discoverable over the network load balancer.
• Verify that a buyer can create a VPC endpoint and access your service. Use an AWS account you own

that is not the account you used to set up your service.

250

AWS Marketplace Seller Guide
Getting help

Professional services products
As a seller, you can offer professional services to AWS Marketplace buyers. Professional services include
services to assess, migrate, support, manage, and train others in how to use AWS services and products
in AWS Marketplace. Sellers create a product offering that describes the services they provide, negotiate
with customers to create an agreement on terms, and then create a custom offer for services through
AWS Marketplace.

Buyers can find professional services products on the AWS Marketplace catalog by selecting Professional
Services under Categories, choosing Professional Services under Delivery methods, and refine their
search by Publisher, Pricing model, and Pricing unit. They're charged for the services in their AWS bill.
They can use tools such as AWS Cost Explorer to centralize payments and manage their costs.

For more information about professional services products, see:

• Getting started with professional services products (p. 251)

• Providing details for a professional services product (p. 256)

• Requirements for professional services products (p. 258)

The following video explains more about managing professional services products in AWS Marketplace.

Manage Professional service products in AWS Marketplace.

Getting help
For assistance with your professional services products, contact your business development partner for
AWS Marketplace or contact us.

Getting started with professional services products
This topic describes how to get started with a professional services product, and goes through the steps
to create your first product, and how to offer it to your customers. Your product definition tells your
customers about the services that you offer and why they should select your company for those services.
AWS Marketplace then allows them to contact you. You agree on a contract, and then you create a
private offer that allows them to purchase your services for a fixed cost.

Topics

• Prerequisites (p. 252)

• Creating a professional services product (p. 252)

• Creating private offers (p. 253)

• Editing product information (p. 254)

• Editing product pricing (p. 254)

• Editing product visibility (p. 255)

251

https://www.youtube.com/embed/2ZsS1LfRivk
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Prerequisites

• Removing a professional services product (p. 255)

Prerequisites
To sell professional services on AWS Marketplace, you must complete the following prerequisites:

• Have access to the AWS Marketplace Management Portal. This is the tool that you use to register as
a seller and manage the products that you sell on AWS Marketplace. To learn more about getting
access to the AWS Marketplace Management Portal, see Policies and permissions for AWS Marketplace
sellers (p. 346).

• Register as an AWS Marketplace seller, and, if you want to charge for your products, submit your tax
and banking information. To learn more about becoming an seller, see Getting started as a seller (p. 4).

• You must have a professional services product to offer that is related to an AWS service or at least one
public product in AWS Marketplace. Your product must either directly support those products, or offer
services that drive subscriptions to those products.

Note
Your product must be listed in at least one of these primary categories: Assessments,
Implementation, Managed services, Premium support, or Training.
For more information about professional services product guidelines, see Requirements for
professional services products (p. 258).

Creating a professional services product
The following procedure describes how to create a new professional services product in the AWS
Marketplace Management Portal.

To create a professional services product

1. Open a web browser and sign into the AWS Marketplace Management Portal.
2. From the Products menu, select Professional services. This page shows you all professional services

products that you have already created, as well as any requests you have made for creating or
modifying these products.

3. On the Professional Services products tab, select Create professional services product.
4. On the Create product page, provide the information for your product, and select Submit. For more

information about the details that you must provide, see Providing details for a professional services
product (p. 256).

5. (Optional) From the Products menu of AWS Marketplace Management Portal, select Professional
services, then choose the Requests tab. Verify that you see your product request with the correct
Product title, and that the Request status is Under review. Your product should be created in
limited preview mode within a few minutes.

Note
You can return to the Requests tab of the Professional services page to see the status of your
request at any time. Any errors in the creation process will appear here. You can select the
request to see the request details or to fix errors.

When your product is initially created, it's only accessible to your AWS account (the one you used to
create the product). If you view the product from the Professional services page, you can select View on
AWS Marketplace to view the product details as they appear in AWS Marketplace for buyers. This detail
listing isn't available to other AWS Marketplace users, unless you extend a private offer to them.

To learn how to make the product available publicly, see Editing product visibility (p. 255).

252

http://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Creating private offers

Creating private offers
When a potential buyer views your product on AWS Marketplace, they can't purchase it directly. When
they attempt to subscribe, they are redirected to request a private offer from you. AWS Marketplace
sends an email message to your AWS Marketplace seller account root user email address, informing you
that the customer has requested a private offer. The following procedure describes how to respond to
this request.

Note
When you create a private offer higher than $250,000 through the AWS Marketplace
Management Portal, additional approval may be required. For more information, contact your
AWS Marketplace Business Development representative, or send an email message with your
details to the AWS Marketplace Business operations team at mpcustdesk@amazon.com.

To create a private offer for a professional services product

1. Contact the customer to resolve any questions you have about the request. Agree on the offer terms
before creating the private offer in AWS Marketplace. The buyer is not obligated to purchase your
product, so it makes sense to agree before creating the offer.

2. Open a web browser and sign into the AWS Marketplace Management Portal.

3. Select Offers from the menu, then select Create private offer.

4. On the Create private offer page, select the product that you want to create a private offer for. Only
currently available products are included.

5. Enter the Buyer account Ids that you want to extend a private offer to. You can include up to 25
accounts in a single private offer. If the buyer used the request an offer feature, the email message
that you received includes the buyer account Id for the requesting account.

6. Choose whether to allow buyers to pay for the product in installments. Typically, short contracts are
paid in one payment. Longer contracts may have the option to pay in installments, but this is part of
the agreement that you come to with the buyer. Select Next.

7. Complete the offer details, including the following information:

• Custom offer name – Provide enough detail that you and the customers will recognize the offer.
Include your company or product name and a description of the product. Do not include any
personally identifiable information, including names, phone numbers, or addresses.

• Agreement end date – The date that the agreed-to services end. For example, if you are offering
support for 1 year, enter a date that is 1 year away from the date that the service will be available.

• Product dimensions – The prices and units for the service that you are offering, as follows:

• Lump sum payment offers – You can list each of the dimensions with their associated price (for
example, you could have dimensions called Silver, Gold, and Platinum). The buyer can choose
and pay for their preference.

• Offers that include a payment schedule – You must choose a single dimension and provide a
payment schedule with amounts and dates for each payment.

Note
If you want to create a zero dollar offer, you must select I want to enable zero dollar
prices for confirmation. This precaution helps to prevent you from accidentally creating a
free offer.

• Service agreement – Documents that define your service agreement with the customer. The
documents that you upload (in text or PDF formats) are appended together into a single PDF
document, so make sure that the file name is not required to understand the content.

• Offer expiration date – The date the offer expires. This determines how long the buyer has to
accept the offer and is unrelated to when the professional service will be available. You can extend
the offer expiration date after your offer has been created.

8. Select Next when you're done editing the options.

253

https://docs.aws.amazon.com/marketplace/latest/userguide/private-offers-overview.html
mailto:mpcustdesk@amazon.com
http://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Editing product information

9. On the Review offer page, make sure that the offer details are correct, and then choose Create
offer.

Note
Your offer may take some time to be published. After it's published, you can view the offer
on the Manage offers page. If you need to edit an offer (that has not yet been accepted),
you can do so from that page.

10. After the offer is published, and available on the Manage private offers page, from the Actions
menu for that offer, select Copy offer URL, and then send it in an email message to the buyer to
accept.

Editing product information
The following procedure describes how to edit the product information for an existing professional
services product in the AWS Marketplace Management Portal.

To edit product information

1. Open a web browser and sign into the AWS Marketplace Management Portal.

2. From the Products menu, select Professional services. This page shows you all professional services
products that you have already created, as well as any requests you have outstanding for creating or
modifying these products.

3. Select an existing product that you would like to edit. Then, from the Request changes menu, select
Update product information.

4. Make the changes to the details. For more information about the fields you can edit, see Providing
details for a professional services product (p. 256).

5. Select Submit to create the request.

6. (Optional) If you are not already on the Requests tab of the Professional services page, then from
the Products menu of AWS Marketplace Management Portal, select Professional services, then
choose the Requests tab. Verify that you see your request with the correct Product title, and that
the Request status is Under review. Your product will be updated with the changes you requested
within a few minutes. If there is an error, you can view it here and resubmit your edits after fixing the
errors.

Editing product pricing
The following procedure describes how to edit the pricing information for an existing professional
services product in the AWS Marketplace Management Portal.

To edit product pricing

1. Open a web browser and sign into the AWS Marketplace Management Portal.

2. From the Products menu, select Professional services. This page shows you all professional services
products that you have already created, as well as any requests you have made for creating or
modifying these products.

3. Select an existing product that you would like to edit, then from the Request changes menu, select
Update pricing dimensions.

Note
You can only add new pricing dimensions through the AWS Marketplace Management
Portal. To modify or remove previously created dimensions, contact the AWS Marketplace
Seller Operations team with your request. In your request, include the product ID and
details about what dimensions you want to change or remove.

254

http://aws.amazon.com/marketplace/management/
http://aws.amazon.com/marketplace/management/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Editing product visibility

4. Add any new pricing dimensions that you want. For more information about the pricing fields, see
Providing details for a professional services product (p. 256).

5. Select Submit to create the request.
6. (Optional) From the Products menu of AWS Marketplace Management Portal, select Professional

services, then choose the Requests tab. Verify that you see your request with the correct Product
title, and that the Request status is Under review. Your product will be updated with the changes
you requested within a few minutes. If there is an error, you can view it here and resubmit your edits
after fixing the errors.

Editing product visibility
By default, products are created with limited visibility—a new product is only visible from your account.
You can add other test accounts, or make the product publicly visible in the AWS Marketplace. The
following procedure describes how to edit the visibility of an existing professional services product in the
AWS Marketplace Management Portal.

To edit product visibility

1. Open a web browser and sign into the AWS Marketplace Management Portal.
2. From the Products menu, select Professional services. This page shows you all professional services

products that you have already created, as well as any requests you have outstanding for creating or
modifying these products.

3. Select an existing product that you would like to edit. Then, from the Request changes menu, select
Update product visibility.

4. Select Contact us. This launches a Contact Us page with the product information for the AWS
Marketplace Seller Operations team to review and make the change.

5. Add details of your request, including whether you want the product to be public or private. If
private, provide the account IDs you want to access, and then select Submit to send your request,

Note
To make a product visible in the public AWS Marketplace catalog requires a product review by
the AWS Marketplace Seller Operations team to ensure that the product meets the product
guidelines (see Requirements for professional services products (p. 258)). The request can take
several days to complete.

Removing a professional services product
The following procedure describes how to remove an existing professional services product from the
AWS Marketplace Management Portal.

To remove a product

1. Open a web browser and sign into the AWS Marketplace Management Portal.
2. From the Products menu, select Professional services. This page shows you all professional services

products that you have already created, as well as any requests you have outstanding for creating or
modifying these products.

3. Select an existing product that you would like to edit. Then, from the Request changes menu, select
Unpublish a product.

4. Select Contact us. This launches a Contact Us page with the correct information for the AWS
Marketplace Seller Operations team to review and make the change.

5. Complete any additional information requested in the Contact Us page template, and select Submit
to send your request.

255

http://aws.amazon.com/marketplace/management/
http://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Product details

Note
The request can take several days to complete. Products with active offers will be moved to
restricted state until the last active subscription or contract is completed and then removed
from AWS Marketplace. Products in restricted state are only visible to customers with active
offers and sellers will not be able to extend new offers on these products.

Providing details for a professional services
product

When you publish a professional services product on AWS Marketplace, you must provide the product
metadata. This topic discusses information that is useful when you prepare or edit your product's details.

Note
For information about guidelines and requirements for professional services products, see
Requirements for professional services products (p. 258).

Topics
• Product descriptions (p. 256)
• Additional resources (p. 257)
• Support information (p. 257)
• Pricing dimensions (p. 257)
• Product visibility (p. 258)

Product descriptions
The product descriptions section in the product details is the core of your product. It describes your
product to your potential buyers so that they can make a purchasing decision. This section of the product
details includes the following data:

• Product title – The name of your product. This is used to identify your product; it's visible on the
product page and within search results. Provide a meaningful name for your product. It must be
unique within AWS Marketplace.

• SKU – (Optional) Used to track your products on AWS Marketplace. This information is for your own
use; buyers don't see it.

• Short description – A concise description of your product that appears on the tiles and underneath the
product title in the AWS Marketplace product catalog.

• Long description – A longer, formatted description that describes the details of your product to
buyers. List the product features, benefits, usage, and other information specific to the product. Use
the available formatting to make the information easier to understand and scan.

• Product logo – This field is a public S3 URL that points to an image file that represents your product.
The file must be in .png, .jpg, or .gif format, with a transparent or white background, under 5MB,
and be between 110-10,000 pixels wide and tall. The logo is uploaded during product submission,
and stored in AWS Marketplace. Modifying the contents of the URL will not modify the logo in AWS
Marketplace after it is submitted.

Note
The S3 URL that you provide must be publicly available. This is a property of the S3 bucket in
which the file resides. For more information, see How do I edit public access settings for S3
buckets? in the Amazon Simple Storage Service Console User Guide.

• Highlights – A set of one to three short points about your product, describing its key features or
differentiators. At least one highlight is required.

256

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/block-public-access-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/block-public-access-bucket.html

AWS Marketplace Seller Guide
Additional resources

• Product categories – The types of service that you provide. You must choose at least one, and up to
three, categories. There are many categories to choose from, but professional services products must
include at least one of the following:

Assessment

Evaluation of the customer's current operating environment to find the right solutions for their
organization.

Implementation

Help with configuration, setup, and deployment of third-party software.

Premium support

Access to guidance and assistance from experts, designed for the customer's needs.

Managed services

End-to-end environment management on the customer's behalf.

Training

Tailored workshops, programs, and educational tools provided by experts to help the customer
employees learn best practices.

• Keywords for search results – Provide up to three keywords that buyers might use to search for your
product. You can list keywords in a comma-separated list, up to 250 characters.

• Associated products – optional – Include at least one public product from AWS Marketplace that your
service either works with or supports. AWS Marketplace uses these products as input when selecting
products to show on your product's details page or in Related products for those products.

Additional resources
In the Additional resources section of the product details, you can provide links to resources that you
have created to help your customers. This is an optional set of one to three downloadable resources that
are stored online. Examples of resources include product information sheets, whitepapers, or product
manuals. For each resource, provide a name and a URL for the resource.

Support information
This section is a formatted text field that allows you to describe the support that you provide for your
service.

Customers expect support on issues such as using the services, troubleshooting, and requesting refunds
(if applicable). The support description should contain a statement about the level of support a customer
can expect. Consider including support details for both pre-purchase questions and post-purchase issues.

Pricing dimensions
Pricing dimensions for professional services are packages that you offer. For example you might offer
Silver, Gold, and Platinum support. Or you might offer 10, 20, or 50 hours of consulting. For each
dimension you want to offer (at least one, up to 24), specify a name and a description. When you create
a private offer for the product by working with a buyer directly, you set the actual prices for these
dimensions.

Note
For information about how pricing dimensions are used, and how prices are set, see Creating
private offers (p. 253).

257

AWS Marketplace Seller Guide
Product visibility

Product visibility
Released products can be visible in AWS Marketplace to just your own account, to a small set of test
accounts, or to all AWS accounts. By default, the product is published in private release. To change the
product visibility, see Editing product visibility (p. 255).

Requirements for professional services products
AWS Marketplace maintains requirements for all products and offerings on AWS Marketplace. These
requirements help to promote a safe, secure, and trustworthy curated digital catalog for our customers.
We encourage sellers to review the implementation of additional controls and protocols as applicable to
meet the needs of their specific products.

AWS Marketplace reviews all products and their related metadata when submitted to ensure that they
meet or exceed current AWS Marketplace requirements. We review and adjust these requirements to
meet our security requirements. In addition, AWS Marketplace continuously reviews products to verify
that they meet any changes to these requirements. If products fall out of compliance, AWS Marketplace
contacts you to update your product. In some cases, your products might temporarily be unavailable to
new subscribers until issues are resolved.

Product setup guidelines
All professional services products must adhere to the following product setup guidelines:

• Your AWS account must be registered with AWS Marketplace as a paid seller.

• All pricing dimensions must relate to actual services offered and billed using AWS Marketplace.

• Your products must be listed in one of these categories: Assessments, Implementation, Managed
services, Premium support, or Training.

• Besides the required professional services categories, your product should also be correctly categorized
by choosing other appropriate categories that fit into services offered.

• Your product's logo must not be designed to confuse with the AWS logo, or any logo from an
unrelated third party.

• Your product details must not contain offensive or explicit material. They must comply with the AWS
Acceptable Use Policy available at https://aws.amazon.com/aup/.

• Your professional service product must directly support or offer services related to third-party
software products listed on AWS Marketplace or help customers achieve specific outcomes related to
the adoption or management of their AWS Cloud.

Customer information requirements
All professional services products must adhere to the following customer information requirements:

• Professional services products must be billed entirely through the listed dimensions on AWS
Marketplace.

• You are not permitted to collect customer payment information for your professional services product
listing on AWS Marketplace at any time, including credit card and bank account information.

• Any subscriber or prospective subscriber information provided by AWS to you in conjunction with your
professional services products must be used solely in accordance with the Terms and Conditions for
AWS Marketplace Sellers.

258

https://aws.amazon.com/aup/

AWS Marketplace Seller Guide
Product usage guidelines

Product usage guidelines
All professional services products must adhere to the following product usage guidelines:

• After subscribing to the product in AWS Marketplace, customers should be able to access the service or
be contacted by you (as the seller) within two business days of subscription. If the customer can't gain
access to the service immediately, you must send an email message to them with specific details about
when they will gain access. When the access is granted, you must send the customer an email message
confirming that the access has been granted along with clear next steps.

• Customers must be able to easily get help with issues, such as using the services, troubleshooting,
and requesting refunds (if applicable). Support contact options must be specified on the fulfillment
landing page. The support description should contain a statement about the level of support a
customer can expect.

• Your product's overview should include clear value propositions, key features, links to detailed
documentation, and clear definitions of pre-purchase and post-purchase support of the services
offered.

• Your products should have clear and straightforward service terms.

Architecture guidelines
All professional services products must adhere to the following architecture guidelines:

• Professional services products must be related to an AWS service or at least one public AWS
Marketplace product (up to four) in which the product offers services for those related products
directly or offers services that drive more subscribers to those related products.

• If the services offered require additional resources in the customer's infrastructure, follow these
guidelines:
• Provision resources in a secure way, such as by using the AWS Security Token Service or AWS Identity

and Access Management (IAM).
• Provide additional documentation including a description of all provisioned AWS services, IAM policy

statements, and how an IAM role or user is deployed and used in the customer account.
• Include a notification in the product description that explains that if the customer incurs additional

AWS infrastructure costs, separate from their AWS Marketplace transaction, they're responsible for
paying additional infrastructure charges.

• If your product deploys an agent, provide instructions to the customer that describe how to deploy
the agent in their AWS account.

Professional services product pricing
You can set the following product pricing model for your professional services products:

• Private offers - With seller private offers, there are options available for multi-year and custom
duration contracts. For more information about multi-year and custom duration contracts, see Private
offers (p. 44) and Flexible payment scheduler (p. 48).

You can set only one price per product.

For more information about pricing AWS Marketplace products, see Product pricing (p. 37).

259

AWS Marketplace Seller Guide

Data products
AWS Data Exchange is a service that makes it easy for AWS customers to securely exchange file-
based data sets in the AWS Cloud. As a provider, AWS Data Exchange eliminates the need to build and
maintain any data delivery, entitlement, or billing technology. Providers in AWS Data Exchange have a
secure, transparent, and reliable channel to reach AWS customers and grant existing customers their
subscriptions more efficiently. The process for becoming an AWS Data Exchange provider requires a few
steps to determine eligibility.

A data product has the following parts:

• Product details – This information helps potential subscribers understand what the product is. This
includes a name, descriptions (both short and long), a logo image, and support contact information.
Product details are filled out by providers.

• Product offer(s) – In order to make a product available on AWS Data Exchange, providers must define
a public offer. This includes the prices and durations, data subscription agreement, refund policy, and
the option to create custom offers.

• Data set(s) – A product can contain one or more data sets. A data set is a dynamic set of file-based
data content. Data sets are dynamic and are versioned using revisions. Each revision can contain
multiple assets.

For more information, including eligibility requirements, see Providing Data Products on AWS Data
Exchange in the AWS Data Exchange User Guide.

260

https://docs.aws.amazon.com/data-exchange/latest/userguide/providing-data-sets.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/providing-data-sets.html

AWS Marketplace Seller Guide

Submitting your product for
publication

You use the product submission process to make your products available on AWS Marketplace. Products
can be quite simple, for example, a single Amazon Machine Image (AMI) that has one price structure. Or,
products can be quite complicated, with multiple AMIs, AWS CloudFormation templates, and complex
pricing options and payment schedules. You define your product offering and submit it through the AWS
Marketplace Management Portal in one of two ways:

• Using the Products tab – For products that are less complex, you use the Products tab to completely
define and submit your request.

• Using the Assets tab – For products that are more complex and require more definition, you download
a product load form (PLF), add product details, and then upload the completed form using the File
upload option.

Note
Data product providers must use the AWS Data Exchange console to publish products. For more
information, see Publishing Products in the AWS Data Exchange User Guide.

We recommend that you start by using the Products tab to determine which approach to use. The
following table lists configurations and the approach you use to submit your request. The first column is
the pricing model for your product, and the other three columns are how the product is deployed to the
customer.

Pricing model Products launched
using single-node AMI

Products launched
with AWS
CloudFormation

Products launched as
software as a service
(SaaS)

Bring Your Own License
(BYOL)

Products tab Assets tab

Free Products tab Assets tab

Paid Hourly Products tab Assets tab

Paid Hourly with
Annual

Products tab Assets tab

Paid Monthly Products tab Assets tab

Hourly with Monthly Assets tab Assets tab

Paid Usage (AWS
Marketplace Metering
Service)

Products tab Assets tab

Contract Pricing Products tab

SaaS Subscription Products tab

SaaS Contract Products tab

SaaS Legacy Assets tab

261

https://docs.aws.amazon.com/data-exchange/latest/userguide/publishing-products.html

AWS Marketplace Seller Guide
Using the Products tab

You can submit products individually or, if you use a product load form, you can submit multiple
products or product updates at the same time. You cannot submit multiple products at the same
time using the Products tab. If you are unclear on what products can be submitted in what manner,
start by using the Products tab. If you have any problems making your submissions, contact the AWS
Marketplace Managed Catalog Operations (MCO) team.

Using the Products tab
To access the Products tab, log in to the AWS Marketplace Management Portal. From the Products tab,
choose either Server, SaaS, or Machine learning, depending on the type of product you are managing.
A dashboard for that product type appears that contains all of your current products. If you choose the
Requests tab, the dashboard displays any outstanding requests you have and your completed request
history. Once you start creating a new product request, you can save your work in progress, and if
necessary, create your request in several different sessions.

When you are ready to submit your product request, the request is reviewed by the AWS Marketplace
team. You can monitor the status of your request on the product page for the type of product you are
requesting. For new products, after your request is approved for publication, you receive a limited listing
URL that you can use to preview and approve your submission. Your product offer is not published until
you approve the submission. When you request an update to an existing product, the update is published
without the need for you to review and approve the change. This includes adding or removing versions,
and metadata changes.

You track the status of your requests under the Requests tab. The status will be one of the following:

• Draft – You have started the request process but have not submitted your request.

• Submitted – You have completed and submitted your request, and it is under review.

• Action Required – The AWS Marketplace team has reviewed your request and needs more information.

• Approval Required – The AWS Marketplace team has created the limited listing URL for your product.
You must review and either approve or reject the URL before AWS Marketplace will publish. If you
approve, the status changes to Publishing Pending while the site gets published. If you reject, the
status returns to Draft so you can modify the request.

• Publishing Pending – You have approved the mock-up of your request and AWS Marketplace is
publishing your product.

• Expired – You started the request process but did not complete it within six months, so the request
expired.

If you have an entry with a status of Submitted, you can retract the submission. If you have an entry
with a status of Draft, you can delete the request. This will allow you to start over. When you delete a
Draft entry, the entry is moved to the Request History tab.

To add your product in the AWS GovCloud (US) AWS Region, you must have an active AWS GovCloud (US)
account and comply with the AWS GovCloud (US) requirements, including export control requirements.

Company and product logo requirements
Your company logo and the logo for your products must conform to the following AWS Marketplace
guidelines so that the user experience is uniform when browsing AWS Marketplace:

Product logo specifications – Your product logo image should have a transparent or white background
and be 120 to 640 pixels in size, with a 1:1 or 2:1 (wide) ratio.

262

https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
http://docs.aws.amazon.com/govcloud-us/latest/UserGuide/getting-started-sign-up.html
http://docs.aws.amazon.com/govcloud-us/latest/UserGuide/getting-started-sign-up.html

AWS Marketplace Seller Guide
Requirements for submitting paid repackaged software

Company logo specifications – Your company logo image should have a transparent background and be
220 x 220 pixels in size, allowing for 10 pixels of padding on each side within.

Requirements for submitting paid repackaged
software

If you are submitting a paid listing of either a repackaged open-source software (for example, open
source AMI or container products with paid support), or software that was originally created by a
vendor other than you (for example, reselling an AMI with Windows operating system), the following
requirements must be met before submission:

• The product title must indicate the value added by your repackaging. Examples of product titles
include: Hardened <Product>, <Product> with added packages, <Product1> on <Product2>.

• The product title must not contain any other language that is not otherwise supported with
documentation. For example, the product title may not use the words certified, original, or free unless
these are substantiated in the product details that you provide.

• The product short description must include a clear statement summarizing the product charges. The
short description must begin with the phrase This product has charges associated with it for.... For
example, if a product includes charges for support from the seller, then the product description should
state: This product has charges associated with it for seller support.

• The product logo must be same as the company logo which was used during your seller registration
process. The product logo can differ from your company logo only if you use the official software logo,
whereby you must receive explicit permission from the original software vendor. If explicit permission
is obtained, a link to that documentation must be included in the notes section of the change request
(or in the Enter a brief description field of the File Uploads page when using the product load form).

• For AMI products, the AMI name must not be reused from the original product. The AMI name must
begin with the seller name and follow this format: [Seller Name] [name-given-to-ami].

If the paid listing is for a standalone software product that was not created by your company and there
is no intellectual property added to the product (for example, bundling additional software libraries or
adding special configuration) then, along with the earlier requirements, the following requirements must
also be met:

• Product title must include the seller name (along with the value added, as described earlier). The seller
name is the name used during seller registration. For example, <Product> with maintenance support by
<seller>.

• The first line of the product's long description must begin with the phrase This is a repackaged
software product wherein additional charges apply for... (or, if it's open source, This is a repackaged open
source software product wherein additional charges apply for...). Then, the long description must include
a clear statement summarizing what you are charging for, as well as additional details describing those
features. For example, the long description of an open source product charging for additional support
might start as: This is a repackaged open source software product wherein additional charges apply for
support with {SLA Details}.

AWS CloudFormation-launched product (free or
paid) or usage-based paid AMI product

Use a product load form (PLF) to submit products that AWS Marketplace customers launch by using
AWS CloudFormation templates. The PLF is available through the AWS Marketplace Management Portal
(AMMP).

263

AWS Marketplace Seller Guide
Submitting your product

Submitting your product
1. From the AMMP, download the product load form (PLF) for your product.
2. Add your product definition, which includes product information (title, description, highlights),

technical information (AMI_ID, Regions, instance types, OS), and pricing details (pricing model, Free
Trial).

3. Submit your PLF following the instructions under the Instructions table of the spreadsheet.

The AWS Marketplace team reviews your product for policy and security compliance, software
vulnerabilities, and product usability. If there are any questions or issues with a request, the AWS
Marketplace team will contact you via an email message to discuss your request. Once approved, a mock-
up of your product's page is created. After you review the page, you accept or reject the mock-up. Once
approved, we add the page to the AWS Marketplace.

Updating your product
For products that you created by using the product load form (PLF), you also use the PLF to make
changes to those products. You can make changes to the original PLF you completed or, if it's not
available, you can start with a new PLF. Just like using the Products tab, you can add a new version,
remove existing versions, and update pricing, instance types, Region availability, and metadata. To make
an update, you prepare any updated product the same way you prepare a new product. After the product
update is prepared, follow these steps:

1. Use your existing PLF or, from the AWS Marketplace Management Portal, under the Assets tab,
choose File upload. Under Product load forms and seller guides, you can download the PLF for
your product.

2. Update your product submission in the PLF.
3. From the AWS Marketplace Management Portal, under the Assets tab, choose File Upload.
4. On the File Uploads page, upload your updated PLF and any AWS CloudFormation templates. The

file uploader provides a secure transfer mechanism and a history of submitted files. The uploader
automatically notifies the AWS Marketplace team to begin processing your request. Include a
description of the submission (adding new version, changing price, changing metadata, and so
forth).

Your product submission is reviewed for policy and security compliance, software vulnerabilities, and
product usability. If there are any questions or issues with a request, the AWS Marketplace team will
contact you via an email message. Updates to existing product pages are processed and released directly
without additional reviews.

Product changes and updates
Sellers can submit changes to their product at any time, and they will be processed as described earlier.
However, some changes can only be made every 90 or 120 days, or when pending changes are in place.
Examples include price changes and AWS Region or instance type changes. Common changes include:

• New Version – New versions of the software and rollouts of patches or updates. At your request, we
can notify customers who have subscribed to your AWS Marketplace content about the availability of
new versions or send upgrade instructions on your behalf.

• Metadata change – Changes to product information (Description, URLs, and Usage Instructions).
• Pricing Change – A change to the pricing amount. A notification to current customers is sent after the

request is complete.

264

https://aws.amazon.com/marketplace/management/products/?
https://aws.amazon.com/marketplace/management/
https://aws.amazon.com/marketplace/management/products/?

AWS Marketplace Seller Guide
Timing and expectations

• Pricing Model Change – A change to the pricing model (for example, Hourly, Free, Hourly_Annual).
Not all pricing model changes are supported, and all requests to change models must be reviewed and
approved by the AWS Marketplace team. Any change from a free to a paid model presents significant
impact to existing customers. An alternative is to propose a new product with additional features and
encourage current customers to migrate.

• Region or Instance change – Adding or removing instances types or Regions.

• Product takedown - Remove a product page from AWS Marketplace to prevent new customers from
subscribing. A notification to current customers is sent after the request is complete.

Timing and expectations
While we strive to process requests as quickly as possible, requests can require multiple iterations and
review by the seller and AWS Marketplace team. Use the following as guidance for how long it will take
to complete the process:

• Total request time normally takes 2–4 weeks of calendar time. More complex requests or products can
take longer, due to multiple iterations and adjustments to product metadata and software.

• Review and processing of requests typically requires 3 business days. We will notify you if there are any
issues that require additional action.

• We require a completed product request and AMI at least 45 days in advance of any planned events or
releases, so we can prioritize the request accordingly.

If you have any questions about your request, contact the AWS Marketplace Seller Operations team.

Submitting AMIs to AWS Marketplace
All AMIs built and submitted to AWS Marketplace must adhere to all product policies. We suggest a few
final checks of your AMI prior to submission:

• Remove all user credentials from the system; for example, all default passwords, authorization keys,
key pairs, security keys or other credentials.

• Ensure that root login is disabled or locked. Only sudo access accounts are allowed.

• If you are submitting an AMI to be deployed into the AWS GovCloud (US) Region, you need to have
an active AWS GovCloud account and agree to the AWS GovCloud Requirements, including applicable
export control requirements.

AMI self-service scanning
Self-service AMI scanning is available within the AWS Marketplace Management Portal. With this feature,
you can initiate scans of your AMIs and receive scanning results quickly—typically in less than an hour—
with clear feedback in a single location.

To begin sharing and scanning your AMI with self-service scanning

1. Navigate to https://aws.amazon.com/marketplace/management/manage-products/.

2. Select the AMI to share.

3. View your scan results.

265

https://aws.amazon.com/marketplace/management/contact-us/
http://docs.aws.amazon.com/govcloud-us/latest/UserGuide/getting-started-sign-up.html
http://docs.aws.amazon.com/govcloud-us/latest/UserGuide/getting-started-sign-up.html
https://aws.amazon.com/service-terms/
https://aws.amazon.com/marketplace/management/manage-products/

AWS Marketplace Seller Guide
AMI cloning and product code assignment

After your AMI has successfully been scanned, you can follow the current process to submit it to the AWS
Marketplace Seller Operations team by uploading your product load form (PLF). If you have any issues,
contact the AWS Marketplace Seller Operations team.

To include your AMI in the self-service scanning list, the AMI must be in the us-east-1 (N. Virginia)
Region and owned by your AWS Marketplace seller account. If you need to grant other accounts access
to the AWS Marketplace Management Portal, you must register those accounts as sellers. For more
information, see Seller registration process (p. 6).

AMI cloning and product code assignment
After your AMI is submitted, AWS Marketplace creates cloned AMIs for each Region that you have
indicated that software should be available in. During this cloning and publishing process, AWS
Marketplace attaches a product code to the cloned AMIs. The product code is used to both control access
and to meter usage. All submissions must go through this AMI cloning process.

Final checklist
To help avoid delays in publishing your product, use this checklist before you submit your product
request.

Product usage

• Production-ready.
• Does not restrict product usage by time or other restrictions.
• Compatible with 1-click fulfillment experience.
• Everything required to use the product is contained within the software, including client applications.
• Default user uses a randomized password and/or creation of initial user requires verification that the

buyer is authorized to use the instance using a value unique to the instance such as instance ID.

For free or paid products

• No additional license is required to use the product.
• Paid repackaged software meets the AWS Marketplace Requirements for submitting paid repackaged

software (p. 263).
• Buyer does not have to provide personally identifiable information (for example, an email address) to

use the product.

AMI preparation

• Use hardware virtual machine (HVM) virtualization and 64-bit architecture.
• Does not contain any known vulnerabilities, malware, or viruses.
• Buyers have operating system-level administration access to the AMI.
• Run your AMI through AMI Self-Service Scanning.

For Windows AMIs

• Use the most recent version of Ec2ConfigService, as described in Configuring a Windows Instance
Using EC2Config Service.

• The Ec2SetPassword, Ec2WindowsActivate, and Ec2HandleUserData plugins are enabled, as
described in Configuring a Windows Instance Using EC2Config Service.

266

https://aws.amazon.com/marketplace/management/product-load/
https://aws.amazon.com/marketplace/management/contact-us/
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2config-service.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2config-service.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2config-service.html

AWS Marketplace Seller Guide
Final checklist

• No Guest Accounts or Remote Desktop Users are present.

For Linux AMIs

• Root login is locked and disabled.
• No authorized keys, default passwords, or other credentials are included.
• All required fields are completed.
• All values are within specified character limits.
• All URLs load without error.
• Product image is at least 110px wide and between a 1:1 and 2:1 ratio.
• Pricing is specified for all enabled instance types (for hourly, hourly_monthly, and hourly_annual

pricing models).
• Monthly pricing is specified (for hourly_monthly and monthly pricing models).

If you have any questions or comments about automated AMI building, contact the AWS Marketplace
Seller Operations team.

267

https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
180-day GTM Academy

Marketing your product
You can contribute to the success of your product by driving awareness of AWS Marketplace and by
driving traffic directly to your product pages on AWS Marketplace. The following provides information
and support to help you market the product or products that you have listed on AWS Marketplace.

180-day GTM Academy
The 180-day GTM Academy is available to all AWS Marketplace sellers, and it provides self-service go-
to-market (GTM) resources to help you build, activate, and track demand generation campaigns for your
offering in AWS Marketplace. You can:

• Fast track demand for your listings.
• Improve marketing return on investment and enhance customer messaging by integrating AWS and

AWS Marketplace value proposition into your messaging.
• You can progress toward or within the AWS Marketplace Go-to-Market Program Guide.

You can access the 180-day GTM Academy from the Marketplace Resources section of the AWS
Marketplace Management Portal.

Announcing your product's availability
We encourage you to broadly announce the availability of your product on AWS Marketplace. You can do
this via press releases, tweets, blogs, or any other preferred media channels. We have provided sample
text that you can to include, along with guidelines and instructions for using our trademarks and issuing
press releases.

We will review your blogs, tweets, and other non-press release announcements before going public to
ensure consistency with AWS messaging and brand guidelines or voice. Submit your request for review
to your AWS account manager. The review takes up to 10 business days to complete. Notify us when you
post any tweets, blogs, or press releases, and we will do our best to repost to increase their visibility.

AWS Marketplace messaging
In your customer communications you might want to describe the purpose, goals, and benefits of
purchasing your product using AWS Marketplace. Use the following messaging when referring to AWS
Marketplace.

What is AWS Marketplace?

AWS Marketplace is an online store that makes it easy for customers to find, compare, and immediately
start using the software and services that run on AWS. Visitors to AWS Marketplace can use 1-Click
deployment to quickly launch preconfigured software and pay only for what they use, by the hour or
month. AWS handles billing and payments, and software charges appear on the customer's AWS bill.

Why would a customer shop on AWS Marketplace?

268

https://s3.amazonaws.com/awsmp-loadforms/AWS_MP_GTM_ProgramGuide.pdf
https://aws.amazon.com/marketplace/management/
https://aws.amazon.com/marketplace/management/

AWS Marketplace Seller Guide
Reviews on AWS Marketplace

Finding and deploying software can be challenging. AWS Marketplace features a wide selection of
commercial and free IT and business software, including software infrastructure such as databases and
application servers, IoT solutions, developer tools, and business applications, from popular sellers. AWS
Marketplace enables customers to compare options, read reviews, and quickly find the software they
want. Then they can deploy it to their own Amazon Elastic Compute Cloud instance using 1-Click or
using the AWS Marketplace Management Portal.

Software prices are clearly posted on the website and customers can purchase most software
immediately, with payment instruments already on file with Amazon Web Services. Software charges
appear on the same monthly bill as AWS infrastructure charges.

Why would software or SaaS sellers sell on AWS Marketplace?

With AWS Marketplace, software and software as a service (SaaS) sellers with offerings that run on AWS
can benefit from increased customer awareness, simplified deployment, and automated billing.

AWS Marketplace helps software and SaaS sellers of software and services that run on AWS find new
customers by exposing their products to some of the hundreds of thousands of AWS customers, ranging
from individual software developers to large enterprises.

Selling on AWS Marketplace enables independent software vendors (ISVs) to add hourly billing for their
software without undertaking costly code changes. They simply upload an Amazon Machine Image
(AMI) to AWS and provide the hourly cost. Billing is managed by AWS Marketplace, relieving sellers of
the responsibility of metering usage, managing customer accounts, and processing payments, leaving
software developers more time to focus on building great software.

Additionally, customers benefit from the ability to easily deploy preconfigured images of the software,
simplifying onboarding for new customers.

Reviews on AWS Marketplace
AWS Marketplace provides the ability for customers to submit reviews on your product. We also
provide the ability for syndicated reviewers such as G2, a business-to-business marketplace that curates
independent product reviews, to integrate their syndicated reviews on AWS Marketplace.

AWS Marketplace customer reviews must meet the review guidelines listed in the user guide for buyers.
Review submissions are not released on AWS Marketplace until after the submission is reviewed to verify
it meets our review criteria. For more information on review guidelines, see Product Reviews. Syndicated
review organizations use their own unique processes to validate their reviews and aren't reviewed by
AWS Marketplace before release. If you think that a syndicated review on your product doesn't meet
the product review guidelines, or if you think a review on your product contains objectionable content,
contact the seller operations team.

The reviewer can also provide a star rating for your product based on a five-star rating system. The
ratings are averaged to give the overall star rating for your product. Syndicated reviews can also include
a star rating, but star ratings from syndicated reviews are not averaged in with the AWS customer star
ratings.

The following are additional key points about the product review feature:

• You can't have a product review removed from AWS Marketplace. However, you can leave a comment
on any review as long as the comment meets the review criteria governing product reviews.

• If you think that a review doesn't meet the review guidelines or contains objectionable content, you
can contact the seller operations team and describe your concern.

• AWS customers searching for products in AWS Marketplace can search and filter results based on
ratings, verified reviews, and externally sourced reviews. AWS customers see the externally sourced
ratings alongside AWS customer ratings in search results.

269

https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-product-reviews.html
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/

AWS Marketplace Seller Guide
Linking to AWS Marketplace

• Syndicated reviews for your product are automatically added to AWS Marketplace at no cost to you.
Because reviews are automatically added, you don't need to submit a request to have a syndicated
review added.

• If you don't have any syndicated reviews for your product, you can contact the syndicated reviewer
and follow their process for getting your product reviewed. For example, with G2, you can visit their
website and claim your product page to start their review process.

Linking to AWS Marketplace
Your company likely has a web presence where it describes and promotes your product. We encourage
you to highlight that the product is available to run on AWS and can be purchased using AWS
Marketplace. To simplify the process for your customers to discover and deploy your software, we have
provided instructions for linking your customers to your product.

Using the AWS Marketplace logo
The AWS Marketplace logo is a way to easily tell your customers that your software runs on AWS and is
available in AWS Marketplace. If you would like to promote your software in AWS Marketplace, download
the archived folder (.zip file), which contains multiple color treatments and file formats.

Linking directly to your product on AWS
Marketplace

You can send your customers directly to the product’s information page on AWS Marketplace by
including deep links on your website or collateral. Use the following example link structure for browser-
based linking.

https://aws.amazon.com/marketplace/pp/ASIN

Replace ASIN segment of the URL with your product’s ASIN.

Example

https://aws.amazon.com/marketplace/pp/B00635Y2IW

The ASIN appears in the URL when you search for your application on aws.amazon.com/marketplace.
Alternatively, you can consult with your account manager to find the ASIN.

Note
Test the links before using them to make sure that they direct your customers to the correct
page.

Press releases
We encourage you to announce your product’s availability on AWS Marketplace through any channel
you prefer. However, all press releases that reference AWS Marketplace must be reviewed and signed
off on by Amazon before any publication or announcement is made. While we encourage you to make
announcements, we can't support joint press releases with AWS Marketplace sellers. We will, on a case-

270

https://s3.amazonaws.com/awsmp-logos/AWS_Marketplace-Logos-AllFormats-171006.zip
https://s3.amazonaws.com/awsmp-logos/AWS_Marketplace-Logos-AllFormats-171006.zip
https://aws.amazon.com/marketplace/

AWS Marketplace Seller Guide
AWS Marketplace trademark usage guidelines

by-case basis, support press releases with a quote from AWS. The quote must meet several conditions,
including but not limited to: it announces a new product or service listed on AWS Marketplace or it
includes a customer reference that uses AWS Marketplace.

All press releases must be drafted by you. We suggest the following headline: [Insert product name] Now
Available on AWS Marketplace. Use the messaging in this document for consistency.

The press release should:

• Clearly and accurately describe how the announcement relates to Amazon.com
• Clarify your role on AWS and with customers
• Be customer-focused and emphasize the customer benefit

The press release should not:

• Use the terms partners, partnership, or alliance to describe the relationship. We prefer agreement,
teamed, or relationship.

• Include a quote from an Amazon Web Services executive unless previously agreed upon.
• Include any sales projections or use .com by the merchant unless referring to the website in your

company boilerplate.
• Refer to your organization as an associate of Amazon.com because this could be confused with

Amazon Associates, our online affiliate program.
• Disclose proprietary information about Amazon.com or refer to our stock ticker symbol.

Have your press release reviewed by submitting it in text format to your account manager. Additionally,
review the Amazon Web Services trademark guidelines before using any AWS trademarks. Guidelines
specific to the AWS Marketplace trademark are in the following section.

AWS Marketplace trademark usage guidelines
These Guidelines apply to your use of the AWS Marketplace logo and trademark, (each the “Trademark”
and collectively the “Trademarks”) in materials that have been approved in advance by Amazon.com, Inc.
and/or its affiliates (“Amazon”). Strict compliance with these Guidelines is required at all times, and any
use of a Trademark in violation of these Guidelines will automatically terminate any license related to
your use of the Trademarks.

1. You may use the Trademark solely for the purpose expressly authorized by Amazon and your use
must: (i) comply with the most up-to-date version of all agreement(s) with Amazon regarding your use
of any of the Trademarks (collectively “Agreements”); (ii) comply with the most up-to-date version of
these Guidelines; and (iii) comply with any other terms, conditions, or policies that Amazon may issue
from time to time that apply to the use of the Trademark.

2. We will supply an approved Trademark image for you to use. You may not alter the Trademark in any
manner, including but not limited to, changing the proportion, color, or font of the Trademark, or
adding or removing any element(s) from the Trademark.

3. You may not use the Trademark in any manner that implies sponsorship or endorsement by Amazon
other than by using the Trademark as specifically authorized under the Agreements.

4. You may not use the Trademark to disparage Amazon, its products or services, or in a manner which,
in Amazon’s sole discretion, may diminish or otherwise damage or tarnish Amazon’s goodwill in the
Trademark.

5. The Trademark must appear by itself, with reasonable spacing between each side of the Trademark
and other visual, graphic or textual elements. Under no circumstance should the Trademark be placed
on any background which interferes with the readability or display of the Trademark.

271

https://aws.amazon.com/trademark-guidelines/

AWS Marketplace Seller Guide
AWS Marketplace trademark usage guidelines

6. You must include the following statement in any materials that display the Trademark: “AWS
Marketplace and the AWS Marketplace logo are trademarks of Amazon.com, Inc. or its affiliates.

7. You acknowledge that all rights to the Trademark are the exclusive property of Amazon, and all
goodwill generated through your use of the Trademark will inure to the benefit of Amazon. You will
not take any action that is in conflict with Amazon’s rights in, or ownership of, the Trademark.

Amazon reserves the right, exercisable at its sole discretion, to modify these Guidelines and/or the
approved Trademarks at any time and to take appropriate action against any use without permission or
any use that does not conform to these Guidelines. If you have questions about these Guidelines, contact
trademarks@amazon.com for assistance or write to us at the following address:

Amazon.com, Inc., Attention: Trademarks

PO Box 81226

Seattle, WA 98108-1226

272

AWS Marketplace Seller Guide
Seller reports

Seller reports and data feeds
AWS Marketplace provides the following tools for collecting and analyzing information about your
product sales:

• Reports (p. 273) that are automatically created and are available to all registered AWS Marketplace
sellers.

• An API (p. 14) that enables you to access sections of those reports.
• Data feeds (p. 299) that provide additional customer information that you can use to identify

customer information for transactions listed in the reports.

AWS Marketplace provides as much data as possible in reports and data feeds while adhering to the
following:

• Amazon standards and tenets for protecting customer data.
• The terms and conditions that buyers accept when they buy a product on AWS Marketplace. As a seller,

you are contractually bound to securely manage buyer data and to delete data upon buyer's request.

Seller reports
AWS Marketplace provides reports that include information about product usage, buyers, billing, and
payment information. Reports are available to all registered AWS Marketplace sellers.

Here are some key points about report generation:

• Reports are generated daily, weekly, or monthly, depending on the report.
• Reports are generated at 00:00 UTC and cover through 24:00 UTC of the previous day.
• Reports are generated as .csv files.
• You can configure Amazon SNS to notify you when data is delivered to your encrypted S3 bucket. After

you configure notifications, AWS sends notifications to the email address that is associated with the
AWS account that you registered with on AWS Marketplace.

For information on how to configure notifications, see Getting started with Amazon SNS in the
Amazon Simple Notification Service Developer Guide.

To cancel getting notification emails, contact the AWS Marketplace Seller Operations team.
• To learn about each report, you can download sample reports.

Accessing reports
AWS Marketplace provides two ways to configure your reports:

• Using an API interface. The AWS Marketplace Commerce Analytics Service (p. 14) enables you to
automatically access the data in your reports through an API interface. You can automate ingesting
your information and download a portion of a report instead of the whole report. The service returns
data asynchronously to a file in Amazon Simple Storage Service (Amazon S3) rather than directly as
with a traditional API. The data is delivered in a machine-readable format so that you can import or
incorporate the data into your systems.

• Using the reports dashboard in the AWS Marketplace Management Portal. This dashboard provides
reports for previous reporting periods.

273

https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html
https://aws.amazon.com/marketplace/management/contact-us/
https://s3.amazonaws.com/awsmp-loadforms/AWS+Marketplace+-+Seller+Reporting+Examples.zip
https://aws.amazon.com/marketplace/management/reports/

AWS Marketplace Seller Guide
Daily business report

You can control access to reports by using AWS Identity and Access Management (IAM) permissions.

Daily business report

The daily business report helps you understand how AWS customers are using your products on a daily
basis and the estimated revenue from that usage. You only receive this report if relevant information
is available. If you don't receive this report and think that you should have received it, contact the AWS
Marketplace Seller Operations team.

You can access this report at the AWS Marketplace Management Portal. If you are registered for the the
section called “AWS Marketplace Commerce Analytics Service” (p. 14), you can also access your reports
using the AWS SDK.

You can use a unique identifier for each customer to identify customers over time and across reports. The
identifier enables you to track customer usage patterns so that you can estimate customer spend, gain
insights into free trial usage, and annual usage trends.

Publication schedule
This report is published daily at 00:00 UTC and covers from 00:00 UTC through 23:59 UTC of the
previous day. Any exceptions to the schedule are noted at the introduction of the daily business report
section.

Topics
• Section 1: Usage by instance type (p. 274)
• Section 2: Fees (p. 276)
• Section 3: Free trial conversions (p. 277)
• Section 4: New instances (p. 277)
• Section 5: New product subscribers (p. 278)
• Section 6: Canceled product subscribers (p. 279)

Section 1: Usage by instance type
This section lists data with a row for each instance type that the customer uses. For instance, when the
customer uses a product on one instance type and the same product on a different instance type, the
report includes a row for each of the two instance types.

Column name Description

Customer Reference ID A unique identifier that isn't the account ID. It
helps track usage, revenue, and subscriptions by
customers.

User’s State The billing address state that is associated with
the account that is subscribed to the product.

User’s Country The two-character country code that is associated
with the account that is subscribed to the product.
This report uses ISO 3166-1 alpha-2 standard.

Product Title The title of the product.

Product Code The unique identifier for the product.

274

https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/reports/

AWS Marketplace Seller Guide
Daily business report

Column name Description

Instance Type The instance type associated with the product
usage: for example, t2.micro.

Usage Units The number of units of usage that the customer
used during the reporting period.

Usage Unit Type The unit of measurement that meters the
customer's usage. For example, hours or days.

Offering Description The description for product offering. For example,
the product is offered for hourly usage, free trial
usage, or annual usage.

Estimated Revenue The estimated revenue from the product usage.
The billing is finalized at the end of the month.

Currency The currency of the transaction. For example, if
the transaction is in US dollars, the entry is USD.

Offer ID The identifier for the offer that the buyer signed.

Offer Visibility Whether the offer is a public, private, or enterprise
contract offer.

Customer AWS Account Number The ID of the account that the charges are billed
to.

Customer Country The two-character country code that is associated
with the account that the charges are billed to.

Customer State The billing address state that is associated with
the account that the charges are billed to. This
report uses ISO 3166-1 alpha-2 standard.

Customer City The billing address city that is associated with the
account that charges are billed to.

Customer Zip Code The billing address zip code that is associated with
the account that the charges are billed to.

Customer Email Domain The email domain that is associated with
the account that the charges are billed to.
For example, if the email address is liu-
jie@example.com, the entry is example.com.

Solution Title The name of the solution.

Solution ID The unique identifier for the solution.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Payer Address ID A unique identifier that represents the customer's
address.

275

AWS Marketplace Seller Guide
Daily business report

Section 2: Fees

This section includes fee-based transactions that are associated with products: for example, annual,
monthly, SaaS contracts product fees, and data product subscription fees. The data in this section covers
the 24-hour period 72 hours before the time that the report is generated. For example, if the report is
generated on May 24, the data covers the 24-hour period for May 21.

Column name Description

Customer Reference ID A unique identifier that isn't the account ID. It
helps track usage, revenue, and subscriptions by
customers.

User’s State The billing address state that is associated with
the account that is subscribed to the product.

User’s Country The two-character country code that is associated
with the account that is subscribed to the product.
This report uses ISO 3166-1 alpha-2 standard.

Product Title The title of the product.

Product Code The unique identifier for the product.

Amount The usage fee. If there is a refund, this value is
negative. If this entry is for an AWS Marketplace
SaaS contract, the amount represents the fee for
the dimension, not the entire contract.

Currency The currency of the transaction. For example, if
the transaction is in US dollars, the entry is USD.

Fee Description The reason for the fee: for example, monthly fee,
annual fee, or refund.

Customer AWS Account Number The ID of the account that the charges are billed
to.

Customer Country The two-character country code that is associated
with the account that the charges are billed to.
This report uses ISO 3166-1 alpha-2 standard.

Customer State The billing address state that is associated with
the account that the charges are billed to.

Customer City The billing address city that is associated with the
account that charges are billed to.

Customer Zip Code The billing address zip code that is associated with
the account that the charges are billed to.

Customer Email Domain The email domain that is associated with
the account that the charges are billed to.
For example, if the email address is liu-
jie@example.com, the entry is example.com.

Start Date The start date for an AWS Marketplace SaaS
contract or data product subscription.

276

AWS Marketplace Seller Guide
Daily business report

Column name Description

End Date The end date for an AWS Marketplace SaaS
contract or data product subscription.

Quantity The number of units for a dimension that the
contract specifies.

Dimension The dimension that the contract specifies.

Solution Title The name of the solution.

Solution ID The unique identifier for the solution.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Payer Address ID A unique identifier that represents the customer's
address.

Section 3: Free trial conversions

This section lists data for free trial starts, conversions and cancellations, and covers the previous 24-hour
period.

Column name Description

Product Title The title of the product.

Product Code The unique identifier representing the product.

New Free Trials The number of new free trials that are initiated in
the reporting period.

Total Current Free Trials The total number of active free trial subscriptions.

Converted Free Trials The total number of subscriptions that moved
from free trial to paid usage during the reporting
period.

Non-Converted Free Trials The total number of subscriptions that ended the
free trial and didn't convert to paid usage.

Solution Title The name of the solution.

Solution ID The unique identifier for the solution.

Section 4: New instances

This section lists data for new EC2 instance and instances types, and covers the previous 24-hour period.

277

AWS Marketplace Seller Guide
Daily business report

Column name Description

Customer Reference ID A unique identifier that isn't the account ID. It
helps track usage, revenue, and subscriptions by
customers.

User’s State The billing address state that is associated with
the account that is subscribed to the product.

User’s Country The two-character country code that is associated
with the account that is subscribed to the product.
This report uses ISO 3166-1 alpha-2 standard.

Product Title The title of the product.

Product Code The unique identifier for the product.

Type The Amazon EC2 instance type.

Count The number of EC2 instances.

Customer AWS Account Number The ID of the account that the charges are billed
to.

Customer Country The two-character country code that is associated
with the account that the charges are billed to.
This report uses ISO 3166-1 alpha-2 standard.

Customer State The billing address state that is associated with
the account that the charges are billed to.

Customer City The billing address city that is associated with the
account that charges are billed to.

Customer Zip Code The billing address zip code that is associated with
the account that the charges are billed to.

Customer Email Domain The email domain that is associated with
the account that the charges are billed to.
For example, if the email address is liu-
jie@example.com, the entry is example.com.

Solution Title The name of the solution.

Solution ID The unique identifier for the solution.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Payer Address ID A unique identifier that represents the customer's
address.

Section 5: New product subscribers

This section lists data for new buyers, and covers the previous 24-hour period.

278

AWS Marketplace Seller Guide
Daily business report

Column name Description

Customer Reference ID A unique identifier that isn't the account ID. It
helps track usage, revenue, and subscriptions by
customers.

User’s State The billing address state that is associated with
the account that is subscribed to the product.

User’s Country The two-character country code that is associated
with the account subscribed to the product. This
report uses ISO 3166-1 alpha-2 standard.

Product Title The title of the product.

Product Code The unique identifier for the product.

Offer ID The identifier for the offer the buyer signed.

Offer Visibility Whether the offer is a public, private, or enterprise
contract offer.

Customer Country The two-character country code that is associated
with the account that the charges are billed to.
This report uses ISO 3166-1 alpha-2 standard.

Customer State The billing address state that is associated with
the account that the charges are billed to.

Customer City The billing address city that is associated with the
account that charges are billed to.

Customer Zip Code The billing address zip code that is associated with
the account that the charges are billed to.

Customer Email Domain The email domain that is associated with
the account that the charges are billed to.
For example, if the email address is liu-
jie@example.com, the entry is example.com.

Solution Title The name of the solution.

Solution ID The unique identifier for the solution.

Payer Reference ID A unique identifier that isn't the account. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Payer Address ID A unique identifier that represents the customer's
address.

Section 6: Canceled product subscribers

This section lists data for buyer cancellations, and covers the previous 24-hour period.

279

AWS Marketplace Seller Guide
Daily business report

Column name Description

Customer Reference ID A unique identifier that isn't the account ID. It
helps track usage, revenue, and subscriptions by
customers.

User’s State The billing address state that is associated with
the account that is subscribed to the product.

User’s Country The two-character country code that is associated
with the account that is subscribed to the product.
This report uses ISO 3166-1 alpha-2 standard.

Product Title The title of the product.

Product Code The unique identifier for the product.

Subscribed Date The date when the subscription started.

Offer ID The identifier for the offer that the buyer signed.

Offer Visibility Whether the offer is a public, private, or enterprise
contract offer.

Customer AWS Account Number The ID of the account that the charges are billed
to.

Customer Country The two-character country code that is associated
with the account that the charges are billed to.
This report uses ISO 3166-1 alpha-2 standard.

Customer State The billing address state that is associated with
the account that the charges are billed to.

Customer City The billing address city that is associated with the
account that charges are billed to.

Customer Zip Code The billing address zip code that is associated with
the account that the charges are billed to.

Customer Email Domain The email domain that is associated with
the account that the charges are billed to.
For example, if the email address is liu-
jie@example.com, the entry is example.com.

Solution Title The name of the solution.

Solution ID The unique identifier for the solution.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Payer Address ID A unique identifier that represents the customer's
address.

280

AWS Marketplace Seller Guide
Daily customer subscriber report

Daily customer subscriber report
This report lists data for customers who purchased your products. This report doesn't specify current or
past usage, only that a customer is subscribed to your product. You only receive this report if relevant
information is available. If you don't receive this report and think that you should have, contact the AWS
Marketplace Seller Operations team.

You can access this report at the AWS Marketplace Management Portal. If you are registered for the the
section called “AWS Marketplace Commerce Analytics Service” (p. 14), you can also access your reports
using the AWS SDK.

The report has two sections: one for hourly and monthly subscriptions and one for annual subscriptions.
The report includes the list of AWS account IDs for all customers who are subscribed to your products.

Publication schedule
This report is published daily at 00:00 UTC and covers from 00:00 UTC through 23:59 UTC of the
previous day.

Topics
• Section 1: Hourly and monthly subscriptions (p. 281)
• Section 2: Variable length subscriptions (p. 282)

Section 1: Hourly and monthly subscriptions
This section lists data for all usage-based subscriptions as of the previous day at 23:59:59 UTC.

Column name Description

Customer AWS Account Number The account that is subscribed to the product.

Product Title The title of the product.

Product Id A unique identifier for the software product.

Product Code The unique identifier for the software product.

Subscription Start Date The start date for the subscription, formatted as
YYYY-MM-DD.

Offer ID The identifier for the offer that the buyer signed.

Offer Visibility Whether the offer is a public, private, or enterprise
contract offer.

Solution Title The name of the solution.

Solution ID The unique identifier for the solution.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Reseller account ID The unique identifier for the consulting partner
reseller.

281

https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/contact-us/
https://aws.amazon.com/marketplace/management/reports/

AWS Marketplace Seller Guide
Daily customer subscriber report

Column name Description

Reseller account name The name of the consulting partner reseller.

Section 2: Variable length subscriptions

This section lists data for all fee-based subscriptions as of the previous day at 23:59:59 UTC.

Column name Description

Customer AWS Account Number The ID of the account that is subscribed to the
product.

Product Title The title of the product.

Product Id The unique identifier for the software product.

Product Code A unique identifier for the software product.
This information is also available as part of the
Amazon EC2 instance metadata.

Subscription Id The ID for the subscription.

Subscription Quantity The total number of licenses that the customer
purchased.

Subscription Type The type of subscription.

Subscription Intent Whether this offer is an upgrade or renewal of an
earlier offer.

Offer ID The identifier for the offer that the buyer signed.

Subscription Start Date The date when the customer subscribed to the
product, formatted as YYYY-MM-DD.

Previous Offer ID The ID of the offer that preceded the upgrade or
renewal offer, if one exists.

Offer Visibility Whether the offer is a public, private, or enterprise
contract offer.

Solution Title The name of the solution.

Solution ID The unique identifier for the solution.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Reseller account ID The unique identifier for the consulting partner
reseller.

Reseller account name The name of the consulting partner reseller.

282

AWS Marketplace Seller Guide
Disbursement report

Disbursement report
The disbursement report provides information about funds that we collected and disbursed to your bank
accounts since the previous disbursement. Disbursements can include customer payments or refunds
for a subscription to your product, and some taxes collected or refunded to the customer. You don't
receive disbursement of funds until the funds are collected from the customer. Different customers have
different payment terms with AWS, so some of the funds in each of the uncollected age categories might
not be due from the customer.

Refunds appear as negative amounts because the money is returned to your customer after you
authorize a refund.

This report is available on the AWS Marketplace Management Portal under the Reports tab. To create
your own report similar to this one you can use the AWS Marketplace Data feeds (p. 299), including the
Example 1: Disbursements by product (p. 310) as a base report to customize to meet your needs.

Publication schedule
This report is published 3-5 days after a disbursement has been initiated to transfer funds to your bank.
In general, this is a report for sellers who receive disbursements on a monthly cadence. If there is no
disbursement initiated, no disbursement report is generated.

Topics

• Section 1: Disbursed amount by product (p. 283)

• Section 2: Disbursed amount by customer geography (p. 285)

• Section 3: Disbursed amount by instance hours (p. 285)

• Section 4: Age of uncollected funds (p. 286)

• Section 5: Age of disbursed funds (p. 286)

• Section 6: Age of past due funds (p. 287)

• Section 7: Uncollected funds breakdown (p. 287)

Section 1: Disbursed amount by product
This section lists data for disbursements by product.

Column name Description

Product The title of the product.

Product Code The unique identifier for the product.

SellerRev The amount that is billed to the customer for the
usage or fees of the product.

AWSRefFee The amount of the AWS Marketplace fee.

SellerRevRefund The amount of the subscription cost that is
refunded to customers if any refunds were
processed during the data coverage period.

AWSRefFeeRefund The amount of the AWS Marketplace fee that is
refunded if any refunds were processed during the
data coverage period.

283

AWS Marketplace Seller Guide
Disbursement report

Column name Description

SellerRevCredit The AWS credits that AWS Marketplace placed on
the customer's account.

AWSRefFeeCredit The AWS credits that AWS Marketplace placed on
your account.

Net Amount The total funds that we disbursed to you. This
column is equal to the SellerRev column minus
the AWSRefFee column. When a refund is given
to a customer, this column is a negative number
equal to the SellerRevRefund column minus the
AWSRefFeeRefund column.

Transaction Reference ID A unique identifier for the transaction that
helps you correlate transactions across AWS
Marketplace reports.

SellerUSSalesTax The total amount of US sales and use tax that is
billed for this transaction.

SellerUSSalesTaxRefund The total amount of US sales and use tax that
is refunded for this transaction if a refund was
processed.

Customer AWS Account Number The ID of the account that the charges are billed
to.

Customer Country The two-character country code that is associated
with the account that the charges are billed to.
This report uses ISO 3166-1 alpha-2 standard.

Customer State The billing address state that is associated with
the account that the charges are billed to.

Customer City The billing address city that is associated with the
account that charges are billed to.

Customer Zip Code The billing address postal code that is associated
with the account that the charges are billed to.

Customer Email Domain The email domain that is associated with
the account that the charges are billed to.
For example, if the email address is liu-
jie@example.com, the entry is example.com.

Solution Title The name of the solution.

Solution ID The unique identifier for the solution.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Payer Address ID A unique identifier that represents the customer's
address.

284

AWS Marketplace Seller Guide
Disbursement report

Section 2: Disbursed amount by customer geography

This section lists data for disbursements by the customer's geographic location.

Column name Description

Settlement ID The unique identifier of the disbursement.

Settlement Period Start Date The starting date and time of the disbursement
period.

Settlement Period End Date The ending date and time of the disbursement
period.

Deposit Date The date and time when the disbursement
occurred.

Disbursed Amount The total amount of the disbursement.

Country Code The two-character country code that is associated
with the account that the charges are billed to.
This report uses ISO 3166-1 alpha-2 standard.

State or Region The billing address state that is associated with
the account that the charges are billed to.

City The billing address city that is associated with the
account that charges are billed to.

Postal Code The billing address postal code that is associated
with the account that the software charges are
billed to.

Net Amount by Tax Location The total funds that are disbursed to the seller by
tax location, less AWS Marketplace fees, refunds,
and US sales and use tax.

Gross Amount by Tax Location The total funds that are disbursed to the seller by
tax location.

Seller U.S. Sales Tax The total amount of US sales and use tax that
is billed for this transaction on behalf of the
Seller. (That is, related records in US Sales and Tax
reports show “tax liable party” == “SELLER”.)

Seller U.S. Sales Tax Refund The total amount of US sales and use tax that
is refunded for this transaction if a refund was
processed, when such taxes were collected on
behalf of the Seller. (That is, related records in US
Sales and Tax reports show “tax liable party” ==
“SELLER”.)

Section 3: Disbursed amount by instance hours

This section lists data for disbursements by Amazon EC2 instance hours.

285

AWS Marketplace Seller Guide
Disbursement report

Column name Description

Product The title of the product.

Product Code The unique identifier for the product.

Usage Type Description The description of the usage, including offer type,
Region, and instance type.

Rate The rate per hour for the offer type, Region, and
instance type.

User Count The number of unique customers using the offer
type, Region, and instance type.

Instance Hours The number of hours that the instance consumed
for the offer type, Region, and instance type.

Solution Title The name of the solution.

Solution ID The unique identifier for the solution.

Section 4: Age of uncollected funds
This section lists data for uncollected funds, organized by the age. Uncollected funds might include
amounts that aren't due yet.

Column name Description

Uncollected (< 31 days pending) The total of funds billed but not collected for less
than 31 days.

Uncollected (31–60 days pending) The total of funds billed but not collected for
between 31–60 days.

Uncollected (61–90 days pending) The total of funds billed but not collected for
between 61–90 days.

Uncollected (91–120 days pending) The total of funds billed but not collected for
between 91–120 days.

Uncollected (> 120 days pending) The total of funds billed but not collected for
more than 120 days.

Uncollected (overall) The total of all funds billed but not collected.

Section 5: Age of disbursed funds
This section lists data for collected funds since the previous disbursement.

Column name Description

Collected (< 31 days pending) The total of funds collected that were billed in the
0–31 day range.

286

AWS Marketplace Seller Guide
Disbursement report

Column name Description

Collected (31–60 days pending) The total of funds collected that were billed in the
31–60 day range.

Collected (61–90 days pending) The total of funds collected that were billed in the
61–90 days range.

Collected (91–120 days pending) The total of funds collected that were billed in the
91–120 days range.

Collected (> 120 days pending) The total of funds collected that were billed in the
greater than 120 days range.

Collected (overall) The total of all collected funds.

Section 6: Age of past due funds
This section lists data for funds that have been accrued and are payable by the customer, but have not
been paid in accordance with the customer's agreement with AWS.

Column name Description

Past Due (< 31 days) The total of funds that have accrued in the last 0–
31 days and are due but that the customer hasn't
paid.

Past Due (31–60 days) The total of funds that have accrued in the last
31–60 days and are due but that the customer
hasn't paid.

Past Due (61–90 days) The total of funds that have accrued in the last
61–90 days that are due but that the customer
hasn't paid.

Past Due (91–120 days) The total of funds that have accrued in the last
91–120 days and are due but that the customer
hasn't paid.

Past Due (> 120 days) The total of funds that have accrued in the
last 121 or more days and are due but that the
customer hasn't paid.

Past Due (overall) The total of funds that have accrued and are due
but that the customer hasn't paid.

Section 7: Uncollected funds breakdown
This section lists all uncollected funds, sorted by the payment due date.

Column name Description

Payer AWS Account Number The account that the software charges are billed
to.

287

AWS Marketplace Seller Guide
Monthly billed revenue report

Column name Description

Product Code The unique identifier for the product.

Gross Revenue The amount that is billed for using the product or
the fees for using the product.

AWS Revenue Share The AWS fee amount that is deducted from the
billed amount at settlement time.

Gross Refunds The total amount of any refunds for the
transaction.

AWS Refunds Share The portion of the AWS fee that is refunded for
the transaction.

Net Revenue The net amount that is billed for this transaction,
minus AWS fees, refunds, and US sales and use
tax.

Currency The currency of the transaction. For example, if
the transaction is in US dollars, the entry is USD.

AR Period The month and year of the transaction, in the
format of YYYY-MM.

Transaction Reference ID A unique identifier that represents the
transaction, which you can use to correlate
transactions across AWS Marketplace reports.

Opportunity Name The unique identifier for a registered opportunity.

Opportunity Description Any metadata in the registered opportunity.

Solution Title The name of the solution.

Solution ID The unique identifier of the solution.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Payer Address ID A unique identifier that represents the customer's
address.

Payment Due date The payment due date in the format of YYYY-MM-
DD.

Monthly billed revenue report
The monthly billed revenue report provides you authoritative information about billed revenue every
month for accounting and other financial reporting purposes. This report shows the total amounts
that AWS bills to customers for hourly, annual, or monthly usage of your products. The report has
four sections: billed amounts for hourly usage and monthly fees, variable-length subscriptions, field
demonstration usage, and flexible payments.

288

AWS Marketplace Seller Guide
Monthly billed revenue report

Important
The amounts in this report reflect only revenue that we billed to customers, not amounts that
we collected.

This report is available on the AWS Marketplace Management Portal under the Reports tab. If you're
enrolled in the AWS Marketplace commerce analytics service, you can use API calls to pull down sections
of this report. For more information, see the section called “AWS Marketplace Commerce Analytics
Service” (p. 14).

Publication schedule

This report is published monthly on the fifteenth day of each month at 00:00 UTC. The report covers
the previous calendar month from the first day of the month at 00:00 UTC through the last day of the
month at 23:59 UTC. For example, the report that is published on May 15 covers from April 1 at 00:00
UTC through April 30 at 23:59 UTC.

Topics

• Section 1: Billing and revenue data (p. 289)

• Section 2: Variable length subscriptions (p. 291)

• Section 3: AWS field demonstration usage (p. 293)

• Section 4: Contracts with flexible payment schedule (p. 293)

Section 1: Billing and revenue data

This section lists data for usage billing, refunds, fees, and US sales and use tax that is collected.

Column name Description

Customer Reference ID A unique identifier that isn't the account ID. It
helps track usage, revenue, and subscriptions by
customers.

Country The two-character country code that is associated
with the account that the charges are billed to.
This report uses ISO 3166-1 alpha-2 standard.

State The billing address state that is associated with
the account that the charges are billed to.

City The billing address city that is associated with the
account that charges are billed to.

Zip Code The billing address postal code that is associated
with the account that the charges are billed to.

Product Title The title of the product.

Product Code The unique identifier for the product.

Customer Billed Amount The amount that is billed to the customer for the
usage or monthly fees of the product.

AWS Listing Fee The AWS Marketplace fee amount to be deducted
from the billed amount.

289

AWS Marketplace Seller Guide
Monthly billed revenue report

Column name Description

Refunds Amount The total amount of the subscription cost
refunded to customers if any refunds were
processed during the data coverage period.

AWS Fee Refund The portion of the AWS Marketplace fee refunded
if any refunds were processed during the data
coverage period.

Cost The cost of goods to a reseller: for example, what
a reseller pays you when they sell your product.

Partner Revenue Amount The total amount billed for the transaction, net of
AWS Marketplace fees, refunds, and US sales and
use tax.

Currency The currency of the transaction. For example, if
the transaction is in US dollars, the entry is USD.

Transaction Reference ID A unique identifier for the transaction that
helps you correlate transactions across AWS
Marketplace reports.

U.S. Sales Tax Customer Billed Amount The total amount of US sales and use tax that
is billed for this transaction on behalf of the
Seller. (That is, related records in US Sales and Tax
reports show “tax liable party” == “SELLER”.)

U.S. Sales Tax Refunds Amount The total amount of US sales and use tax that
is refunded for this transaction if a refund was
processed, when such taxes were collected on
behalf of the Seller. (That is, related records in US
Sales and Tax reports show “tax liable party” ==
“SELLER”.)

Offer ID The identifier for the offer that the buyer signed.

Offer Visibility Whether the offer is a public, private, or enterprise
contract offer.

Customer AWS Account Number The ID of the account that the charges are billed
to.

Customer Email Domain The email domain that is associated with
the account that the charges are billed to.
For example, if the email address is liu-
jie@example.com, the entry is example.com.

Opportunity Name The unique identifier for a registered opportunity.

Opportunity Description The metadata for the registered opportunity.

Solution Title The name of the solution.

Solution ID The unique identifier for the solution.

290

AWS Marketplace Seller Guide
Monthly billed revenue report

Column name Description

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Payer Address ID A unique identifier that represents the customer's
address.

Section 2: Variable length subscriptions

This section lists data for fee-based charges.

Column name Description

Customer Reference ID A unique identifier that isn't the account ID. It
helps track usage, revenue, and subscriptions by
customers.

Country The two-character country code that is associated
with the account that the charges are billed to.
This report uses ISO 3166-1 alpha-2 standard.

State The billing address state that is associated with
the account that the charges are billed to.

City The billing address city that is associated with the
account that charges are billed to.

Zip Code The billing address zip code that is associated with
the account that the charges are billed to.

Product Title The title of the product.

Product Code The unique identifier for the product.

Subscription Quantity The number of total licenses that is specified as
part of the variable-length subscription purchase.

Subscription Start Date The start date of the variable-length subscription
purchase.

Subscription End Date The end date of the variable-length subscription
purchase.

Subscription Instance Type The instance type that is associated with the
variable-length subscription purchase.

Customer Billed Amount The amount that is billed for the usage, monthly
fees, or both.

AWS Listing Fee The AWS Marketplace fee amount that is
deducted from the billed amount.

291

AWS Marketplace Seller Guide
Monthly billed revenue report

Column name Description

Refunds Amount The total amount refunded to customers if any
refunds were processed during the data coverage
period.

AWS Fee Refund The portion of the AWS Marketplace fee refunded
if any refunds were processed during the data
coverage period.

Cost The cost of goods to a reseller: for example, what
a reseller pays you when they sell your product.

Partner Revenue Amount The total amount that is billed for this
transaction, net of AWS Marketplace fees, refunds,
and US sales and use tax.

Currency The currency of the transaction. For example, if
the transaction is in US dollars, the entry is USD.

Transaction Reference ID A unique identifier for the transaction that
helps you correlate transactions across AWS
Marketplace reports.

U.S. Sales Tax Customer Billed Amount The total amount of US sales and use tax that
is billed for this transaction on behalf of the
Seller. (That is, related records in US Sales and Tax
reports show “tax liable party” == “SELLER”.)

U.S. Sales Tax Refunds Amount The total amount of US sales and use tax that
is refunded for this transaction if a refund was
processed, when such taxes were collected on
behalf of the Seller. (That is, related records in US
Sales and Tax reports show “tax liable party” ==
“SELLER”.)

Customer AWS Account Number The ID of the account that the charges are billed
to.

Customer Email Domain The email domain that is associated with
the account that the charges are billed to.
For example, if the email address is liu-
jie@example.com, the entry is example.com.

Offer ID The identifier for the offer that the buyer signed.

Offer Visibility Whether the offer is a public, private, or enterprise
contract offer.

Contract Start Date The start date for an AWS Marketplace SaaS
contract.

Contract End Date The end date for an AWS Marketplace SaaS
contract.

Opportunity Name The unique identifier for a registered opportunity.

Opportunity Description The metadata for the registered opportunity.

Solution Title The name of the solution.

292

AWS Marketplace Seller Guide
Monthly billed revenue report

Column name Description

Solution ID The unique identifier for the solution.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Payer Address ID A unique identifier that represents the customer's
address.

Section 3: AWS field demonstration usage

The section lists data for AWS field demonstration usage (p. 25) of your product. You can configure
your product to allow us to demonstrate your product to potential customers. Any usage from the
demonstrations is listed here.

Column name Description

Product Title The title of the product.

Product Code The unique identifier for the product.

Instance Type The Amazon EC2 instance type that is associated
with the field demonstration.

Usage Units The number of units of usage that is associated
with the product.

Usage Unit Types The usage units that are associated with the usage
unit count: for example, hours.

Section 4: Contracts with flexible payment schedule

This section lists data for all contracts that you created with a flexible payment schedule in the previous
reporting period.

Column name Description

Customer AWS Account Number The ID of the payer account that the charges are
billed to.

Customer Country The two-character country code that is associated
with the payer account that the charges are billed
to. This report uses ISO 3166-1 alpha-2 standard.

Customer State The billing address state that is associated with
the payer account that the charges are billed to.

Customer City The billing address city that is associated with the
payer account that charges are billed to.

293

AWS Marketplace Seller Guide
Sales compensation report

Column name Description

Customer ZIP Code The billing address zip code that is associated with
the payer account that the charges are billed to.

Customer Email Domain The email domain that is associated with the
payer account that the charges are billed to.
For example, if the email address is liu-
jie@example.com, the entry is example.com.

User Reference ID The account of the payer account that the charges
are billed to.

User AWS Account Number The ID of the account that subscribed to the
product.

Product ID The unique identifier for the product.

Product Title The title of the product.

Product Type The type of product.

AWS Marketplace Offer ID The identifier for the offer that the buyer signed.

Contract Create Date The contract creation date, which is the date that
an account subscribes to the offer.

Contract Expiration Date The date when the contract expires.

Total Contract Value (USD) The total value of the contract in USD.

of Payments The number of payments that are scheduled for
the contract.

Invoice Date The date the invoice is created.

Invoice Amount (USD) The amount that is billed on the invoice in USD.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Sales compensation report
The report lists monthly billed revenue with additional customer information that isn't in the standard
the section called “Monthly billed revenue report” (p. 288). The report lists the total amounts that AWS
bills to customers for hourly, annual, or monthly usage of your product.

Important
The amounts in this report reflect only revenue that is billed to customers, not amounts that are
collected from customers.

The sales compensation report and the information that is shared with you as part of this program
constitute Amazon's Confidential Information under our nondisclosure agreement with you or, if
no such agreement exists, the Terms and Conditions for AWS Marketplace sellers. You can use this
information only for compensating your sales representatives by mapping AWS Marketplace revenue to
the representatives by company name, geography, and AWS account ID. You can share this information

294

AWS Marketplace Seller Guide
Sales compensation report

with employees who need to know it to understand the source of commissions that is payable to
them. Your use and sharing of such information must comply with the obligations in our nondisclosure
agreement with you and the terms and conditions for AWS Marketplace sellers, including, without
limitation, Section 3.8 of the Terms and Conditions for AWS Marketplace sellers.

To create your own report similar to this one you can use the AWS Marketplace Data feeds (p. 299),
including the Example 2: Sales compensation report (p. 314) as a base report to customize to meet
your needs.

Publication schedule
This report is published monthly, on the fifteenth day of each month at 00:00 UTC. The report covers
the previous calendar month from 00:00 UTC through 23:59 UTC of the last calendar day of the month.
For example, the report published on May 15 covers from April 1 at 00:00 UTC through April 30 at 23:59
UTC.

Billed revenue
The billed revenue section of this report includes usage and fee-based charges from the previous
calendar month. The following are the column names and descriptions.

Note
In this report, listing fee is the percentage of transaction proceeds (except for those from resale
by authorized resellers of authorized resale products) determined in accordance with the tiered
listing fee.

Column name Description

Customer AWS Account Number The account that the charges are billed to.

Country The two-character country code that is associated
with the account that the charges are billed to.
This report uses ISO 3166-1 alpha-2 standard.

State The billing address state that is associated with
the account that the charges are billed to.

City The billing address city that is associated with the
account that the charges are billed to.

Zip Code The billing address zip code that is associated with
the account that the charges are billed to.

Email Domain The email domain that is associated with
the account that the charges are billed to.
For example, if the email address is liu-
jie@example.com, the entry is example.com.

Product Code The unique identifier for the product.

Product Title The title of the product.

Gross Revenue The amount that is billed for using the product or
the monthly fees for using the product.

AWS Revenue Share The AWS fee amount that is deducted from
the billed amount at settlement time. It
appears in the the section called “Disbursement
report” (p. 283).

295

AWS Marketplace Seller Guide
US sales and use tax report

Column name Description

Gross Refunds The total amount of any refunds for the
transaction.

AWS Refunds Share The portion of the AWS fee that is refunded for
the transaction.

Net Revenue The net amount that is billed for this transaction,
minus AWS fees, refunds, and US sales and use
tax.

Currency The currency of the transaction. For example, if
the transaction is in US dollars, the entry is USD.

AR Period The month and year of the transaction, in the
format of YYYY-MM.

Transaction Reference ID A unique identifier that represents the
transaction, which you can use to correlate
transactions across AWS Marketplace reports.

Opportunity Name The unique identifier for a registered opportunity.

Opportunity Description Any metadata in the registered opportunity.

Solution Title The name of the solution.

Solution ID The unique identifier of the solution.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Payer Address ID A unique identifier that represents the customer's
address.

US sales and use tax report
This monthly report provides sellers with information about US sales and use tax that AWS collects from
sales and use transactions in AWS Marketplace. The report includes both products that sellers enroll in
the AWS Marketplace US sales tax collection service and products that AWS is required to collect and
remit tax on.

For sales of products enrolled in the tax calculation service, the report includes calculated US sales and
use tax for products with a product tax code. Any products without a product tax code appear in this
report with a tax value of $0.00 USD. For sales of products that are not eligible for the tax calculation
service because of enacted marketplace facilitator rules, you will see amounts that AWS has collected
and remitted as AWS, based on our internal tax decisions. For more information, see AWS Marketplace
Sellers & Tax Collection on Amazon Web Services Tax Help.

To map transactions between the disbursement report and this report, use the Transaction
Reference ID.

This report is available on the AWS Marketplace Management Portal under the Reports tab. If you're
enrolled in the AWS Marketplace commerce analytics service, you can use API calls to pull down sections

296

http://aws.amazon.com/tax-help/marketplace
http://aws.amazon.com/tax-help/marketplace

AWS Marketplace Seller Guide
US sales and use tax report

of this report. For more information, see the section called “AWS Marketplace Commerce Analytics
Service” (p. 14).

Publication schedule
This report is published monthly on the fifteenth day of each month at 00:00 UTC. The report covers
the previous calendar month from the first day of the month at 00:00 UTC through the last day of the
month at 23:59 UTC. For example, the report that is published on May 15 covers from April 1 at 00:00
UTC through April 30 at 23:59 UTC.

US sales and use tax records
This section lists data for US sales tax amounts that result from software charges.

Column name Description

Line Item ID A unique identifier for a line item. Refund
transactions have the same line item ID as their
forward tax transactions.

Customer Bill ID The unique identifier for a customer bill.

Product Name The name of the product purchased.

Product Code The unique identifier for the product.

Product Tax Code A standard code to identify the tax properties for
a product. You choose the properties when you
create or modify the product.

Seller ID A unique identifier for the seller of record of the
transaction.

Seller Name The legal name of the seller.

Transaction Date The date of the transaction.

Total Adjusted Price The final price for the transaction.

Total Tax The total tax that is charged for the transaction.

Base Currency Code The base currency code for all AWS Marketplace
transactions. This entry is always USD.

Bill to City The billing address city that is associated with the
payer account that we bill software charges to.

Bill to State The billing address zip code that is associated with
the payer account that the software charges are
billed to.

Bill to Postal Code The billing address postal code that is associated
with the payer account that the software charges
are billed to.

Bill to Country The two-character country code that is associated
with the payer account that the software charges
are billed to. This report uses ISO 3166-1 alpha-2
standard.

297

AWS Marketplace Seller Guide
US sales and use tax report

Column name Description

Transaction Type Code The type code of the transaction. Valid values:

• AWS: A forward tax transaction
• REFUND: A full or partial refund
• TAXONLYREFUND: A tax-only refund

Refund transactions share the line item ID with
their original forward transactions.

Display Price Taxability Type The taxability type for the price that appears to
customers. All AWS Marketplace offerings are
exclusive.

Tax Location Code Taxed Jurisdiction The vertex geocode that is associated with the
taxed location.

Tax Type Code The type of tax that is applied to the transaction.
The possible values are None, Sales, and
SellerUse.

Jurisdiction Level The jurisdiction level of the address that is used
for tax location. The possible values are State,
County, City, and District.

Taxed Jurisdiction The name of the taxed jurisdiction.

Taxable Sale Amount The amount of the transaction that is taxable, by
jurisdiction level.

Nontaxable Sale Amount The amount of the transaction that is nontaxable,
by jurisdiction level.

Tax Amount The tax that is charged at the jurisdiction level.

Tax Jurisdiction Tax Rate The tax rate that is applied at the jurisdiction
level.

Tax Calculation Reason Code Whether the transaction is taxable, not taxable,
exempt, or zero-rated, organized by the
jurisdiction level.

Date Used For Tax Calculation The date that is used for calculating tax on the
transaction.

Customer Exemption Certificate ID The certificate ID of the exemption certificate.

Customer Exemption Certificate ID Domain Where the certificate is being stored in Amazon
systems.

Customer Exemption Certificate Level The jurisdiction level that supplied the exemption.

Customer Exemption Code The code that specifies the exemption: for
example, RESALE.

Customer Exemption Domain The Amazon system that is used to capture the
customer exemption information, if information is
available.

298

AWS Marketplace Seller Guide
Data feeds

Column name Description

Customer Reference ID A unique identifier that isn't the account ID. It
helps track usage, revenue and subscriptions by
customers.

Transaction Reference ID A unique identifier for the transaction that
helps you correlate transactions across AWS
Marketplace reports.

Payer Reference ID A unique identifier that isn't the account ID. It's
associated with the account that fees are billed
to. It helps with tracking usage, revenue, and
subscriptions by customers across all of the AWS
Marketplace financial reports.

Tax Liable Party This field will either be populated with Seller
or AWS. If the seller is the tax liable party, they
are responsible for their own collection and
remittance obligations based on their tax decision.
If AWS is the tax liable party sales tax will
be collected and remitted by AWS. For more
information, see AWS Marketplace Sellers & Tax
Collection on Amazon Web Services Tax Help.

Data feeds
AWS Marketplace provides a number of data feeds to help sellers collect and analyze information about
your product sales. Data feeds are available to all registered AWS Marketplace sellers. Since data feeds
are generated within a day, they contain the most current data available.

This page provides an overview of data feeds, and explains how to access and use them. Subsequent
pages describe each data feed.

Storage and structure of data feeds
Data feeds collect and deliver comma-separated value (CSV) files to an encrypted Amazon S3 bucket
that you provide. The CSV files have the following characteristics:

• They follow 4180 standards.

• Character encoding is UTF-8 without BOM.

• Commas are used as separators between values.

• Fields are escaped by double quotation marks.

• \n is the line feed character.

• Dates are reported in the UTC time zone, are in ISO 8601 date and time format, and are accurate
within 1 second.

• All *_period_start_date and *_period_end_date values are inclusive, which means that
23:59:59 is the last possible timestamp for any day.

• All monetary fields are preceded with a currency field.

• Monetary fields use a period (.) character as a decimal separator, and don't use a comma (,) as a
thousands separator.

299

http://aws.amazon.com/tax-help/marketplace
http://aws.amazon.com/tax-help/marketplace
https://tools.ietf.org/html/rfc4180

AWS Marketplace Seller Guide
Storage and structure of data feeds

Data feeds are generated and stored as follows:

• Data feeds are generated within a day, and contain 24 hours of data from the previous day.
• In the Amazon S3 bucket, data feeds are organized by month using the following format:

bucket-name/data-feed-name_version/year=YYYY/month=MM/data.csv

• As each daily data feed is generated, it is appended to the existing CSV file for that month. When a
new month starts, a new CSV file is generated for each data feed.

• Information in data feeds is backfilled from 2010/01/01 to 2020/04/30 (inclusive) and is available in
the CSV file (p. 299) in the year=2010/month=01 subfolder.

You may notice cases where the current month's file for a given data feed contains only column
headers, and no data. This means that there were no new entries for that month for the feed. This can
happen with data feeds that are updated less frequently, like the product feed. In these cases, data is
available in the backfilled folder.

• In Amazon S3, you can create an Amazon S3 lifecycle policy to manage how long to keep files in the
bucket.

• You can configure Amazon SNS to notify you when data is delivered to your encrypted S3 bucket. For
information on how to configure notifications, see Getting started with Amazon SNS in the Amazon
Simple Notification Service Developer Guide.

Historization of the data
Each data feed includes columns that document the history of the data. Except for valid_to, these
columns are common to all data feeds. They're included as a common history schema and are useful in
querying the data.

Column name Description

valid_from The first date that the value for the primary key is valid for in relation to
values for other fields.

valid_to This column is only shown on the Address (p. 321) data feed and is
always blank.

insert_date The date a record was inserted into the data feed.

update_date The date the record was last updated.

delete_date This column is always blank.

The following shows an example of these columns.

valid_from valid_to insert_date update_date delete_date

2018-12-12T02:00:00Z 2018-12-12T02:00:00Z 2018-12-12T02:00:00Z

2019-03-29T03:00:00Z 2019-03-29T03:00:00Z 2019-03-29T03:00:00Z

2019-03-29T03:00:00Z 2019-03-29T03:00:00Z 2019-04-28T03:00:00Z

The valid_from and update_date field together form a bi-temporal data model. The valid_from
field, as it is named, tells you when the item is valid from. If the item was edited, it can have multiple

300

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-lifecycle.html
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html

AWS Marketplace Seller Guide
Accessing data feeds

records in the feed, each with a different update_date, but the same valid_from date. For example,
to find the current value for an item, you would find the record with the most recent update_date,
from the list of records with the most recent valid_from date.

In the example above, the record was originally created 2018-12-12. It was then changed on 2019-03-29
(for example, if the address in the record changed). Later, on 2019-04-28, the address change was
corrected (so the valid_from didn't change, but the update_date did). Correcting the address (a
rare event) retroactively changes the record from the original valid_from date, so that field didn't
change. A query to find the most recent valid_from would return two records, the one with the latest
update_date gives you the actual current record.

Accessing data feeds
To access data feeds, you need to configure your environment to receive data feeds to an encrypted
Amazon S3 bucket. AWS Marketplace provides an AWS CloudFormation template that you can use to
simplify configuration.

To use the AWS CloudFormation template to configure your environment to receive data
feeds

1. Open a web browser and sign into the AWS Marketplace Management Portal, then go to Set up
customer data storage.

2. Choose Create resources with AWS CloudFormation template to open the template in the AWS
CloudFormation console in another window.

3. In the template, specify the following and then choose Next:

• Stack name – The collection of resources you're creating to enable access to data feeds.

• Amazon S3 bucket name – The bucket for storing data feeds.

• (Optional) Amazon SNS topic name – The topic for receiving notifications when AWS delivers new
data to the Amazon S3 bucket.

4. On the Review page, confirm your entries and choose Create stack. This will open a new page with
the CloudFormation status and details.

5. From the Resources tab, copy Amazon Resource Names (ARNs) for the following resources from the
CloudFormation page into the fields on the AWS Marketplace Set up customer data storage page:

• Amazon S3 bucket for storing data feeds

• AWS KMS key for encrypting the Amazon S3 bucket

• (Optional) Amazon SNS topic for receiving notifications when AWS delivers new data to the
Amazon S3 bucket

6. On the Set up customer data storage page, choose Submit.

7. (Optional) Edit the policies created by the CloudFormation template. See Data feed
policies (p. 301) for more details.

You are now subscribed to data feeds. The next time data feeds are generated, you can access the data.

For more information about AWS CloudFormation templates, see Working with AWS CloudFormation
templates in the AWS CloudFormation User Guide.

Data feed policies

When your Amazon S3 bucket is created by the CloudFormation template, it will create policies for
access attached to that bucket, the AWS KMS key, and the Amazon SNS topic. The policies allow the AWS

301

https://s3.amazonaws.com/aws-marketplace-reports-resources/DataFeedsResources.yaml
http://aws.amazon.com/marketplace/management/
https://aws.amazon.com/marketplace/management/reports/data-feed-configuration
https://aws.amazon.com/marketplace/management/reports/data-feed-configuration
https://aws.amazon.com/marketplace/management/reports/data-feed-configuration
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html

AWS Marketplace Seller Guide
Accessing data feeds

Marketplace reports service to write to your bucket and SNS topic with the data feed information. Each
policy will have a section like the following (this example is from the Amazon S3 bucket).

 {
 "Sid": "AwsMarketplaceDataFeedsAccess",
 "Effect": "Allow",
 "Principal": {
 "Service": "reports.marketplace.amazonaws.com"
 },
 "Action": [
 "s3:ListBucket",
 "s3:GetObject",
 "s3:PutObject",
 "s3:GetEncryptionConfiguration",
 "s3:GetBucketAcl",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::datafeed-bucket",
 "arn:aws:s3:::datafeed-bucket/*"
]
 },

In this policy, reports.marketplace.amazonaws.com is the service principal that AWS Marketplace
uses to push data to the Amazon S3 bucket. The datafeed-bucket is the bucket that you specified in
the CloudFormation template.

When the AWS Marketplace reports service calls Amazon S3, AWS KMS, or Amazon SNS, it will provide
the ARN of the data it is intending to write to the bucket when it does. To ensure that the only data
written to your bucket is data written on your behalf, you can specify the aws:SourceArn in the
condition of the policy. In the following example, you must replace the account-id with the ID for your
AWS account.

 {
 "Sid": "AwsMarketplaceDataFeedsAccess",
 "Effect": "Allow",
 "Principal": {
 "Service": "reports.marketplace.amazonaws.com"
 },
 "Action": [
 "s3:ListBucket",
 "s3:GetObject",
 "s3:PutObject",
 "s3:GetEncryptionConfiguration",
 "s3:GetBucketAcl",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::datafeed-test-bucket",
 "arn:aws:s3:::datafeed-test-bucket/*"
 ,
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account-id",
 "aws:SourceArn": ["arn:aws:marketplace::account-id:AWSMarketplace/
SellerDataSubscription/DataFeeds_V1",
 "arn:aws:marketplace::account-id:AWSMarketplace/
SellerDataSubscription/Example-Report"]
 }
 }
 },

302

AWS Marketplace Seller Guide
Using data feeds

Using data feeds
When data is available in your Amazon S3 bucket, you can use data feeds in the following ways:

• Download the .CSV files from the Amazon S3 bucket you created in Accessing data feeds (p. 301) so
that you can view the data in a spreadsheet.

• Use ETL (extract, transform, and load), SQL query, business analytics tools to collect and analyze the
data.

You can use AWS services to collect and analyze data, or any third-party tool that can perform analysis
of .CSV-based datasets.

Example: Use AWS services to collect and analyze data

The following procedure assumes that you've already configured your environment to receive data feeds
to an Amazon S3 bucket and that the bucket contains data feeds.

To collect and analyze data from data feeds

1. From the AWS Glue console, create a crawler to connect to the Amazon S3 bucket that stores the
data feeds, extract the data you want, and create metadata tables in the AWS Glue Data Catalog.

For more information about AWS Glue, see the AWS Glue Developer Guide.

2. From the Athena console, run SQL queries on the data in the AWS Glue Data Catalog.

For more information about Athena see the Amazon Athena User Guide.

3. From the Amazon QuickSight console, create an analysis and then create a visual of the data.

For more information about Amazon QuickSight, see the Amazon QuickSight User Guide.

For a detailed example of one way to use AWS services to collect and analyze data in data feeds, see
Using Seller Data Feed Delivery Service, Amazon Athena, and Amazon QuickSight to create seller reports
at the AWS Marketplace Blog.

Data feed tables overview
The AWS Marketplace provided data feeds are a set of tables that you can join together to provide more
context for your queries.

There are three general domains, or categories of interest, in your data feeds:

• Catalog – Includes information about the products and offers in your account.

• Accounts – Includes information about the accounts that provide or purchase products on AWS
Marketplace (your own accounts or accounts of parties that you work with such as channel partners or
buyers).

• Revenue – Includes information about billing, disbursements, and taxes.

The following diagram shows the tables in each domain, and how they are related to each other. This
diagram shows the Catalog, Accounts, and Revenue domains, including the tables within them.

303

https://console.aws.amazon.com/glue
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
https://console.aws.amazon.com/athena
https://docs.aws.amazon.com/athena/latest/ug/querying-athena-tables.html
https://docs.aws.amazon.com/athena/latest/ug/what-is.html
http://quicksight.aws.amazon.com
https://docs.aws.amazon.com/quicksight/latest/user/creating-an-analysis.html
https://docs.aws.amazon.com/quicksight/latest/user/creating-a-visual.html
https://docs.aws.amazon.com/quicksight/latest/user/welcome.html
http://aws.amazon.com/blogs/awsmarketplace/using-seller-data-feed-delivery-service-amazon-athena-and-amazon-quicksight-to-create-seller-reports/

AWS Marketplace Seller Guide
Data feed tables overview

The following sections provide entity relationship (ER) diagrams for each domain. Each ER diagram shows
the tables and the fields within each table, as well as the fields that you can use to join the tables.

Note
The ER diagrams in this section do not include the common fields for all data feeds. For more
information about the common fields, see Storage and structure of data feeds (p. 299).

The following table describes the symbols that are used in the ER diagrams.

Symbol Description

Primary key – A primary key for the table. When
used with the valid_from and update_date
fields, it is unique. For more details about using
these fields together, see Historization of the
data (p. 300). If more than one field is marked
as primary key, then the fields together form the
primary key.

Foreign key – A field that represents a primary
key in a different table. Not necessarily unique in
the table.

Note
In some cases, the foreign key can be
blank if the record in the current table
does not have a corresponding record in
the foreign table.

Alternate key – A key that can be used as a key in
the table. Follows the same uniqueness rules as
the primary key.

304

AWS Marketplace Seller Guide
Data feed tables overview

Symbol Description

Connector – Lines between fields represent a
connection, which is two fields that can be used to
join tables. The ends of the line represent the type
of connection. This example represents a one-to-
many connection.

Connector types

The following table shows the types of ends that each connector can have.

Connector type Description

One to n – A connector with this end represents a
join that has exactly one value on this side of the
join.

Zero or one to n – A connector with this end
represents a join that has zero or one values on
this side of the join.

Zero or more to n – A connector with this end
represents a join that has zero, one, or many
values on this side of the join.

One or more to n – A connector with this end
represents a join that has one or many values on
this side of the join.

Catalog-related tables

The following diagram shows the relationships between tables in the Catalog domain, as well as the
fields within the tables.

305

AWS Marketplace Seller Guide
Data feed tables overview

The Product, Offer_Product, Offer, Offer_Target, and Legacy_id_mapping_tables are in the
Catalog domain.

The Offer_Target table includes a value field for the account_id of the target, but only when the
target_type value is account.

The Legacy_id_mapping table is not used for current data.

Note
For more information about these tables, including a description of each field in the table and
the joins that can be created, see the following topics:

• Product data feed (p. 335)
• Offer product data feed (p. 333)

306

AWS Marketplace Seller Guide
Data feed tables overview

• Offer data feed (p. 332)

• Offer target data feed (p. 334)

• Legacy mapping data feed (p. 332)

Accounts-related tables

The following diagram shows the relationships between the Account and Address tables in the
Accounts domain, as well as the fields within the tables.

Note
For more information about these tables, including a description of each field in the table and
the joins that can be created, see the following topics:

307

AWS Marketplace Seller Guide
Data feed tables overview

• Account data feed (p. 320)

• Address data feed (p. 321)

Revenue-related tables

The following diagram shows the relationships between the Billing_Event and Tax_Item tables
in the Revenue domain, as well as the fields within the tables. The Billing_Event table includes
information about disbursements, as well as billing events.

308

AWS Marketplace Seller Guide
Data feed tables overview

309

AWS Marketplace Seller Guide
Data feed query examples

Note
For more information about these tables, including a description of each field in the table and
the joins that can be created, see the following topics:

• Billing event data feed (p. 323)
• Tax item data feed (p. 336)

Data feed query examples
This section gives examples of complex queries using the data feeds provided by AWS Marketplace.
These examples are similar to the Seller reports (p. 273) that you get from the AWS Marketplace
Management Portal. You can customize these queries to create other reports that you need.

Example 1: Disbursements by product
To find out the amount that's been disbursed by product, you can run a query like the following.
This example is comparable to the Disbursement report (p. 283) that you can get as a seller report.
However, you can use this sample to build your own queries and customize it to get exactly the report
that you need.

This set of sample queries build upon each other to create the final list of product details with
disbursements. It also shows how to get the product information at a specific point in time. The
comments in the queries explain what the queries are doing, as well as how you can modify them to get
different views of the data.

Note
When running this query, we are assuming that the data ingested is using two time axes (the
valid_from column and the update column). For more details, see Storage and structure of data
feeds (p. 299).

 -- Get all the products and keep the latest product_id, valid_from tuple
 with products_with_uni_temporal_data as (
 select
 *
 from
 (
 select
 *,
 ROW_NUMBER() OVER (PARTITION BY product_id, valid_from
 ORDER BY from_iso8601_timestamp(update_date) desc)
 as row_num
 from
 productfeed_v1
)
 where
 -- A product_id can appear multiple times with the same
 -- valid_from date but with a different update_date column,
 -- making it effectively bi-temporal. By only taking the most
 -- recent tuple, we are converting to a uni-temporal model.
 row_num = 1
),

 -- Gets the latest revision of a product
 -- A product can have multiple revisions where some of the
 -- columns, like the title, can change.
 -- For the purpose of the disbursement report, we want
 -- to get the latest revision of a product
 products_with_latest_version as (
 select
 *

310

AWS Marketplace Seller Guide
Data feed query examples

 from
 (
 select
 *,
 ROW_NUMBER() OVER (PARTITION BY product_id
 ORDER BY from_iso8601_timestamp(valid_from) desc)
 as row_num_latest_version
 from
 products_with_uni_temporal_data
)
 where
 row_num_latest_version = 1
),

 -- Get all the accounts and keep the latest account_id, valid_from tuple
 accounts_with_uni_temporal_data as (
 select
 *
 from
 (
 select
 *,
 ROW_NUMBER() OVER (PARTITION BY account_id, valid_from ORDER BY
 from_iso8601_timestamp(update_date) desc) as row_num
 from
 accountfeed_v1
)
 where
 -- An account_id can appear multiple times with the same
 -- valid_from date but with a different update_date column,
 -- making it effectively bi-temporal. By only taking the most
 -- recent tuple, we are converting to a uni-temporal model.
 row_num = 1
),

 -- Gets the latest revision of an account
 -- An account can have multiple revisions where some of the
 -- columns, like the mailing_address_id, can change.
 -- For the purpose of the disbursement report, we want
 -- to get the latest revision of a product
 accounts_with_latest_version as (
 select
 *
 from
 (
 select
 *,
 ROW_NUMBER() OVER (PARTITION BY account_id
 ORDER BY from_iso8601_timestamp(valid_from) desc)
 as row_num_latest_version
 from
 accounts_with_uni_temporal_data
)
 where
 row_num_latest_version = 1
),

 -- Get all the billing events and keep the
 -- latest billing_event_id, valid_from tuple:
 billing_events_with_uni_temporal_data as (
 select
 *
 from (
 select
 billing_event_id,
 from_iso8601_timestamp(valid_from) as valid_from,

311

AWS Marketplace Seller Guide
Data feed query examples

 from_iso8601_timestamp(update_date) as update_date,
 from_iso8601_timestamp(invoice_date) as invoice_date,
 transaction_type,
 transaction_reference_id,
 product_id,
 disbursement_billing_event_id,
 action,
 from_account_id,
 to_account_id,
 end_user_account_id,
 CAST(amount as decimal(20, 10)) invoice_amount,
 bank_trace_id,
 ROW_NUMBER() OVER (PARTITION BY billing_event_id, valid_from
 ORDER BY from_iso8601_timestamp(update_date) desc)
 as row_num
 from
 billingeventfeed_v1
)
 where row_num = 1
),

 -- Get all the disbursements
 -- The billing events data is immutable.
 -- It is not required to use time windows based on the
 -- valid_from column to get the most recent billing event
 disbursement_events as (
 select
 billing_events_raw.billing_event_id as disbursement_id,
 billing_events_raw.invoice_date as disbursement_date,
 billing_events_raw.bank_trace_id
 from
 billing_events_with_uni_temporal_data billing_events_raw
 where
 -- Only interested in disbursements, so filter out
 -- non-disbursements by selecting transaction type
 -- to be DISBURSEMENT:
 billing_events_raw.transaction_type = 'DISBURSEMENT'
 -- Select a time period, you can adjust the dates
 -- below if need be. For billing events use the
 -- invoice date as the point in time of the
 -- disbursement being initiated:
 and billing_events_raw.invoice_date >=
 from_iso8601_timestamp('2020-10-01T00:00:00Z')
 and billing_events_raw.invoice_date <
 from_iso8601_timestamp('2020-11-01T00:00:00Z')
),

 -- Get the invoices along with the line items that
 -- are part of the above filtered disbursements
 disbursed_line_items as (
 select
 line_items.transaction_reference_id,
 line_items.product_id,
 line_items.transaction_type,
 (case
 -- Get the payer of the invoice from any
 -- transaction type that is not AWS and
 -- not BALANCE_ADJUSTMENT.
 -- For AWS and BALANCE_ADJUSTMENT, the billing
 -- event feed will show the "AWS Marketplace"
 -- account as the receiver of the funds and the
 -- seller as the payer. Filter those out.
 when line_items.transaction_type
 not like '%AWS%' and transaction_type
 not like 'BALANCE_ADJUSTMENT'
 then line_items.from_account_id

312

AWS Marketplace Seller Guide
Data feed query examples

 end) as payer_account_id,
 line_items.end_user_account_id,
 invoice_amount,
 disbursements.disbursement_date,
 disbursements.disbursement_id,
 disbursements.bank_trace_id
 from
 billing_events_with_uni_temporal_data line_items
 -- Each disbursed line item is linked to the parent
 -- disbursement via the disbursement_billing_event_id
 join disbursement_events disbursements
 on disbursements.disbursement_id
 = line_items.disbursement_billing_event_id
 where
 -- we are interested only in the invoice line
 -- items that are DISBURSED
 line_items.action = 'DISBURSED'
),

 -- An invoice can contain multiple line items
 -- Create a pivot table to calculate the different
 -- amounts that are part of an invoice.
 -- The new row is aggregated at
 -- transaction_reference_id - end_user_account_id level
 invoice_amounts_aggregated as (
 select
 transaction_reference_id,
 product_id,
 -- a given disbursement id should have the
 -- same disbursement_date
 max(disbursement_date) as disbursement_date,
 -- Build a pivot table in order to provide all the
 -- data related to a transaction in a single row.
 -- Note that the amounts are negated. This is because
 -- when an invoice is generated, we give you the
 -- positive amounts and the disbursement event
 -- negates the amounts
 sum(case when transaction_type = 'SELLER_REV_SHARE'
 then -invoice_amount else 0 end) as seller_rev_share,
 sum(case when transaction_type = 'AWS_REV_SHARE'
 then -invoice_amount else 0 end) as aws_rev_share,
 sum(case when transaction_type = 'SELLER_REV_SHARE_REFUND'
 then -invoice_amount else 0 end) as seller_rev_refund,
 sum(case when transaction_type = 'AWS_REV_SHARE_REFUND'
 then -invoice_amount else 0 end) as aws_rev_refund,
 sum(case when transaction_type = 'SELLER_REV_SHARE_CREDIT'
 then -invoice_amount else 0 end) as seller_rev_credit,
 sum(case when transaction_type = 'AWS_REV_SHARE_CREDIT'
 then -invoice_amount else 0 end) as aws_rev_credit,
 sum(case when transaction_type = 'SELLER_TAX_SHARE'
 then -invoice_amount else 0 end) as seller_tax_share,
 sum(case when transaction_type = 'SELLER_TAX_SHARE_REFUND'
 then -invoice_amount else 0 end) as seller_tax_refund,
 -- This is the account that pays the invoice:
 max(payer_account_id) as payer_account_id,
 -- This is the account that subscribed to the product:
 end_user_account_id as customer_account_id,
 bank_trace_id
 from
 disbursed_line_items
 group by
 transaction_reference_id,
 product_id,
 disbursement_id,
 -- There might be a different end-user for the same
 -- transaction reference id. Distributed licenses

313

AWS Marketplace Seller Guide
Data feed query examples

 -- is an example
 end_user_account_id,
 bank_trace_id
),

disbursed_amount_by_product as (
 select
 products.title as ProductTitle,
 products.product_code as ProductCode,
 -- We are rounding the sums using 2 decimal precision
 -- Note that the rounding method might differ
 -- between SQL implementations.
 -- The disbursement seller report is using
 -- RoundingMode.HALF_UP. This might create
 -- discrepancies between this SQL output
 -- and the disbursement seller report
 round(invoice_amounts.seller_rev_share, 2) as SellerRev,
 round(invoice_amounts.aws_rev_share, 2) as AWSRefFee,
 round(invoice_amounts.seller_rev_refund, 2) as SellerRevRefund,
 round(invoice_amounts.aws_rev_refund, 2) as AWSRefFeeRefund,
 round(invoice_amounts.seller_rev_credit, 2) as SellerRevCredit,
 round(invoice_amounts.aws_rev_credit, 2) as AWSRefFeeCredit,
 (
 round(invoice_amounts.seller_rev_share, 2) +
 round(invoice_amounts.aws_rev_share, 2) +
 round(invoice_amounts.seller_rev_refund, 2) +
 round(invoice_amounts.aws_rev_refund, 2) +
 round(invoice_amounts.seller_rev_credit, 2) +
 round(invoice_amounts.aws_rev_credit, 2)
) as NetAmount,
 invoice_amounts.transaction_reference_id
 as TransactionReferenceID,
 round(invoice_amounts.seller_tax_share, 2)
 as SellerSalesTax,
 round(invoice_amounts.seller_tax_refund, 2)
 as SellerSalesTaxRefund,
 payer_info.aws_account_id
 as PayerAwsAccountId,
 customer_info.aws_account_id
 as EndCustomerAwsAccountId,
 invoice_amounts.disbursement_date
 as DisbursementDate,
 invoice_amounts.bank_trace_id
 as BankTraceId
 from
 invoice_amounts_aggregated invoice_amounts
 join products_with_latest_version products
 on products.product_id = invoice_amounts.product_id
 left join accounts_with_latest_version payer_info
 on payer_info.account_id = invoice_amounts.payer_account_id
 left join accounts_with_latest_version customer_info
 on customer_info.account_id = invoice_amounts.customer_account_id
)

select * from disbursed_amount_by_product;

Example 2: Sales compensation report
To find the billed revenue by customer, you can run a query like the following. This example is
comparable to the Sales compensation report (p. 294) that you can get as a seller report. However, you
can use this sample to build your own queries and customize it to get exactly the report that you need.

This is a set of sample queries that build upon each other to create the final list of customer details
with the total amount billed to each customer for usage of your software. The comments in the queries

314

AWS Marketplace Seller Guide
Data feed query examples

explain what the queries are doing, as well as how you can modify them to get different views of the
data.

Note
When running this query, we are assuming that the data ingested is using two time axes (the
valid_from column and the update column). For more details, see Storage and structure of data
feeds (p. 299).

 -- Gets all the products and keeps the latest product_id,
 -- valid_from tuple.
 with products_with_uni_temporal_data as (
 select
 *
 from
 (
 select
 *,
 ROW_NUMBER() OVER (PARTITION BY product_id, valid_from
 ORDER BY from_iso8601_timestamp(update_date) desc)
 as row_num
 from
 productfeed_v1
)
 where
 -- A product_id can appear multiple times with the same
 -- valid_from date but with a different update_date column,
 -- making it effectively bi-temporal. By only taking the most
 -- recent tuple, we are converting to a uni-temporal model.
 row_num = 1
),

 -- Gets the latest revision of a product
 -- A product can have multiple revisions where some of the
 -- columns, like the title, can change.
 -- For the purpose of the sales compensation report, we want
 -- to get the latest revision of a product
 products_with_latest_revision as (
 select
 *
 from
 (
 select
 *,
 ROW_NUMBER() OVER (PARTITION BY product_id ORDER BY
 from_iso8601_timestamp(valid_from) desc) as row_num_latest_revision
 from
 products_with_uni_temporal_data
)
 where
 row_num_latest_revision = 1
),

 -- Gets all the addresses and keeps the latest address_id,
 -- aws_account_id, and valid_from combination.
 -- We're transitioning from a bi-temporal data model to an
 -- uni-temporal data_model
 piifeed_with_uni_temporal_data as (
 select
 *
 from
 (
 select
 *,
 ROW_NUMBER() OVER (
 PARTITION BY address_id, aws_account_id, valid_from

315

AWS Marketplace Seller Guide
Data feed query examples

 ORDER BY from_iso8601_timestamp(update_date) desc)
 as row_num
 from
 piifeed
)
 where
 -- An address_id can appear multiple times with the same
 -- valid_from date but with a different update_date column.
 -- We are only interested in the most recent.
 row_num = 1
),

 -- Gets the latest revision of an address.
 -- An address_id can have multiple revisions where some of
 -- the columns can change.
 -- For the purpose of the sales compensation report, we want to
 -- get the latest revision of an address + account_id pair.
 pii_with_latest_revision as (
 select
 *
 from
 (
 select
 *,
 ROW_NUMBER() OVER (PARTITION BY address_id, aws_account_id
 ORDER BY from_iso8601_timestamp(valid_from) desc)
 as row_num_latest_revision
 from
 piifeed_with_uni_temporal_data
)
 where
 row_num_latest_revision = 1
),

 -- Gets all the accounts and keeps the latest
 -- account_id, valid_from tuple.
 -- We're transitioning from a bi-temporal data
 -- model to an uni-temporal data_model.
 accounts_with_uni_temporal_data as (
 select
 *
 from
 (
 select
 *,
 ROW_NUMBER() OVER (PARTITION BY account_id, valid_from
 ORDER BY from_iso8601_timestamp(update_date) desc)
 as row_num
 from
 accountfeed_v1
)
 where
 -- An account_id can appear multiple times with the same
 -- valid_from date but with a different update_date column.
 -- We are only interested in the most recent tuple.
 row_num = 1
),

 -- Gets all the historical dates for an account
 -- An account can have multiple revisions where some of the
 -- columns like the mailing_address_id can change.
 accounts_with_history as (
 select
 *,
 -- This interval's begin_date
 case

316

AWS Marketplace Seller Guide
Data feed query examples

 when
 -- First record for a given account_id
 lag(valid_from, 1) over (partition by account_id
 order by from_iso8601_timestamp(valid_from) asc) is null
 then
 -- 'force' begin_date a bit earlier because of different
 -- data propagation times. We'll subtract one day as one
 -- hour is not sufficient
 from_iso8601_timestamp(valid_from) - INTERVAL '1' DAY
 else
 -- not the first line -> return the real date
 from_iso8601_timestamp(valid_from)
 end as begin_date,
 -- This interval's end date.
 COALESCE(
 LEAD(from_iso8601_timestamp(valid_from), 1)
 OVER (partition by account_id
 ORDER BY from_iso8601_timestamp(valid_from)),
 from_iso8601_timestamp('9999-01-01T00:00:00Z')
) as end_date
 from
 accounts_with_uni_temporal_data
),

 -- Gets all the billing events and keeps the latest
 -- billing_event_id, valid_from tuple.
 -- We're transitioning from a bi-temporal data
 -- model to an uni-temporal data_model.
 billing_events_with_uni_temporal_data as (
 select
 *
 from (
 select
 billing_event_id,
 from_iso8601_timestamp(valid_from) as valid_from,
 from_iso8601_timestamp(update_date) as update_date,
 from_iso8601_timestamp(invoice_date) as invoice_date,
 transaction_type,
 transaction_reference_id,
 product_id,
 disbursement_billing_event_id,
 action,
 currency,
 from_account_id,
 to_account_id,
 end_user_account_id,
 -- convert an empty billing address to null. This will
 -- later be used in a COALESCE call
 case
 when billing_address_id <> '' then billing_address_id else null
 end as billing_address_id,
 CAST(amount as decimal(20, 10)) invoice_amount,
 ROW_NUMBER() OVER (PARTITION BY billing_event_id, valid_from
 ORDER BY from_iso8601_timestamp(update_date) desc)
 as row_num
 from
 billingeventfeed_v1
 where
 -- The Sales Compensation Report does not contain BALANCE
 -- ADJUSTMENTS, so we filter them out here
 transaction_type <> 'BALANCE_ADJUSTMENT'
 -- Keep only the transactions that will affect any
 -- future disbursed amounts.
 and balance_impacting = '1'
)
 where row_num = 1

317

AWS Marketplace Seller Guide
Data feed query examples

),

 -- Gets the billing address for all DISBURSED invoices. This
 -- will be the address of the payer when the invoice was paid.
 -- NOTE: For legal reasons, for CPPO transactions, the
 -- manufacturer will not see the payer's billing address id
 billing_addresses_for_disbursed_invoices as (
 select
 billing_events_raw.transaction_reference_id,
 billing_events_raw.billing_address_id,
 billing_events_raw.from_account_id
 from
 billing_events_with_uni_temporal_data billing_events_raw
 where
 -- the disbursed items will contain the billing address id
 billing_events_raw.action = 'DISBURSED'
 -- we only want to get the billing address id for the
 -- transaction line items where the seller is the receiver
 -- of the amount
 and billing_events_raw.transaction_type like 'SELLER_%'
 group by
 billing_events_raw.transaction_reference_id,
 billing_events_raw.billing_address_id,
 billing_events_raw.from_account_id
),

 -- An invoice can contain multiple line items.
 -- We create a pivot table to calculate the different amounts
 -- that are part of an invoice.
 -- The new row is aggregated at
 -- transaction_reference_id - end_user_account_id level
 invoiced_and_forgiven_transactions as (
 select
 transaction_reference_id,
 product_id,
 -- A transaction will have the same invoice date for all
 -- of its line items (transaction types)
 max(invoice_date) as invoice_date,
 -- A transaction will have the same billing_address_id
 -- for all of its line items. Remember that the billing event
 -- is uni temporal and we retrieved only the latest valid_from item
 max(billing_address_id) as billing_address_id,
 -- A transaction will have the same currency for all
 -- of its line items
 max(currency) as currency,
 -- We're building a pivot table in order to provide all the
 -- data related to a transaction in a single row
 sum(case when transaction_type = 'SELLER_REV_SHARE'
 then invoice_amount else 0 end) as seller_rev_share,
 sum(case when transaction_type = 'AWS_REV_SHARE'
 then invoice_amount else 0 end) as aws_rev_share,
 sum(case when transaction_type = 'SELLER_REV_SHARE_REFUND'
 then invoice_amount else 0 end) as seller_rev_refund,
 sum(case when transaction_type = 'AWS_REV_SHARE_REFUND'
 then invoice_amount else 0 end) as aws_rev_refund,
 sum(case when transaction_type = 'SELLER_REV_SHARE_CREDIT'
 then invoice_amount else 0 end) as seller_rev_credit,
 sum(case when transaction_type = 'AWS_REV_SHARE_CREDIT'
 then invoice_amount else 0 end) as aws_rev_credit,
 sum(case when transaction_type = 'SELLER_TAX_SHARE'
 then invoice_amount else 0 end) as seller_tax_share,
 sum(case when transaction_type = 'SELLER_TAX_SHARE_REFUND'
 then invoice_amount else 0 end) as seller_tax_refund,
 -- this is the account that pays the invoice.
 max(case
 -- Get the payer of the invoice from any transaction type

318

AWS Marketplace Seller Guide
Data feed query examples

 -- that is not AWS and not BALANCE_ADJUSTMENT.
 -- For AWS and BALANCE_ADJUSTMENT, the billing event feed
 -- will show the "AWS Marketplace" account as the
 -- receiver of the funds and the seller as the payer. We
 -- are not interested in this information here.
 when
 transaction_type not like '%AWS%'
 and transaction_type not like 'BALANCE_ADJUSTMENT'
 then from_account_id
 end) as payer_account_id,
 -- this is the account that subscribed to your product
 end_user_account_id as customer_account_id
 from
 billing_events_with_uni_temporal_data
 where
 -- Get invoiced or forgiven items. Disbursements are
 -- not part of the sales compensation report
 action in ('INVOICED', 'FORGIVEN')
 group by
 transaction_reference_id,
 product_id,
 -- There might be a different end-user for the same
 -- transaction reference id. Distributed licenses
 -- is an example.
 end_user_account_id
),

invoiced_items_with_product_and_billing_address as (
 select
 invoice_amounts.*,
 products.product_code,
 products.title,
 payer_info.aws_account_id as payer_aws_account_id,
 payer_info.account_id as payer_reference_id,
 customer_info.aws_account_id as end_user_aws_account_id,
 (
 invoice_amounts.seller_rev_share +
 invoice_amounts.aws_rev_share +
 invoice_amounts.seller_rev_refund +
 invoice_amounts.aws_rev_refund +
 invoice_amounts.seller_rev_credit +
 invoice_amounts.aws_rev_credit +
 invoice_amounts.seller_tax_share +
 invoice_amounts.seller_tax_refund
) as seller_net_revenue,
 -- Try to get the billing address from the DISBURSED event
 -- (if any). If there is no DISBURSEMENT, get the billing
 -- address from the INVOICED item. If still no billing address,
 -- then default to getting the mailing address of the payer.
 coalesce(billing_add.billing_address_id,
 invoice_amounts.billing_address_id,
 payer_info.mailing_address_id)
 as final_billing_address_id
 from
 invoiced_and_forgiven_transactions invoice_amounts
 join products_with_latest_revision products
 on products.product_id = invoice_amounts.product_id
 left join accounts_with_history payer_info
 on payer_info.account_id = invoice_amounts.payer_account_id
 -- Get the Payer Information at the time of invoice creation
 and payer_info.begin_date <= invoice_amounts.invoice_date
 and invoice_amounts.invoice_date < payer_info.end_date
 left join accounts_with_history customer_info
 on customer_info.account_id = invoice_amounts.customer_account_id
 -- Get the End User Information at the time of invoice creation
 and customer_info.begin_date <= invoice_amounts.invoice_date

319

AWS Marketplace Seller Guide
Account data feed

 and invoice_amounts.invoice_date < customer_info.end_date
 left join billing_addresses_for_disbursed_invoices billing_add
 on billing_add.transaction_reference_id =
 invoice_amounts.transaction_reference_id
 and billing_add.from_account_id =
 invoice_amounts.payer_account_id
),

invoices_with_full_address as (
 select
 payer_aws_account_id as "Customer AWS Account Number",
 pii_data.country as "Country",
 pii_data.state_or_region as "State",
 pii_data.city as "City",
 pii_data.postal_code as "Zip Code",
 pii_data.email_domain as "Email Domain",
 product_code as "Product Code",
 title as "Product Title",
 seller_rev_share as "Gross Revenue",
 aws_rev_share as "AWS Revenue Share",
 seller_rev_refund as "Gross Refunds",
 aws_rev_refund as "AWS Refunds Share",
 seller_net_revenue as "Net Revenue",
 currency as "Currency",
 date_format(invoice_date, '%Y-%m')as "AR Period",
 transaction_reference_id as "Transaction Reference ID",
 payer_reference_id as "Payer Reference ID",
 end_user_aws_account_id as "End Customer AWS Account ID"
 from
 invoiced_items_with_product_and_billing_address invoice_amounts
 left join pii_with_latest_revision pii_data
 on pii_data.aws_account_id = invoice_amounts.payer_aws_account_id
 and pii_data.address_id = invoice_amounts.final_billing_address_id
 -- Filter out FORGIVEN and Field Demonstration Pricing transactions
 where seller_net_revenue <> 0
)

select * from invoices_with_full_address;

Account data feed
This data feed provides information about all the accounts you interact with: your own, any channel
partners you work with, buyers, payers, and all taxed accounts.

Account data is immutable, and it is not associated with a version number. Changes to fields are
appended, so this data feed may have several rows with the same account_id and different
valid_from values. For information about data history fields, see Historization of the data (p. 300).

The account data feed is refreshed every 24 hours, so new data is available daily.

The following table explains the names and descriptions of the data feed's columns.

Column name Description

account_id The globally unique identifier (GUID) of the
account.

Can be used to join to fields in the Product,
Offer_Target, Billing_Event, and Tax_Item
data feeds. See those data feeds for information
about the fields that can be used to join.

320

AWS Marketplace Seller Guide
Address data feed

Column name Description

aws_account_id The AWS account number of the seller's AWS
account, which is unique by AWS partition.

encrypted_account_id The unique, encrypted ID for an individual
buyer of your application. The value for
encrypted_account_id is used by the AWS
Marketplace Metering Service, for example, as the
value for CustomerIdentifier that is returned
by the ResolveCustomer action.

mailing_address_id The mailing address reference for this account.

tax_address_id The tax address reference for this account.

tax_registration_number For non-US accounts, the tax registration number
for this account.

tax_legal_name For non-US accounts, the legal company name.
This is the name used on tax invoices.

Example of account data feed
The following shows an example of the account data feed. For readability, the data history columns
aren't shown. For information about data history fields, see Historization of the data (p. 300).

account_id aws_account_idencrypted_account_idmailing_address_idtax_address_idtax_registration_numbertax_legal_name

xk0CSmiAm6PQ4QqEog9iiaochIzuPlkMfba7a1oDlZ444456660000Zf7oMzheGWpH25o3k46eN6eViOfFiiqtxwX8e3kaOiPalUiofjyFa3

7nyo5jwTRoPlyX81vx9ji04eEwTurO1Ff8biQi88W8555567679999373vuQUqmQ8v5oJ6vTjSzMrrF2gvh2Vj9HfqiM800MuLEHmyFY5Lr42s85oJ6vTjSzMrrF2gvh2Vj9HfqiM800MuLEHmyFY5Lr42s8SE823935083345

VIeGa2t9j3MuxioH9wc8lsndXXCgGCGUreeXriocM573739998888 8SPxAYmi8MwXNLUc5UeiMlGFTrDWCoftDPhDUF1oaSd8xgl5QM8Db7V5NhBYBiYogwy0WMhndGU4AfMggmuoTC2j7Pm8ZKKNNyTDE469558025

Address data feed
This data feed provides contact information for all the accounts you interact with: your own, any channel
partners you work with, buyers, payers, and all taxed accounts. Each time a new transaction occurs, the
customer address for the transaction is scanned, and if it's not in your data feed, a new entry is added to
your data feed file.

Address data is immutable.

The address data feed is refreshed every 24 hours, so new data is available daily.

The following table explains the names and descriptions of the data feed's columns.

Column name Description

address_id The unique key of the address.

Can be used to join from the Billing_Event
data feed on the billing_address_id
field, or from the Account data feed on the

321

https://docs.aws.amazon.com/marketplacemetering/latest/APIReference/API_ResolveCustomer.html

AWS Marketplace Seller Guide
Address data feed

Column name Description

mailing_address_id or tax_address_id
fields.

aws_account_id The AWS account number of this address.

Can be used to join to the Account data feed on
the aws_account_id field.

email_domain The domain for the email address on file for this
account.

company_name The company name on file for this account.

country The ISO 3166 alpha-2 country code on file for this
address.

state_or_region The state or region on file for this address.

city The city on file for this address.

postal_code The postal code on file for this address.

address_line_1 The first line of the address on file for this
address.

address_line_2 The second line of the address on file for this
address.

address_line_3 The third line of the address on file for this
address.

Example of address data feed
The following shows an example of the address data feed. In the data feed, this information is presented
in a single table. For readability, the data is shown in two tables here, and the data history columns aren't
shown. For information about data history fields, see Historization of the data (p. 300).

address_id aws_account_idemail_domaincompany_namecountry state_or_regioncity postal_code

V5NhBYBiYogwy0WMhndGU4AfMggmuoTC2j7Pm8ZKKNNyT444456660000a.com Mateo
Jackson's
Company

DE Hamburg 67568

G68xdbkZQDVVHzfBGw6yf5yos0A6NiSVWHmH5ViLjf555567679999b.com Mary
Major's
Company

US OH Dayton 57684

NLUc5UeiMlGFTrDWCoftDPhDUF1oaSd8xgl5QM8Db7555567679999c.com Our Seller US NY New York 89475

address_line_1 address_line_2 address_line_3

322

AWS Marketplace Seller Guide
Billing event data feed

address_line_1 address_line_2 address_line_3

 19th Floor

Billing event data feed
This data feed provides information about billing events, including invoicing and disbursements.

For example, you can use this data feed to learn when and what a buyer is invoiced. You can also use the
example SQL queries (p. 329) to analyze the data from this data feed.

This data feed contains information associated with billing events for which you are the seller of record.
For agreements made via channel partners, this data feed contains information about billing events
between the manufacturer and seller of record.

The billing event data feed is refreshed every 24 hours, so new data is available daily.

Billing event data is immutable.

The following table explains the names and descriptions of the data feed's columns.

Column name Description

billing_event_id An identifier for a billing event. This ID is unique
in the seller's environment.

from_account_id The account that initiated the billing event. If
transction_type is SELLER_REV_SHARE, it is
the buyer's payer account. This is a foreign key to
the account (p. 320) data feed.

Can be used to join to the Account data feed on
the account_id field.

to_account_id The account that receives the transaction amount
for the product. This is a foreign key to the
account data feed.

Can be used to join to the Account data feed on
the account_id field.

end_user_account_id The account that uses the product. This account
may be different from the buyer and payer
accounts.

Can be used to join to the Account data feed on
the account_id field.

product_id The identifier of the product. This is a foreign key
to the product (p. 335) data feed.

Can be used to join to the Product data feed on
the product_id field.

action The type of action for this event. Possible values
are as follows:

323

AWS Marketplace Seller Guide
Billing event data feed

Column name Description

• INVOICED – The buyer was invoiced for the
amount.

• FORGIVEN – The buyer was invoiced for the
amount, and AWS reverted the charge.

• DISBURSED – The seller was paid this amount.
This can include a month of invoices, or be an
on-demand disbursement.

transaction_type The type of transaction. For examples, see Taxing
scenarios (p. 326). Possible values are as follows:

• SELLER_REV_SHARE – A positive amount; this
is the price the seller set in the agreement with
buyer.

• SELLER_TAX_SHARE – A positive amount; this
is the amount added to SELLER_REV_SHARE to
cover taxes the seller owes.

• AWS_REV_SHARE – A negative amount; this is
the listing fee.

• AWS_TAX_SHARE – A positive amount; this is
the amount of taxes AWS collected in addition
to SELLER_REV_SHARE. This amount doesn't
affect the seller's balance. This amount is not
disbursed and is provided for seller's awareness
of taxes invoiced to buyer and remitted to
authorities on the seller's behalf.

• transaction_type_REFUND – The amount of
refund requested by buyer.

• transaction_type_CREDIT – The amount
AWS credits the buyer.

• BALANCE_ADJUSTMENT – An adjustment made
by AWS to resolve invoicing issues.

• DISBURSEMENT – If action = DISBURSEMENT
and balancing_impacting = 1, this
is the amount paid to seller. If the value
for action is = INVOICED, this record
negates the parent_billing_event_id
record either in full or in part. In
this case, the related disbursement
disbursement_billing_event_id is shown
and balancing_impacting = 0.

• DISBURSEMENT_FAILURE – Negates the
transaction.

parent_billing_event_id If the action is DISBURSEMENT or FORGIVEN
and the transaction_type is DISBURSEMENT,
this is the billing_event_id that initiated this
billing event. If action has another value, this
field is null.

324

AWS Marketplace Seller Guide
Billing event data feed

Column name Description

disbursement_billing_event_id The related disbursement when the action is
DISBURSED AND one of the following is true:

• transaction_type like ('SELLER%')

• transaction_type like ('AWS%')

In all other cases, this value is null.

amount The billing event amount.

currency The ISO 639 currency code.

balance_impacting Whether the amount is taken into account in
calculating seller disbursements. A value of 0
indicates the amount is shown for informational
purposes and has no effect on the balance. A
value of 1 indicates that this amount takes into
account in determining seller disbursements.

invoice_date The date the invoice was created.

payment_due_date When the action is INVOICED, the due date for
the invoice.

usage_period_start_date The start date for the period in the record.

usage_period_end_date The end date for the period in the record.

invoice_id The AWS invoice ID.

billing_address_id The payer's billing address reference in the
address data feed.

Can be used to join to the Address data feed on
the address_id field.

transaction_reference_id An identifier that allows you to cross-reference
data from the following reports:

• Disbursement report (p. 283)
• Monthly billed revenue report (p. 288)
• Sales compensation report (p. 294)
• US sales and use tax report (p. 296)

bank_trace_id For disbursement transactions (transaction_type
= DISBURSEMENT and action = DISBURSED), the
trace ID assigned by the bank. The trace ID can be
used to correlate with bank-provided reports from
the seller bank.

325

AWS Marketplace Seller Guide
Billing event data feed

Column name Description

broker_id An identifier of the business entity which
facilitated the transaction. Possible values are as
follows:

• AWS_INC

– The identifier for AWS, Inc. (based in the
United States).

• AWS_EUROPE

– The identifier for Amazon Web Services EMEA
SARL (based in Luxembourg).

• NULL

– Previous transactions without an explicit
broker_id were facilitated by AWS_INC.

Taxing scenarios
The taxation model that is in place for the country and state of the buyer and seller dictates how taxes
are collected and remitted. Following are the possible scenarios:

• Taxes are collected and remitted by AWS. In these cases, the transaction_type is AWS_TAX_SHARE.
• Taxes are collected by AWS, disbursed to the seller, and remitted by the seller to the tax authorities. In

these cases, the transaction_type is SELLER_TAX_SHARE.
• Taxes are not collected by AWS. The seller must calculate the taxes and remit them to the tax

authorities. In these cases, AWS Marketplace doesn't perform tax calculations or receive tax
information. The seller pays the taxes from the revenue share.

Examples of billing event data feed
This section shows examples of the billing event data period at the time of invoicing and one month
later. Note the following for all tables in this section:

• In data feeds, billing_event_id values are 40-character alphanumeric strings. They're shown here
as two-character strings for readability.

• In the data feed, this information is presented in a single table. For readability, the data is shown in
multiple tables here, and all columns aren't shown.

For the examples in this section, assume the following:

• Arnav is the buyer.
• His account ID is 737399998888.
• He's located in France, which is subject to marketplace facilitator laws. For more information, see

Amazon Web Service Tax Help.
• He purchased prod-o4grxfafcxxxx and was invoiced $120.60 for his monthly usage of that

product.
• He paid the invoice within the month.

• Jane is the manufacturer.
• Her account ID is 111122223333.

326

https://aws.amazon.com/tax-help/

AWS Marketplace Seller Guide
Billing event data feed

• Paulo is the seller of record.
• His account ID is 777788889999.
• He lives in Kansas, which is not subject to market facilitator laws.

Billing event data feed for seller of record

As the seller of record, Paulo invoices the buyer, Arnav.

The following tables show the relevant information in Paulo's data feed when he invoices Arnav.

billing_event_idfrom_account_idto_account_id end_user_account_idproduct_id action transaction_type

I0 737399998888777788889999737399998888prod-
o4grxfafcxxxx

INVOICED SELLER_REV_SHARE

I1 737399998888AWS 737399998888prod-
o4grxfafcxxxx

INVOICED AWS_TAX_SHARE

I2 777788889999111122223333737399998888prod-
o4grxfafcxxxx

INVOICED SELLER_REV_SHARE

I3 777788889999AWS 737399998888prod-
o4grxfafcxxxx

INVOICED AWS_REV_SHARE

parent_billing_event_iddisbursement_billing_event_idamount currency invoice_date invoice_id

 100 USD 2018-12-31T00:00:00Z781216640

 20.6 USD 2018-12-31T00:00:00Z781216640

 -80 USD 2018-12-31T00:04:07Z788576665

 -0.2 USD 2018-12-31T00:04:07Z788576665

The following tables show the relevant information in Paulo's data feed at the end of the month, after
Arnav pays the invoice.

billing_event_idfrom_account_idto_account_id end_user_account_idproduct_id action transaction_type

I10 737399998888777788889999737399998888 DISBURSED SELLER_REV_SHARE

I12 777788889999111122223333737399998888 DISBURSED SELLER_REV_SHARE

I13 777788889999AWS 737399998888prod-
o4grxfafcxxxx

DISBURSED AWS_REV_SHARE

I14 AWS 777788889999 DISBURSED DISBURSEMENT

parent_billing_event_iddisbursement_billing_event_idamount currency invoice_date invoice_id

I0 I14 -100 USD 2018-12-31T00:00:00Z781216640

327

AWS Marketplace Seller Guide
Billing event data feed

parent_billing_event_iddisbursement_billing_event_idamount currency invoice_date invoice_id

I2 I14 80 USD 2018-12-31T00:04:07Z788576665

I3 I14 0.2 USD 2018-12-31T00:04:07Z788576665

 19.8 USD

Billing event data feed for manufacturer

The following tables show the relevant information in the Jane's data feed when Paulo invoices Arnav.

billing_event_idfrom_account_idto_account_id end_user_account_idproduct_id action transaction_type

I5 777788889999111122223333 prod-
o4grxfafcxxxx

INVOICED SELLER_REV_SHARE

I6 777788889999111122223333 prod-
o4grxfafcxxxx

INVOICED SELLER_TAX_SHARE

I7 111122223333AWS prod-
o4grxfafcxxxx

INVOICED AWS_REV_SHARE

parent_billing_event_iddisbursement_billing_event_idamount currency invoice_date invoice_id

 73.5 2018-12-31T00:04:07Z788576665

 6.5 2018-12-31T00:04:07Z788576665

 -7.35 2018-12-31T00:04:07Z788576665

The following tables show the relevant information in Jane's data feed at the end of the month, after the
invoice is paid.

billing_event_idfrom_account_idto_account_id end_user_account_idproduct_id action transaction_type

I30 777788889999111122223333 prod-
o4grxfafcxxxx

DISBURSED SELLER_REV_SHARE

I31 777788889999111122223333 prod-
o4grxfafcxxxx

DISBURSED SELLER_TAX_SHARE

I32 111122223333AWS prod-
o4grxfafcxxxx

DISBURSED AWS_REV_SHARE

I33 AWS 111122223333 DISBURSED DISBURSEMENT

parent_billing_event_iddisbursement_billing_event_idamount currency invoice_date invoice_id

I5 I33 -73.5 USD

328

AWS Marketplace Seller Guide
Billing event data feed

parent_billing_event_iddisbursement_billing_event_idamount currency invoice_date invoice_id

I6 I33 -6.5 USD

I7 I33 7.35 USD

 72.65 USD

Example queries
As described in Using data feeds (p. 303), you can use Athena to run queries on the data that's
collected and stored as data feeds in your managed Amazon S3 bucket. This section provides some
examples of common ways you might do this. All examples assume that a single currency is used.

Example 1: Amount invoiced, including taxes
To find out how much buyers were invoiced, including taxes, you can run a query as shown in the
following example.

SELECT sum(amount) FROM billing_event
WHERE
 action = 'INVOICED'
 AND
 (
 (transaction_type in ('SELLER_REV_SHARE', 'SELLER_TAX_SHARE')
 -- to discard SELLER_REV_SHARE from Manufacturer to Channel Partner, aka cost of
 goods
 AND to_account_id='seller-account-id'
)
 OR transaction_type= 'AWS_TAX_SHARE'
);

Example 2: Amount invoiced to buyers on seller's behalf
To find out how much buyers were invoiced on a seller's behalf, you can run a query as shown in the
following example.

SELECT sum(amount) FROM billing_event
WHERE
 action = 'INVOICED'
 AND transaction_type in ('SELLER_REV_SHARE', 'SELLER_TAX_SHARE')
 AND to_account_id='seller-account-id'
;

Example 3: Amount AWS can collect on seller's behalf
To find out how much AWS can collect on a seller's behalf, minus any refunds, credits, and forgiven
accounts, you can run a query as shown in the following example.

SELECT sum(amount) FROM billing_event
WHERE
 -- what is invoiced on behalf of SELLER, incl. refunds/ credits and cost of goods
 transaction_type like 'SELLER_%'
 -- FORGIVEN action records will "negate" related INVOICED
 and action in ('INVOICED','FORGIVEN')
;

329

https://docs.aws.amazon.com/athena/latest/ug/what-is.html

AWS Marketplace Seller Guide
Billing event data feed

Example 4: Amount seller can collect
To find out how much sellers can collect, you can run a query as shown in the following example. This
example removes listing fees and taxes that AWS collects, and adds any exceptional balance adjustments.

SELECT sum(amount) FROM billing_event
WHERE
 (transaction_type like 'SELLER_%' -- what is invoiced on behalf of SELLER
 or transaction_type like 'AWS_REV_%' -- what is owed to AWS
 or transaction_type = 'BALANCE_ADJUSTMENT' -- exceptionnal case
)
 and action in ('INVOICED','FORGIVEN')
;

You can also use the following query to collect the same information, as shown in the following example.

SELECT sum(amount) FROM billing_event
WHERE
 balance_impacting = 1
 and action in ('INVOICED','FORGIVEN')
;

The following example shows the same information, but is restricted to 2018 transactions and assumes
all buyers paid their invoices.

SELECT sum(amount) FROM billing_event
WHERE
 invoice_date between '2018-01-01' and '2018-12-31'
 and balance_impacting = 1
 and action in ('INVOICED','FORGIVEN')
;

Example 5: Amount of disbursements
To find out the amount that's been disbursed, you can run a query as shown in the following example.

select sum(amount) FROM billing_event
WHERE
 action ='DISBURSED'
 and transaction_type like 'DISBURSEMENT%'
;

Example 6: Amount pending disbursement
To find out the amount that's pending disbursement, you can run a query as shown in the following
example. This query removes amounts that have already been disbursed.

SELECT sum(amount) FROM billing_event targeted
WHERE
 (transaction_type like 'SELLER_%' -- what is invoiced on behalf of SELLER
 or transaction_type like 'AWS_REV_%' -- what is owed to AWS
 or transaction_type = 'BALANCE_ADJUSTMENT' -- exceptionnal case
)
 -- DISBURSEMENT action records will "negate" 'INVOICED'
 -- but do not take into account failed disbursements
 AND
 (not exists
 (select 1
 from billing_event disbursement

330

AWS Marketplace Seller Guide
Billing event data feed

 join billing_event failed_disbursement
 on disbursement.billing_event_id=failed_disbursement.parent_billing_event_id
 where
 disbursement.transaction_type='DISBURSEMENT'
 and failed_disbursement.transaction_type='DISBURSEMENT_FAILURE'
 and targeted.disbursement_billing_event_id=disbursement.billing_event_id
)
)
;

Another way to get the same information is to run a query to get the seller's balance, as shown in the
following example.

SELECT sum(amount) FROM billing_event
WHERE
 balance_impacting = 1
;

The following query extends our example. It restricts the results to 2018 transactions and returns
additional details about the transactions.

select sum(residual_amount_per_transaction)
from
 (SELECT
 max(billed_invoices.amount) invoiced_amount,
 sum(nvl(disbursed_invoices.amount,0)) disbursed_amount,
 -- Exercise left to the reader:
 -- use transaction_type to distinguish listing fee vs seller-owed money
 -- still pending collection
 max(transaction_type) transaction_type,
 max(billed_invoices.amount)
 + sum(nvl(disbursed_invoices.amount,0)) residual_amount_per_transaction
 FROM billing_event billed_invoices
 -- find related disbursements
 left join billing_event disbursed_invoices
 on disbursed_invoices.action='DISBURSED'
 and disbursed_invoices.parent_billing_event_id=billed_invoices.billing_event_id
 WHERE
 billed_invoices.invoice_date between '2018-01-01' and '2018-12-31'
 and billed_invoices.transaction_type like 'SELLER_%' -- invoiced on behalf of SELLER
 and billed_invoices.action in ('INVOICED','FORGIVEN')
 -- do not take into account failed disbursements
 AND not exists
 (select 1 from billing_event failed_disbursement
 where disbursed_invoices.disbursement_billing_event_id =
 failed_disbursement.parent_billing_event_id
)
 GROUP BY billed_invoices.billing_event_id
);

Example 7: Balance of set of invoices
To learn the sum of a set of invoices, you can run a query as shown in the following example.

SELECT invoice_id, sum(amount) FROM billing_event targeted
WHERE
 -- invoice_id is only not null for invoiced records AND disbursed records
 -- linking them to related disbursement -> no need to filter more precisely
 invoice_id in ('XXX','YYY')
 -- filter out failed disbursements
 AND not exists
 (select 1

331

AWS Marketplace Seller Guide
Legacy mapping data feed

 from billing_event disbursement
 join billing_event failed_disbursement
 on disbursement.billing_event_id=failed_disbursement.parent_billing_event_id
 where
 disbursement.transaction_type='DISBURSEMENT'
 and failed_disbursement.transaction_type='DISBURSEMENT_FAILURE'
 and targeted.disbursement_billing_event_id=disbursement.billing_event_id
)
 group by invoice_id;

Legacy mapping data feed
This data feed lists how product IDs and offer IDs map to legacy globally unique identifiers (GUIDs). The
legacy GUIDs were used in older reports, and the new IDs are used in data feeds and in AWS Marketplace
APIs.

This data feed provides information about all products you've created as the seller of record and all
products you're authorized to resell.

The legacy mapping data feed is refreshed every 24 hours, so new data is available daily.

The following table explains the names and descriptions of the data feed's columns.

Column name Description

mapping_type Whether this is a product ID or offer ID.

legacy_id The legacy ID for this product or offer.

new_id The friendly ID for this product or offer. This ID is
used as the primary key and with all current API
actions.

Example of legacy mapping data feed
The following shows an example of the legacy mapping data feed. For readability, the data history
columns aren't shown. For information about data history fields, see Historization of the data (p. 300).

mapping_type legacy_id new_id

OFFER 8a806c74-dbd6-403e-9362-
bb08f417ff37

offer-dacpxznflfwin

PRODUCT 1368541d-890b-4b6c-9bb9-4a55306ab642prod-o4grxfafcxxxy

OFFER 558d8382-6b3a-4c75-8345-
a627b552f5f1

offer-gszhmle5npzip

Offer data feed
This data feed provides information about all offers you've created as the seller of record. If a single offer
has multiple revisions, all revisions are included in the data feed.

When you make an offer revision and the data in an exposed field changes, a new record is created in the
data feed for the same primary key (offer_id plus offer_revision), but with a different value for

332

AWS Marketplace Seller Guide
Offer product data feed

valid_from field. For more information about the data feed history columns, see Historization of the
data (p. 300).

The offer data feed is refreshed every 24 hours, so new data is available daily.

The following table explains the names and descriptions of the data feed's columns.

Column name Description

offer_id The friendly identifier for the offer.

Can used to join to the offer_id field of the
Offer_Product data feed.

offer_revision The offer revision. This field and the offer_id
field combine to form the primary key.

With offer_id, can used to join to the
offer_id and offer_revision fields of the
Target_Offer data feed.

name The seller-defined name of the offer.

expiration_date The date and time that the offer expires.

opportunity_name Any opportunity data linked to this offer. If the
offer is bound to an AWS opportunity, this field is
populated.

opportunity_description Any descriptive information linked to this offer.
If the offer is bound to an AWS opportunity, this
field is populated.

Example of offer data feed
The following shows an example of the offer data feed. For readability, the data history columns aren't
shown. For information about data history fields, see Historization of the data (p. 300).

offer_id offer_revision name expiration_date opportunity_nameopportunity_description

offer-
dacpxznflfwin

1 Enterprise
Contract
Program Offer

9999-01-01T00:00:00Z

offer-
gszhmle5npzip

1 Private offer
created by
seller

2020-10-31T00:00:00Z

offer-
hmzhyle8nphlp

1 Enterprise
Contract
Program Offer

9999-01-01T00:00:00Z

Offer product data feed
One offer can have several products, and one product can be included in different offers. This data feed
lists information about the relationships between offers and products.

333

AWS Marketplace Seller Guide
Offer target data feed

This data feed provides information about all product offers you've created as the seller of record.

When you add or remove a product from an offer, you create an offer revision.

The offer product data feed is refreshed every 24 hours, so new data is available daily.

The following table explains the names and descriptions of the data feed's columns. For information
about the data feed history columns, see Historization of the data (p. 300).

Column name Description

offer_id The friendly identifier
of this offer.

Can used to join to the
offer_id field of the
Offer data feed.

offer_revision Combines with
offer_id field to form
the foreign key to the
offer revision.

product_id The friendly identifier
of the product, this is
the foreign key to the
product that this offer
exposes.

Can used to join to the
product_id field of
the Product data feed.

Example of Offer product data feed

The following shows an example of the Offer product data feed.

offer_id offer_revision product_id

offer-dacpxznflfwin 10 prod-o4grxfafcxxxx

offer-gszhmle5npzip 24 prod-o4grxfafcxxxy

Offer target data feed
This data feed lists targets of an offer's revision for all offers you've created as the seller of record. If a
single offer has multiple revisions, all revisions are included in the data feed.

When you make an offer revision and the data in an exposed field changes, a new record is created in the
data feed for the same primary key (offer_id plus offer_revision), but with a different value for
valid_from field.

The offer target data feed is refreshed every 24 hours, so new data is available daily.

334

AWS Marketplace Seller Guide
Product data feed

The following table explains the names and descriptions of the data feed's columns.

Column name Description

offer_target_id The primary key of the feed.

offer_id+offer_revision The identifier and revision of the offer. These
two columns reference the offer that this target
relates to.

Can used to join to the offer_id and
offer_revision fields of the Target data feed.

target_type Indicates whether the offer recipient is
BuyerAccounts, which indicates a private offer,
or ParticipatingPrograms.

polarity Indicates whether the offer is intended to be
made to the target_type. Acceptable values are
as follows:

• PositiveTargeting – The offer applies for
this target_type.

• NegativeTargeting – The offer doesn't apply
for this target_type.

value A string that represents the target: either an
AWS account ID or a program that can be used
with an offer. For example, Standard Contract
for AWS Marketplace (SCMP) (p. 54), Enterprise
Contract for AWS Marketplace (ECMP) (p. 55), or
AWS Marketplace Field Demonstration Program
(FDP) (p. 25).

Example of offer target data feed
The following shows an example of the offer target data feed. For readability, the data history columns
aren't shown. For information about data history fields, see Historization of the data (p. 300).

offer_target_id offer_id offer_revision target_type polarity value

925ddc73f6a373b7d5544ea3210610803b600offer-
dacpxznflfwin

1 ParticipatingProgramsPositiveTargetingEnterpriseContract

471ff22ae3165278f1fb960d3e14517bcd601offer-
gszhmle5npzip

1 ParticipatingProgramsPositiveTargetingFieldDemonstration

511ff22adfj65278f1fb960d3e14517bcd6e602offer-
gszhmle5npzip

1 ParticipatingProgramsPositiveTargetingEnterpriseContract

Product data feed
This data feed provides information about all products you've created as the seller of record and all
products you're authorized to resell.

335

AWS Marketplace Seller Guide
Tax item data feed

Product data is mutable. This means that when you change the value for one of the following fields, a
new record is created in the data feed with a different value for valid_from field. For more information
about the data feed history columns, see Historization of the data (p. 300).

The product data feed is refreshed every 24 hours, so new data is available daily.

The following table explains the names and descriptions of the data feed's columns.

Column name Description

product_id The friendly identifier of the product.

Can used to join to the product_id fields of the
Account, Billing_Event, and Offer_Product
data feeds.

manufacturer_account_id The identifier of the product owner. This is a
foreign key to the Account (p. 320) data feed.

Can used to join to the account_id field of the
Account data feed.

product_code The existing entitlement product code used to
meter the product. This value is also used to
join data with a report, or to reference what is
provided in AWS Marketplace Metering Service.

title The title of the product.

Example of product data feed
The following shows an example of the offer target data feed. For readability, the data history columns
aren't shown. For information about data history fields, see Historization of the data (p. 300).

product_id manufacturer_account_idproduct_code title

prod-o4grxfafcxxxx 555568000000 product_code_1 Product1

prod-t3grxfafcxxxy 444457000000 product_code_2 Product2

prod-x8faxxfafcxxy 666678000000 product_code_3 Product3

Tax item data feed
This data feed provides information about tax calculations for a customer invoice.

There can be multiple line items (line_item_id) for a given product (product_id) of a given customer
invoice (invoice_id), one or more for each tax jurisdiction. This happens, for example, with usage-
based bills for customers who are using different AWS Region rules by different AWS entities (say, the
US and Ireland). To learn more about where AWS collects sales tax, VAT, or GST on your sales and remits
such taxes to the local tax authorities, in the name of AWS, Inc., see Amazon Web Service Tax Help.

The tax item data feed is refreshed every 24 hours, so new data is available daily.

Tax item data is immutable.

336

https://aws.amazon.com/tax-help/

AWS Marketplace Seller Guide
Tax item data feed

The following table explains the names and descriptions of the data feed's columns. For information
about data history columns, see Historization of the data (p. 300).

Column name Description

tax_item_id A unique identifier for a tax item record.

invoice_id The AWS invoice ID. You can use this value with
the value of product_id to find related tax
billing events.

line_item_id A unique identifier for a customer bill line item.
Refund transactions have the same line item ID as
their forward tax transactions.

customer_bill_id The unique identifier of the customer bill. Buyers
can share this identifier with the seller to help
identify and resolve tax calculation questions.

tax_liable_party Either AWS or Seller. If the seller is the tax liable
party, taxes are collected. If AWS is the tax liable
party, sales tax is collected and remitted by AWS.
For more information, see AWS Marketplace
Sellers & Tax Collection.

If no taxes are collected, there is no value shown
here. The seller needs to determine whether some
taxes were collected for each invoice, as the seller
is liable for tax collection.

transaction_type_code The type of transaction. Possible values are as
follows:

• AWS – A forward tax transaction
• REFUND – A full or partial refund
• TAXONLYREFUND – A tax-only refund

Refund transactions share the line item ID with
their original forward transactions.

product_id A foreign key to the product.

Can be used to join to the Product data feed on
the product_id field.

product_tax_code A standard code to identify the tax properties for
a product. Sellers choose the properties when
creating or modifying the product.

invoice_date The date the invoice was created.

taxed_customer_account_id A foreign key to the account entity who is taxed.

Can be used to join to the Account data feed on
the account_id field.

taxed_customer_country The ISO 3166 alpha 2 country code of the address
used for tax calculations.

337

http://aws.amazon.com/tax-help/marketplace
http://aws.amazon.com/tax-help/marketplace

AWS Marketplace Seller Guide
Tax item data feed

Column name Description

taxed_customer_state_or_region The state, region, or province used for tax
calculations.

taxed_customer_city The city used for tax calculations.

taxed_customer_postal_code The postal code used for tax calculations.

tax_location_code_taxed_jurisdiction The vertex geocode that is associated with the
taxed location.

tax_type_code The type of tax that is applied to the transaction.
The possible values are None, Sales, and
SellerUse.

jurisdiction_level The jurisdiction level of the address that is used
for tax location. The possible values are State,
County, City, and District.

taxed_jurisdiction The name of the tax jurisdiction.

display_price_taxability_type Whether the price that buyers see is inclusive or
exclusive of taxes. All AWS Marketplace offerings
are exclusive of taxes.

taxable_amount The amount of the transaction that is taxable, at
this jurisdiction level.

nontaxable_amount The amount of the transaction that is nontaxable,
at this jurisdiction level.

tax_jurisdiction_rate The tax rate that is applied, at this jurisdiction
level.

tax_amount The amount of tax that is charged, at this
jurisdiction level.

tax_currency The ISO 4217 alpha 3 currency code for above
amounts.

tax_calculation_reason_code Whether the transaction is taxable, not taxable,
exempt, or zero-rated, organized by the
jurisdiction level.

date_used_for_tax_calculation The date that is used for calculating tax on the
transaction.

customer_exemption_certificate_id The certificate ID of the exemption certificate.

customer_exemption_certificate_id_domain The location where the certificate is stored on
Amazon systems.

customer_exemption_certificate_level The jurisdiction level that supplied the exemption.

customer_exemption_code The code that specifies the exemption; for
example, RESALE.

customer_exemption_domain The Amazon system that is used to capture the
customer exemption information, if available.

338

AWS Marketplace Seller Guide
Tax item data feed

Column name Description

transaction_reference_id An identifier that allows you to cross-reference
data from the following reports:

• Disbursement report (p. 283)
• Monthly billed revenue report (p. 288)
• Sales compensation report (p. 294)
• US sales and use tax report (p. 296)

Note
Beginning August 5, 2021, international Marketplace Facilitator taxes for AWS Marketplace sales
will have entries in the tax item data feed. This means that, beginning August 5, 2021, every
AWS_TAX_SHARE and SELLER_TAX_SHARE record in the billing event data feed is expected to
have a corresponding record in the tax item data feed.

Example of tax item data feed

The following shows an example of the tax item data feed. In the data feed, this information is presented
in a single table. For readability, the data is shown in multiple tables here, and all columns aren't shown.

tax_item_id invoice_id line_item_id customer_bill_id

6p2ni6tu041xagvhbyanbgxl3xameha16txjoav_0001781216640 71000000000000000000 2210000000000000000

6p2ni6tu041xagvhbyanbgxl3xameha16txjoav_0002781216640 53000000000000000000 2210000000000000000

flr4jobxjzww8czdsrq4noue2uxd56j39wxw0k7_0001250816266 76400000000000000000 5720000000000000000

gfkjjobxjzw56jgkrsrqgjtk52uxd56j39wgj567d_0002280336288 76400000000000000000 5724390000000000000

wwk1qpvb8ran3geiw8e3mp6dgs2qj7wpkuwhgk1_0001451431024 99300000000000000000 1230000000000000000

wwk1qpvb8ran3geiw8e3mp6dgs2qj7wpkuwhgk1_0002451431024 99300000000000000000 3120000000000000000

fnohdid8kwgqq9lvii2k30spn3ftgwihbe8h75x_0001229987654 92100000000000000000 6390000000000000000

tax_liable_party transaction_type_codeproduct_id product_tax_code invoice_date

Seller AWS prod-
o4grxfafcxxxx

AWSMP_SOFTWARE_RA2018-12-31T00:00:00Z

Seller AWS prod-
o4grxfafcxxxx

AWSMP_SOFTWARE_RA2018-12-31T00:00:00Z

Seller AWS prod-
t3grxfafcxxxy

AWS_REMOTE_ACCESS_SOFTWARE2018-08-31T00:00:00Z

Seller REFUND prod-
t3grxfafcxxxy

AWS_REMOTE_ACCESS_SOFTWARE2018-08-31T00:00:00Z

Seller AWS prod-
x8faxxfafcxxy

AWS_REMOTE_ACCESS_SOFTWARE2018-08-31T00:00:00Z

339

AWS Marketplace Seller Guide
Tax item data feed

tax_liable_party transaction_type_codeproduct_id product_tax_code invoice_date

Seller TAXONLYREFUND prod-
x8faxxfafcxxy

AWS_REMOTE_ACCESS_SOFTWARE2018-05-31T00:00:00Z

AWS AWS prod-
wghj8xfafrhgj

AWS_REMOTE_ACCESS_SOFTWARE2019-07-31T00:00:00Z

taxed_customer_account_idtaxed_customer_countrytaxed_customer_state_or_regiontaxed_customer_citytaxed_customer_postal_code

VIeGa2t9j3MuxioH9wc8lsndXXCgGCGUreeXriocM5US GA MILTON 48573-4839

VIeGa2t9j3MuxioH9wc8lsndXXCgGCGUreeXriocM5US GA MILTON 48573-4839

7nyo5jwTRoPlyX81vx9ji04eEwTurO1Ff8biQi88W8US NC DURHAM 27517-4834

7nyo5jwTRoPlyX81vx9ji04eEwTurO1Ff8biQi88W8US NC DURHAM 27517-4834

7nyo5jwTRoPlyX81vx9ji04eEwTurO1Ff8biQi88W8US TX NOT APPLICABLE 75844-1235

7nyo5jwTRoPlyX81vx9ji04eEwTurO1Ff8biQi88W8US TX HOUSTON 75844-1235

192a0421313e41f069b52962ed7babf716291b688US CT NEW HAVEN 06002-2948

tax_location_code_taxed_jurisdictiontax_type_codejurisdiction_leveltaxed_jurisdictiondisplay_price_taxability_typetaxable_amountnontaxable_amount

460473664 Sales State GA Exclusive 100 0

66301164 Sales County FULTON Exclusive 0 100

692938178 SellerUse State NC Exclusive 58.1 523.8

692938178 SellerUse State NC Exclusive -58.1 523.8

356794387 Sales State TX Exclusive 1105.14 0

528887443 Sales City HOUSTON Exclusive -36 0

171248162 Sales State CT Exclusive 0 114.55

tax_jurisdication_ratetax_amount tax_currency tax_calculation_reason_codedate_used_for_tax_calculation

0.206 20.6 USD Taxable 2018-10-31T00:00:00Z

0 0 USD NonTaxable 2018-10-31T00:00:00Z

0.1 5.8 USD Taxable 2018-07-31T00:00:00Z

0.1 -5.8 USD Taxable 2018-07-31T00:00:00Z

0.06 66.3 USD Taxable 2018-07-31T00:00:00Z

0.01 -0.36 USD NonTaxable 2018-07-31T00:00:00Z

340

AWS Marketplace Seller Guide
Tax item data feed

tax_jurisdication_ratetax_amount tax_currency tax_calculation_reason_codedate_used_for_tax_calculation

0 0 USD Exempt 2019-06-30T00:00:00Z

341

AWS Marketplace Seller Guide

AWS Marketplace security
Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and
network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS services
in the AWS Cloud. AWS also provides you with services that you can use securely. The effectiveness
of our security is regularly tested and verified by third-party auditors as part of the AWS compliance
programs. To learn about the compliance programs that apply to AWS Marketplace, see AWS Services
in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You're also
responsible for other factors including the sensitivity of your data, your organization’s requirements,
and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using AWS
Marketplace. The following topics show you how to configure AWS Identity and Access Management to
manage access to AWS Marketplace in order to meet your security and compliance objectives. You can
also learn how to use other AWS services that can help you to monitor and secure your AWS Marketplace
resources.

To learn more about security and other policies regarding the products that you offer in AWS
Marketplace, see the following topics:

• AMI security policies (p. 113)

• Container-based product requirements (p. 126)

• SaaS product guidelines (p. 226)

• Requirements for professional services products (p. 258)

Note
To learn about security on AWS Data Exchange for data products, see Security in the AWS Data
Exchange User Guide.
To learn about security for buyers in AWS Marketplace, see Security on AWS Marketplace in the
AWS Marketplace Buyer Guide.

Topics

• Controlling access to AWS Marketplace Management Portal (p. 343)

• Policies and permissions for AWS Marketplace sellers (p. 346)

• AWS managed policies for AWS Marketplace sellers (p. 349)

• AWS Marketplace Commerce Analytics Service account permissions (p. 356)

• AWS Marketplace Product Support Connection account permissions (p. 357)

• Amazon SQS permissions (p. 357)

• AWS Marketplace metering and entitlement API permissions (p. 358)

• Logging AWS Marketplace API calls with AWS CloudTrail (p. 359)

342

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/data-exchange/latest/userguide/security.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-security.html

AWS Marketplace Seller Guide
IAM for AWS Marketplace

Controlling access to AWS Marketplace
Management Portal

AWS Identity and Access Management (IAM) is an AWS service that helps you control access to AWS
resources. If you are an IAM administrator, you control who can be authenticated (signed in) and
authorized (have permissions) to use AWS Marketplace resources. IAM is an AWS service that you can use
with no additional charge.

The recommended way to control who can do what in AWS Marketplace Management Portal is to use
IAM to create users and groups. Then you add the users to the groups, and manage the groups. For
example, if John should be allowed to view your products, create an IAM user for him and add his IAM
user to a group you create for read-only access. You can assign a policy or permissions to the group that
provide read-only permissions. If you have other users that need read-only access, you can add them to
the group you created rather than adding permissions to their user account. If John's role changes and he
no longer needs read-only access, you can remove John's user account from the group.

A policy is a document that defines the permissions that apply to a user, group, or role. In turn, the
permissions determine what users can do in AWS. A policy typically allows access to specific actions,
and can optionally grant that the actions are allowed for specific resources, like Amazon EC2 instances,
Amazon S3 buckets, and so on. Policies can also explicitly deny access. A permission is a statement within
a policy that allows or denies access to a particular resource. You can state any permission like this: "A
has permission to do B to C." For example, Jane (A) has permission to read messages (B) from John's
Amazon Simple Queue Service queue (C). Whenever Jane sends a request to Amazon SQS to use John's
queue, the service checks to see if she has permission. It further checks to see if the request satisfies the
conditions John specified in the permission.

Important
All of the IAM users that you create authenticate by using their credentials. However, they use
the same AWS account. Any change that a user makes can impact the whole account.

AWS Marketplace has permissions defined to control the actions that someone with those permissions
can take in AWS Marketplace Management Portal. There are also policies that AWS Marketplace
created and manage that combine several permissions. For example, the aws-marketplace-
management:ViewMarketing permission gives a user access to the Marketing tab in AWS Marketplace
Management Portal. The AWSMarketplaceSellerProductsFullAccess policy gives the user full
access to products in the AWS Marketplace Management Portal.

The following resources provide more information about getting started and using IAM.

• Creating Your First IAM Admin User and Group

• IAM Best Practices

• Managing IAM Policies

• Attaching a Policy to an IAM Group

• Identities (Users, Groups, and Roles)

• Controlling Access Using Policies

The following provides some high-level guidance for creating users and groups, and logging in as an IAM
user.

Creating users
To allow people in your company to sign in to the AWS Marketplace Management Portal, create an IAM
user for each person who needs access.

343

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#create-managed-policy-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups_manage_attach-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions.html

AWS Marketplace Seller Guide
Creating or using groups

To create IAM users

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users and then choose Create New Users.

3. In the numbered text boxes, enter a name for each user that you want to create.

4. Clear the Generate an access key for each user check box and then choose Create.

To assign a password to each user that you just created

1. In the list of users, choose the name of a new user.

2. Choose the Security Credentials tab and then choose Manage Password.

3. Choose an option for either an auto-generated password or a custom password. Optionally, to
require the user to choose a new password at the next sign-in, select the box for Require user to
create a new password at next sign-in. Choose Apply.

4. Choose Download Credentials to save the user name, password, and account-specific sign-in URL to
a comma-separated values (CSV) file on your computer. Then choose Close.

Note
To sign in with the IAM user name and password that you just created, users must navigate to
your account-specific sign-in URL. This URL is in the credentials file that you just downloaded
and is also available on the IAM console. For more information, see How IAM Users Sign In to
Your AWS Account in the IAM User Guide.

Tip
Create a user name and password for yourself as well, even though you're the AWS account
owner. It's a recommended best practice for everyone to work in the AWS Marketplace
Management Portal as an IAM user, even the account owner. To learn how to create an IAM user
for yourself that has administrative permissions, go to Creating an Administrators Group in the
IAM User Guide.

Creating or using groups
After you create users, create groups, create permissions to access the pages in the AWS Marketplace
Management Portal, add those permissions to the groups, and then add users to the groups.

When you assign permissions to a group, you allow any member of that group to perform specific
actions. When you add a new user to the group, that user automatically gains the permissions that are
assigned to the group. A group can have permissions for more than one action. We recommend using a
managed policy rather than creating your own policy.

To assign a managed policy for AWS Marketplace to a group

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Groups, and then choose the group you want to attach a policy to.

3. On the summary page for the group, under the Permissions tab, choose Attach Policy.

4. On the Attach Policy page, next to Filter: enter awsmarketplace.

5. Choose the policy or policies you want to attach, and then choose Attach Policy.

To create a policy with AWS Marketplace Management Portal permissions

1. Open the IAM console at https://console.aws.amazon.com/iam/.

344

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Marketplace Seller Guide
Signing in as an IAM user

2. In the navigation pane, choose Policies and then choose Create Policy.
3. Next to Policy Generator, choose Select.
4. On the Edit Permissions page, do the following:

a. For Effect, choose Allow.
b. For AWS Service, choose AWS Marketplace Management Portal.
c. For Actions, select the permission or permissions to allow.
d. Choose Add Statement.
e. Choose Next Step.

5. On the Review Policy page, do the following:

a. For Policy Name, enter a name for this policy. Take note of the policy name because you need it
for a later step.

b. (Optional) For Description, enter a description for this policy.
c. Choose Create Policy.

To create an IAM group with appropriate permissions and add users to the group

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Groups and then choose Create New Group.
3. For Group Name:, type a name for the group. Then choose Next Step.
4. On the Attach Policy page, do the following:

a. For Filter:, choose Customer Managed Policies.
b. Select the check box next to the name of the policy that you want to attach to this group. This is

typically the policy that you just created.
c. Choose Next Step.

5. Choose Create Group.
6. Find your new group in the Groups list and then select the check box next to it. Choose Group

Actions and then Add Users to Group.
7. Select the check box next to each user to add to the group and then choose Add Users.

Signing in as an IAM user
After you have created users in IAM, users can sign in with their own user names and passwords. To do
so, they need to use the unique URL that is associated with your AWS account. You can get and distribute
the sign-in URL to your users.

To get your account's unique sign-in URL

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Dashboard.
3. Near the top of the content pane, find IAM users sign-in link: and take note of the sign-in link,

which has a format like this:

 https://AWS_account_ID.signin.aws.amazon.com/console/

Note
If you want the URL for your sign-in page to contain your company name (or other friendly
identifier) instead of your AWS account ID, you can create an alias for your account by

345

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Marketplace Seller Guide
Policies and permissions for AWS Marketplace sellers

choosing Customize. For more information, see Your AWS Account ID and Its Alias in the
IAM User Guide.

4. Distribute this URL to the people at your company who can work with the AWS Marketplace
Management Portal, along with the user name and password that you created for each. Instruct
them to use your account's unique sign-in URL to sign in before they access the AWS Marketplace
Management Portal.

Policies and permissions for AWS Marketplace
sellers

AWS Marketplace has three managed policies you can use with the AWS Marketplace Management
Portal. In addition, you can use individual permissions to create your own AWS Identity and Access
Management (IAM) policy.

Note
To learn about policies and permissions on AWS Data Exchange for data products, see Identity
and Access Management in AWS Data Exchange in the AWS Data Exchange User Guide.
To learn about policies and permissions for AWS Marketplace buyers, see Controlling access to
AWS Marketplace subscriptions in the AWS Marketplace Buyer Guide.

Policies for AWS Marketplace sellers
You can use the following managed policies to provide IAM users with controlled access to the AWS
Marketplace Management Portal:

AWSMarketplaceSellerFullAccess

Allows full access to all of the pages in the AWS Marketplace Management Portal and other AWS
services, such as Amazon Machine Image (AMI) management.

AWSMarketplaceSellerProductsFullAccess

Allows full access to the Products pages in the AWS Marketplace Management Portal.
AWSMarketplaceSellerProductsReadOnly

Allows read-only access to the Products pages in the AWS Marketplace Management Portal.

Important
AWS Marketplace buyers can use managed policies to manage the subscriptions they
purchase. The managed policies you use with AWS Marketplace Management Portal start with
AWSMarketplaceSeller. When you search for policies in IAM, make sure to search for policies
that start with AWSMarketplaceSeller.

AWS Marketplace also provides specialized managed policies for specific scenarios. For a full list of AWS
managed policies for AWS Marketplace sellers, as well as descriptions of what permissions they provide,
see AWS managed policies for AWS Marketplace sellers (p. 349).

Permissions for AWS Marketplace sellers
You can use the following permissions in IAM policies for the AWS Marketplace Management Portal:

aws-marketplace-management:viewMarketing

Allows access to the Marketing page in the AWS Marketplace Management Portal.

346

https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/auth-access.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/auth-access.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-iam-users-groups-policies.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-iam-users-groups-policies.html
https://aws.amazon.com/marketplace/management/products/
https://aws.amazon.com/marketplace/management/products/
https://aws.amazon.com/marketplace/management/marketing/

AWS Marketplace Seller Guide
Permissions

aws-marketplace-management:viewSupport

Allows access to the Customer Support Eligibility page in the AWS Marketplace Management Portal.

aws-marketplace-management:viewReports

Allows access to the Reports page in the AWS Marketplace Management Portal.

aws-marketplace-management:uploadFiles

Allows access to the File Upload page in the AWS Marketplace Management Portal.

aws-marketplace-management:viewSettings

Allows access to the Settings page in the AWS Marketplace Management Portal.

aws-marketplace:ListEntities

Allows access to list objects in AWS Marketplace Management Portal. Required to access the Offers
and Partners pages in the AWS Marketplace Management Portal.

aws-marketplace:DescribeEntity

Allows access to see details of objects in AWS Marketplace Management Portal. Required to access
the Offers, Partners, and Agreements pages in the AWS Marketplace Management Portal.

aws-marketplace:StartChangeSet

Allows access to create product changes in AWS Marketplace Management Portal. Required to make
changes in the Offers, Partners, and Agreements (p. 52) pages in the AWS Marketplace Management
Portal.

aws-marketplace:SearchAgreements

Allows viewing the high-level list of agreements on the Agreements (p. 52) page, as well as
opportunities between ISVs and consulting partners on the Partners (p. 49) page.

aws-marketplace:DescribeAgreement

Allows viewing of high-level agreement details on the Agreements page, as well as opportunities
between ISVs and consulting partners on the Partners page.

aws-marketplace:GetAgreementTerms

Allows viewing all agreement term details on the Agreements page, as well as opportunities
between ISVs and consulting partners on the Partners page.

Note
To enable a user to access the Manage Products page, you must
use either the AWSMarketplaceSellerProductsFullAccess or
AWSMarketplaceSellerProductsReadOnly managed permissions.

You can combine the preceding permissions into a single IAM policy to grant the permissions that you
want. See the following examples.

Example 1: Permissions to access the Marketing and File Upload
pages.
To grant permissions to both the Marketing page and the File Upload page, use a policy similar to the
following example.

{

347

https://aws.amazon.com/marketplace/management/support/
https://aws.amazon.com/marketplace/management/reports/
https://aws.amazon.com/marketplace/management/product-load/
https://aws.amazon.com/marketplace/management/seller-settings/account
https://aws.amazon.com/marketplace/management/offers
https://aws.amazon.com/marketplace/management/partners
https://aws.amazon.com/marketplace/management/offers
https://aws.amazon.com/marketplace/management/partners
https://aws.amazon.com/marketplace/management/agreements
https://aws.amazon.com/marketplace/management/offers
https://aws.amazon.com/marketplace/management/partners
https://aws.amazon.com/marketplace/management/products/

AWS Marketplace Seller Guide
Permissions

 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "aws-marketplace-management:viewMarketing",
 "aws-marketplace-management:uploadFiles"
],
 "Resource": ["*"]
 }]
}

Example 2: Permissions to create upgrades and renewals for
private offers
To grant permissions to view and use the Agreements page to create upgrades and renewals for private
offers, use a policy similar to the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aws-marketplace:SearchAgreements",
 "aws-marketplace:DescribeAgreement",
 "aws-marketplace:GetAgreementTerms",
 "aws-marketplace:DescribeEntity",
 "aws-marketplace:StartChangeSet"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws-marketplace:PartyType": "Proposer"
 },
 "ForAllValues:StringEquals": {
 "aws-marketplace:AgreementType": [
 "PurchaseAgreement"
]
 }
 }
 }
]
}

Example 3: Permissions to access the Offers page and create
new private offers
To grant permissions to view and use the Offers page to view existing and create new private offers, use
a policy similar to the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aws-marketplace:ListEntities",
 "aws-marketplace:DescribeEntity",
 "aws-marketplace:StartChangeSet"
],
 "Effect": "Allow",

348

AWS Marketplace Seller Guide
AWS managed policies

 "Resource": "*",
 }
]
}

Using IAM groups
Alternatively, you can create separate IAM groups for granting access to each individual page in the AWS
Marketplace Management Portal. Users can belong to more than one group. So, if a user needs access to
more than one page, you can add the user to all of the appropriate groups. For example, create one IAM
group and grant that group permission to access the Marketing page, create another group and grant
that group permission to access the File Upload page, and so on. If a user needs permission to access
both the Marketing page and the File Upload page, add the user to both groups.

For more information about IAM users and groups, see Identities (Users, Groups, and Roles) in the IAM
User Guide.

AWS managed policies for AWS Marketplace sellers
To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to write
policies yourself. It takes time and expertise to create IAM customer managed policies that provide your
team with only the permissions they need. To get started quickly, you can use our AWS managed policies.
These policies cover common use cases and are available in your AWS account. For more information
about AWS managed policies, see AWS managed policies in the IAM User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in AWS
managed policies. Services occasionally add additional permissions to an AWS managed policy to
support new features. This type of update affects all identities (users, groups, and roles) where the policy
is attached. Services are most likely to update an AWS managed policy when a new feature is launched
or when new operations become available. Services do not remove permissions from an AWS managed
policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For example,
the ViewOnlyAccess AWS managed policy provides read-only access to many AWS services and
resources. When a service launches a new feature, AWS adds read-only permissions for new operations
and resources. For a list and descriptions of job function policies, see AWS managed policies for job
functions in the IAM User Guide.

This section lists each of the policies used to manage seller access to AWS Marketplace. For information
about buyer policies, see AWS managed policies for AWS Marketplace buyers in the AWS Marketplace
Buyer Guide.

Topics

• AWS managed policy: AWSMarketplaceAmiIngestion (p. 350)

• AWS managed policy: AWSMarketplaceFullAccess (p. 350)

• AWS managed policy: AWSMarketplaceGetEntitlements (p. 352)

• AWS managed policy: AWSMarketplaceMeteringFullAccess (p. 352)

• AWS managed policy: AWSMarketplaceMeteringRegisterUsage (p. 353)

• AWS managed policy: AWSMarketplaceSellerFullAccess (p. 353)

• AWS managed policy: AWSMarketplaceSellerProductsFullAccess (p. 354)

• AWS managed policy: AWSMarketplaceSellerProductsReadOnly (p. 355)

• AWS Marketplace updates to AWS managed policies (p. 356)

349

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-security-iam-awsmanpol.html

AWS Marketplace Seller Guide
AWSMarketplaceAmiIngestion

AWS managed policy: AWSMarketplaceAmiIngestion
You can create a service role with this policy that can then be used by AWS Marketplace to perform
actions on your behalf. For more information about using AWSMarketplaceAmiIngestion, see Giving AWS
Marketplace access to your AMI (p. 71).

This policy is used to grant contributor permissions that allow AWS Marketplace to copy your Amazon
Machine Images (AMIs) in order to list them on AWS Marketplace.

Permissions details

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:ModifySnapshotAttribute"
],
 "Effect": "Allow",
 "Resource": "arn:aws:ec2:us-east-1::snapshot/snap-*"
 },
 {
 "Action": [
 "ec2:DescribeImageAttribute",
 "ec2:DescribeImages",
 "ec2:DescribeSnapshotAttribute",
 "ec2:ModifyImageAttribute"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

AWS managed policy: AWSMarketplaceFullAccess
You can attach the AWSMarketplaceFullAccess policy to your IAM identities.

This policy grants administrative permissions that allow full access to AWS Marketplace and related
services, both as a seller and a buyer. These permissions include the ability to subscribe and unsubscribe
to AWS Marketplace software, manage AWS Marketplace software instances from the AWS Marketplace,
creating and managing private marketplace in your account, as well as access to Amazon EC2, AWS
CloudFormation, and Amazon EC2 Systems Manager.

Permissions details

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "aws-marketplace:*",
 "cloudformation:CreateStack",
 "cloudformation:DescribeStackResource",
 "cloudformation:DescribeStackResources",
 "cloudformation:DescribeStacks",
 "cloudformation:List*",
 "ec2:AuthorizeSecurityGroupEgress",

350

AWS Marketplace Seller Guide
AWSMarketplaceFullAccess

 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateSecurityGroup",
 "ec2:CreateTags",
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeAddresses",
 "ec2:DeleteSecurityGroup",
 "ec2:DescribeImages",
 "ec2:DescribeInstances",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeTags",
 "ec2:DescribeVpcs",
 "ec2:RunInstances",
 "ec2:StartInstances",
 "ec2:StopInstances",
 "ec2:TerminateInstances"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CopyImage",
 "ec2:DeregisterImage",
 "ec2:DescribeSnapshots",
 "ec2:DeleteSnapshot",
 "ec2:CreateImage",
 "ec2:DescribeInstanceStatus",
 "ssm:GetAutomationExecution",
 "ssm:UpdateDocumentDefaultVersion",
 "ssm:CreateDocument",
 "ssm:StartAutomationExecution",
 "ssm:ListDocuments",
 "ssm:UpdateDocument",
 "ssm:DescribeDocument",
 "sns:ListTopics",
 "sns:GetTopicAttributes",
 "sns:CreateTopic",
 "iam:GetRole",
 "iam:GetInstanceProfile",
 "iam:ListRoles",
 "iam:ListInstanceProfiles"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::*image-build*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish",
 "sns:setTopicAttributes"
],
 "Resource": "arn:aws:sns:*:*:*image-build*"
 },
 {
 "Effect": "Allow",

351

AWS Marketplace Seller Guide
AWSMarketplaceGetEntitlements

 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": [
 "ec2.amazonaws.com",
 "ssm.amazonaws.com"
]
 }
 }
 }
]
}

AWS managed policy:
AWSMarketplaceGetEntitlements
You can attach the AWSMarketplaceGetEntitlements policy to your IAM identities.

This policy grants read-only permissions that allow Software-as-a-Service (SaaS)product sellers to check
whether a customer has subscribed to their AWS Marketplace SaaS product.

Permissions details

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aws-marketplace:GetEntitlements"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

AWS managed policy:
AWSMarketplaceMeteringFullAccess
You can attach the AWSMarketplaceMeteringFullAccess policy to your IAM identities.

This policy grants contributor permissions that allow reporting metered usage that corresponds to AMI
and container products with flexible consumption pricing on AWS Marketplace.

Permissions details

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aws-marketplace:MeterUsage"
],

352

AWS Marketplace Seller Guide
AWSMarketplaceMeteringRegisterUsage

 "Effect": "Allow",
 "Resource": "*"
 }
]
}

AWS managed policy:
AWSMarketplaceMeteringRegisterUsage
You can attach the AWSMarketplaceMeteringRegisterUsage policy to your IAM identities.

This policy grants contributor permissions that allow reporting metered usage that corresponds to
container products with hourly pricing on AWS Marketplace.

Permissions details

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aws-marketplace:RegisterUsage"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

AWS managed policy:
AWSMarketplaceSellerFullAccess
You can attach the AWSMarketplaceSellerFullAccess policy to your IAM identities.

This policy grants administrative permissions that allow full access to all seller operations on AWS
Marketplace, including AWS Marketplace Management Portal, as well as managing the Amazon EC2
Amazon Machine Images (AMI) used in AMI-based products.

Permissions details

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "aws-marketplace-management:uploadFiles",
 "aws-marketplace-management:viewMarketing",
 "aws-marketplace-management:viewReports",
 "aws-marketplace-management:viewSupport",
 "aws-marketplace-management:viewSettings",
 "aws-marketplace:ListChangeSets",
 "aws-marketplace:DescribeChangeSet",
 "aws-marketplace:StartChangeSet",
 "aws-marketplace:CancelChangeSet",
 "aws-marketplace:ListEntities",
 "aws-marketplace:DescribeEntity",

353

AWS Marketplace Seller Guide
AWSMarketplaceSellerProductsFullAccess

 "aws-marketplace:ListTasks",
 "aws-marketplace:DescribeTask",
 "aws-marketplace:UpdateTask",
 "aws-marketplace:CompleteTask",
 "ec2:DescribeImages",
 "ec2:DescribeSnapshots",
 "ec2:ModifyImageAttribute",
 "ec2:ModifySnapshotAttribute"
],
 "Resource": "*"
 },
 {
 "Action": [
 "aws-marketplace:SearchAgreements",
 "aws-marketplace:DescribeAgreement",
 "aws-marketplace:GetAgreementTerms"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws-marketplace:PartyType": "Proposer"
 },
 "ForAllValues:StringEquals": {
 "aws-marketplace:AgreementType": [
 "PurchaseAgreement"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRole"
],
 "Resource": "arn:aws:iam::*:role/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "assets.marketplace.amazonaws.com"
 }
 }
 }

AWS managed policy:
AWSMarketplaceSellerProductsFullAccess
You can attach the AWSMarketplaceSellerProductsFullAccess policy to your IAM identities.

This policy grants contributor permissions that allow full access to manage products and to the AWS
Marketplace Management Portal, as well as managing the Amazon EC2 Amazon Machine Images (AMI)
used in AMI-based products.

Permissions details

{

354

AWS Marketplace Seller Guide
AWSMarketplaceSellerProductsReadOnly

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "aws-marketplace:ListChangeSets",
 "aws-marketplace:DescribeChangeSet",
 "aws-marketplace:StartChangeSet",
 "aws-marketplace:CancelChangeSet",
 "aws-marketplace:ListEntities",
 "aws-marketplace:DescribeEntity",
 "aws-marketplace:ListTasks",
 "aws-marketplace:DescribeTask",
 "aws-marketplace:UpdateTask",
 "aws-marketplace:CompleteTask",
 "ec2:DescribeImages",
 "ec2:DescribeSnapshots",
 "ec2:ModifyImageAttribute",
 "ec2:ModifySnapshotAttribute"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRole"
],
 "Resource": "arn:aws:iam::*:role/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "assets.marketplace.amazonaws.com"
 }
 }
 }

AWS managed policy:
AWSMarketplaceSellerProductsReadOnly
You can attach the AWSMarketplaceSellerProductsReadOnly policy to your IAM identities.

This policy grants read-only permissions that allow access to view products on the AWS Marketplace
Management Portal, as well as to view the Amazon EC2 Amazon Machine Images (AMI) used in AMI-
based products.

Permissions details

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "aws-marketplace:ListChangeSets",
 "aws-marketplace:DescribeChangeSet",

355

AWS Marketplace Seller Guide
Policy updates

 "aws-marketplace:ListEntities",
 "aws-marketplace:DescribeEntity",
 "aws-marketplace:ListTasks",
 "aws-marketplace:DescribeTask",
 "ec2:DescribeImages",
 "ec2:DescribeSnapshots"
],
 "Resource": "*"
 }
]
}

AWS Marketplace updates to AWS managed policies
View details about updates to AWS managed policies for AWS Marketplace since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on
the AWS Marketplace Document history (p. 364) page.

Change Description Date

AWSMarketplaceSellerFullAccess (p. 353)
and
AWSMarketplaceSellerProductsFullAccess (p. 354)
– Update to existing policies

AWS Marketplace updated
the policies so that the
iam:PassedToService
condition is only applied to
iam:PassRole.

November 22, 2021

AWSMarketplaceFullAccess (p. 350)
– Update to an existing policy

AWS Marketplace
removed a duplicate
ec2:DescribeAccountAttributes
permission from
AWSMarketplaceFullAccess
policy.

July 20, 2021

AWS Marketplace started
tracking changes

AWS Marketplace started
tracking changes for its AWS
managed policies.

April 20, 2021

AWS Marketplace Commerce Analytics Service
account permissions

You can use the following IAM permission policy to allow an IAM user to access the AWS Marketplace
Commerce Analytics Service.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "marketplacecommerceanalytics:GenerateDataSet",
 "Resource": "*"
 }
]

356

AWS Marketplace Seller Guide
AWS Marketplace Product Support

Connection account permissions

}

For more information about this feature, see AWS Marketplace Commerce Analytics Service (p. 14).

AWS Marketplace Product Support Connection
account permissions

The AWS Marketplace product support connection feature makes it possible for customers to provide
contact information in the AWS Marketplace website so that you can offer them support for your
products. AWS Marketplace shares the data that the customer provides to you through an API. Customers
can choose to add contact details during or after they purchase a product that you enrolled in AWS
Marketplace product support connection. You use the API to retrieve the customer's contact data, along
with relevant product subscription details.

If haven't enrolled in the the section called “AWS Marketplace Commerce Analytics Service” (p. 14), you
must configure your account and AWS services to use it. Do the following:

1. (Optional) Create an IAM user.
2. Create a destination Amazon Simple Storage Service (Amazon S3) bucket.
3. Create an Amazon Simple Notification Service (Amazon SNS) topic for response notifications.
4. Enroll in the AWS Marketplace Commerce Analytics Service.
5. (Recommended) Make a test call to the service using the AWS Command Line Interface (AWS CLI).

For instructions, see the Onboarding guide (p. 15).

Note
The IAM permissions required for product support connection are different from those required
for commerce analytics service. Product support connection requires that the IAM user can call
the marketplacecommerceanalytics:StartSupportDataExport action.

You can allow an IAM user to call the StartSupportDataExport action by using an IAM permission
policy.

Example

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "marketplacecommerceanalytics:StartSupportDataExport",
 "Resource": "*"
 }
]
}

For more information about this feature, see Product Support Connection (p. 25).

Amazon SQS permissions
As part of the SaaS product publication process, AWS Marketplace provides you an Amazon SNS topic
you can use to receive notifications if a customer's subscription or entitlement status changes. You

357

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#create-bucket-intro
https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-topic.html
https://aws.amazon.com/cli/

AWS Marketplace Seller Guide
AWS Marketplace metering and

entitlement API permissions

can configure one or more Amazon SQS queues to the topic so that the queues can take action on the
notification. For example, if a customer adds more storage to the subscription they have to your SaaS
product, the Amazon SNS topic can send a message to an Amazon SQS queue that starts a process to
automatically increase the storage capacity available to that customer.

When you subscribe the Amazon Simple Queue Service (Amazon SQS) queue to the provided Amazon
SNS topic, permissions are automatically added to allow the topic to publish messages to the queue.
However, you still need an IAM policy for granting the AWS Marketplace Metering and Entitlement
Service API user access to the queue. This can be applied to the same user if the services run with the
same credentials. Create a policy with the following contents and attach it to your IAM user or role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sqs:ReceiveMessage", "sqs:DeleteMessage", "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl"
],
 "Effect": "Allow",
 "Resource": "arn:aws:sqs:REGION_HERE:XXXXXXXXXXXX:NAME_HERE"
 }
]
}

Note
The Resource field is the Amazon Resource Name (ARN) of your Amazon SQS queue.

For more information on message notification and queuing for your SaaS products, see the section
called “Subscribing an SQS queue to the SNS topic” (p. 236) and the section called “Accessing the AWS
Marketplace Metering and Entitlement Service APIs” (p. 236).

AWS Marketplace metering and entitlement API
permissions

Software as a service (SaaS) products, AMI products, and container products can use the AWS
Marketplace Metering and Entitlement Service API. Each type requires different IAM permissions. For
your product or products, you meter for all usage, and customers are billed by AWS based on the
metering records that you provide. To enable the integration required to provide AWS Marketplace your
metering records, the service account that the integration is running under needs a constrained IAM
policy to enable access. Attach the policy for the product type you are sending metering information for
to the IAM user or role that you're using for the integration.

IAM policy for SaaS products
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aws-marketplace:ResolveCustomer",
 "aws-marketplace:BatchMeterUsage",
 "aws-marketplace:GetEntitlements"
],
 "Effect": "Allow",
 "Resource": "*"

358

AWS Marketplace Seller Guide
IAM policy for AMI products

 }
]
}

Note
The first permission is required for all SaaS integrations. The second and third permissions are
needed for the AWS Marketplace metering service API and the AWS Marketplace entitlement
service API, respectively.

IAM policy for AMI products
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 aws-marketplace:MeterUsage
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

IAM policy for container products
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aws-marketplace:RegisterUsage"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

For more information about creating IAM users, see Creating an IAM User in Your AWS Account in the
IAM User Guide. For more information about creating and assigning policies, see Changing Permissions
for an IAM User.

This policy grants access to the APIs for the IAM role or user that you attach the policy to. For more
information on how to enable role assumption by another account for these API calls, see How to Best
Architect Your AWS Marketplace SaaS Subscription Across Multiple AWS Accounts at the AWS Partner
Network (APN) Blog.

Logging AWS Marketplace API calls with AWS
CloudTrail

AWS Marketplace is integrated with CloudTrail, a service that provides a record of actions taken by a
user, role, or an AWS service in AWS Marketplace. CloudTrail captures API calls for AWS Marketplace as
events. The calls captured include calls from the AWS Marketplace console and code calls to the AWS
Marketplace API operations.

359

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
http://aws.amazon.com/blogs/apn/how-to-best-architect-your-aws-marketplace-saas-subscription-across-multiple-aws-accounts/
http://aws.amazon.com/blogs/apn/how-to-best-architect-your-aws-marketplace-saas-subscription-across-multiple-aws-accounts/

AWS Marketplace Seller Guide
AWS Marketplace log file entry examples

CloudTrail is enabled on your AWS account when you create the account. When supported event activity
occurs in AWS Marketplace, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your account.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or a federated user.
• Whether the request was made by another AWS service.

AWS Marketplace supports logging the BatchMeterUsage operation as events in CloudTrail log files.

AWS Marketplace log file entry examples

Example: BatchMeterUsage
The following example shows a CloudTrail log entry that demonstrates the BatchMeterUsage action
from the AWS Marketplace Metering Service.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2018-04-19T16:32:51Z",
 "eventSource": "metering-marketplace.amazonaws.com",
 "eventName": "BatchMeterUsage",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.0.2/24",
 "userAgent": "Coral/Netty14",
 "requestParameters": {
 "usageRecords": [
 {
 "dimension": "Dimension1",
 "timestamp": "Apr 19, 2018 4:32:50 PM",
 "customerIdentifier": "customer1",
 "quantity": 1
 }
],
 "productCode": "EXAMPLE_proCode"
 },
 "responseElements": {
 "results": [
 {
 "usageRecord": {
 "dimension": "Dimension1",
 "timestamp": "Apr 19, 2018 4:32:50 PM",
 "customerIdentifier": "customer1",
 "quantity": 1
 },
 "meteringRecordId": "bEXAMPLE-98f0-4e90-8bd2-bf0EXAMPLE1e",
 "status": "Success"
 }

360

AWS Marketplace Seller Guide
AWS Marketplace log file entry examples

],
 "unprocessedRecords": []
 },
 "requestID": "dEXAMPLE-251d-11e7-8d11-1f3EXAMPLE8b",
 "eventID": "cEXAMPLE-e6c2-465d-b47f-150EXAMPLE97",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
 }

Example: RegisterUsage for containers
The following example shows a CloudTrail log entry that demonstrates the RegisterUsage action from
the AWS Marketplace Metering Service.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EX_PRINCIPAL_ID:botocore-session-1111111111",
 "arn": "arn:aws:sts::123456789012:assumed-role/Alice/botocore-session-1111111111",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/Alice",
 "accountId": "123456789012",
 "userName": "Alice"
 },
 "webIdFederationData": {
 "federatedProvider": "arn:aws:iam::123456789012:oidc-provider/oidc.eks.us-
east-1.amazonaws.com/id/EXAMPLEFA1C58F08CDB049167EXAMPLE",
 "attributes": {}
 },
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-07-23T02:19:34Z"
 }
 }
 },
 "eventTime": "2020-07-23T02:19:46Z",
 "eventSource": "metering-marketplace.amazonaws.com",
 "eventName": "RegisterUsage",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "1.2.3.4",
 "userAgent": "aws-cli/1.18.103 Python/3.8.2 Linux/4.14.181-142.260.amzn2.x86_64
 botocore/1.17.26",
 "requestParameters": {
 "productCode": "EXAMPLE_proCode",
 "publicKeyVersion": 1
 },
 "responseElements": {
 "signature": "eyJhbGciOiJQUzI1Ni..."
 },
 "requestID": "dEXAMPLE-251d-11e7-8d11-1f3EXAMPLE8b",
 "eventID": "cEXAMPLE-e6c2-465d-b47f-150EXAMPLE97",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

361

AWS Marketplace Seller Guide
AWS Marketplace log file entry examples

Example: MeterUsage for containers on Amazon EKS
The following example shows a CloudTrail log entry that demonstrates the MeterUsage action from the
AWS Marketplace Metering Service for containers on Amazon EKS.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EX_PRINCIPAL_ID:botocore-session-1111111111",
 "arn": "arn:aws:sts::123456789012:assumed-role/Alice/botocore-session-1111111111",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/Alice",
 "accountId": "123456789012",
 "userName": "Alice"
 },
 "webIdFederationData": {
 "federatedProvider": "arn:aws:iam::123456789012:oidc-provider/oidc.eks.us-
east-1.amazonaws.com/id/EXAMPLEFA1C58F08CDB049167EXAMPLE",
 "attributes": {}
 },
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-07-23T01:03:26Z"
 }
 }
 },
 "eventTime": "2020-07-23T01:38:13Z",
 "eventSource": "metering-marketplace.amazonaws.com",
 "eventName": "MeterUsage",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "1.2.3.4",
 "userAgent": "aws-cli/1.18.103 Python/3.8.2 Linux/4.14.181-142.260.amzn2.x86_64
 botocore/1.17.26",
 "requestParameters": {
 "timestamp": "Jul 23, 2020 1:35:44 AM",
 "usageQuantity": 1,
 "usageDimension": "Dimension1",
 "productCode": "EXAMPLE_proCode"
 },
 "responseElements": {
 "meteringRecordId": "bEXAMPLE-98f0-4e90-8bd2-bf0EXAMPLE1e"
 },
 "requestID": "dEXAMPLE-251d-11e7-8d11-1f3EXAMPLE8b",
 "eventID": "cEXAMPLE-e6c2-465d-b47f-150EXAMPLE97",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: MeterUsage on AMIs
The following example shows a CloudTrail log entry that demonstrates the MeterUsage action from the
AWS Marketplace Metering Service for AMIs.

{
 "eventVersion": "1.05",
 "userIdentity": {

362

AWS Marketplace Seller Guide
Related Topics

 "type": "AssumedRole",
 "principalId": "EX_PRINCIPAL_ID:i-exampled859aa775c",
 "arn": "arn:aws:sts::123456789012:assumed-role/Alice/i-exampled859aa775c",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/Alice",
 "accountId": "123456789012",
 "userName": "Alice"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-07-10T23:05:20Z"
 },
 "ec2RoleDelivery": "1.0"
 }
 },
 "eventTime": "2020-07-10T23:06:42Z",
 "eventSource": "metering-marketplace.amazonaws.com",
 "eventName": "MeterUsage",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "1.2.3.4",
 "userAgent": "aws-cli/1.16.102 Python/2.7.16 Linux/4.14.133-113.112.amzn2.x86_64
 botocore/1.12.92",
 "requestParameters": {
 "productCode": "EXAMPLE_proCode",
 "timestamp": "Jul 10, 2020 11:06:41 PM",
 "usageDimension": "Dimension1",
 "usageQuantity": 1,
 "dryRun": false
 },
 "responseElements": {
 "meteringRecordId": "bEXAMPLE-98f0-4e90-8bd2-bf0EXAMPLE1e"
 },
 "requestID": "dEXAMPLE-251d-11e7-8d11-1f3EXAMPLE8b",
 "eventID": "cEXAMPLE-e6c2-465d-b47f-150EXAMPLE97",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Related Topics
For more information, see the following topics in the AWS CloudTrail User Guide:

• Overview for Creating a Trail
• AWS Service Integrations with CloudTrail Logs
• Configuring Amazon SNS Notifications for CloudTrail
• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple

Accounts
• CloudTrail userIdentity Element.

363

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS Marketplace Seller Guide

Document history
The following table describes the documentation for this release of the AWS Marketplace Seller Guide.

For notification about updates to this documentation, you can subscribe to the RSS feed.

update-history-change update-history-description update-history-date

Added a video to Professional
services products

Updated the Professional
services products landing page
with a video containing details
on how to manage service
products

February 24, 2022

New topic about deploying
a serverless SaaS integration
solution

New information added for
integrating serverless SaaS
deployment, including a link to
AWS Quick Start for a reference
on deployment steps.

February 15, 2022

Minimal updates to Container-
based requirements and AMI
sections

Minimal updates to policies in
Container-based requirements
and removed incorrect
information for AMI pricing
contracts

February 14, 2022

Container versioning update Documentation-only update to
clarify how to push container
images and other artifacts to
repositories.

February 10, 2022

Update to ResolveCustomer
code example for SaaS products

The ResolveCustomer code
example for SaaS products
has been updated to include
CustomerAWSAccountID.

February 3, 2022

Added documentation for
integrating AWS License
Manager with AWS Marketplace
for Containers Anywhere
products

Documentation-only update
to add detailed guidance on
adding contract-pricing to
your AWS Marketplace for
Containers Anywhere products
by integrating with License
Manager.

February 1, 2022

SaaS SNS notifications update Documentation-only update
to clarify SaaS notification
messages.

January 25, 2022

Ability for sellers to transact
with EMEA-based buyers
through Amazon Web Services
EMEA SARL

Eligible AWS Marketplace sellers
can now transact with customers
whose AWS accounts are based
in countries and territories in
Europe, the Middle East, and
Africa (EMEA) through Amazon
Web Services EMEA SARL.

January 7, 2022

364

https://docs.aws.amazon.com/marketplace/latest/userguide/proserv-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/proserv-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-getting-started.html
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-getting-started.html
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-getting-started.html
https://aws.amazon.com/quickstart/architecture/aws-marketplace-saas/
https://docs.aws.amazon.com/marketplace/latest/userguide/ami-contracts.html#ami-contract-ends
https://docs.aws.amazon.com/marketplace/latest/userguide/ami-contracts.html#ami-contract-ends
https://docs.aws.amazon.com/marketplace/latest/userguide/ami-contracts.html#ami-contract-ends
https://docs.aws.amazon.com/marketplace/latest/userguide/container-product-getting-started.html#container-add-version
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-code-examples.html
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-code-examples.html
https://docs.aws.amazon.com/marketplace/latest/userguide/container-anywhere-license-manager-integration.html
https://docs.aws.amazon.com/marketplace/latest/userguide/container-anywhere-license-manager-integration.html
https://docs.aws.amazon.com/marketplace/latest/userguide/container-anywhere-license-manager-integration.html
https://docs.aws.amazon.com/marketplace/latest/userguide/container-anywhere-license-manager-integration.html
https://docs.aws.amazon.com/marketplace/latest/userguide/container-anywhere-license-manager-integration.html
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-notification.html
https://docs.aws.amazon.com/marketplace/latest/userguide/seller-registration-process.html
https://docs.aws.amazon.com/marketplace/latest/userguide/seller-registration-process.html
https://docs.aws.amazon.com/marketplace/latest/userguide/seller-registration-process.html
https://docs.aws.amazon.com/marketplace/latest/userguide/seller-registration-process.html

AWS Marketplace Seller Guide

Added documentation for
creating delivery options for
container-based products with a
Helm chart delivery method

Sellers can now provide delivery
options with a Helm chart
delivery method. Buyers can use
these delivery options to launch
a container-based application
by installing a seller-provided
Helm chart in their launch
environment. When providing
a Helm chart delivery method,
sellers can enable QuickLaunch
for buyers. QuickLaunch is a
feature that buyers can use to
use AWS CloudFormation to
quickly create a new Amazon
EKS cluster and launch a
container-based application on
it.

November 29, 2021

Update to existing policies Security policies for AWS
Marketplace sellers have been
updated.

November 22, 2021

Contract pricing for AMI and
Container-based products

Independent software vendors
(ISVs) can now list a new AMI-
based product or a Container-
based product and offer upfront
contract pricing for buyers.

November 17, 2021

Vendor metered tagging Documentation-only update
for vendor metered tagging,
including code examples.

November 11, 2021

Amazon Simple Notification
Service for AMI or Container
products

Independent software vendors
(ISVs) can receive notifications
when customers subscribe to
or unsubscribe from AMI or
Container products through the
Amazon Simple Notification
Service.

November 10, 2021

New seller permissions AWS Marketplace added new
permissions to access the Offers
and Partners tabs in the AWS
Marketplace Management
Portal.

November 9, 2021

Ability to deploy endpoints
configured for Asynchronous
Inference for machine learning
products

For machine learning software
that expects a higher payload
inference than the maximum, or
requires processing times that
exceed the maximum processing
time per invocation, buyers have
the ability to deploy endpoints
configured for Amazon
SageMaker Asynchronous
Inference.

November 8, 2021

365

https://docs.aws.amazon.com/marketplace/latest/userguide/container-product-getting-started.html#container-add-version
https://docs.aws.amazon.com/marketplace/latest/userguide/container-product-getting-started.html#container-add-version
https://docs.aws.amazon.com/marketplace/latest/userguide/container-product-getting-started.html#container-add-version
https://docs.aws.amazon.com/marketplace/latest/userguide/container-product-getting-started.html#container-add-version
https://docs.aws.amazon.com/marketplace/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/marketplace/latest/userguide/pricing.html#contract-pricing
https://docs.aws.amazon.com/marketplace/latest/userguide/pricing.html#contract-pricing
https://docs.aws.amazon.com/marketplace/latest/userguide/metering-for-usage.html#vendor-metered-tagging
https://docs.aws.amazon.com/marketplace/latest/userguide/ami-notification.html
https://docs.aws.amazon.com/marketplace/latest/userguide/ami-notification.html
https://docs.aws.amazon.com/marketplace/latest/userguide/ami-notification.html
https://docs.aws.amazon.com/marketplace/latest/userguide/detailed-management-portal-permissions.html#seller-ammp-permissions
https://docs.aws.amazon.com/marketplace/latest/userguide/ml-service-restrictions-and-limits.html#ml-processing-time-for-inference
https://docs.aws.amazon.com/marketplace/latest/userguide/ml-service-restrictions-and-limits.html#ml-processing-time-for-inference
https://docs.aws.amazon.com/marketplace/latest/userguide/ml-service-restrictions-and-limits.html#ml-processing-time-for-inference
https://docs.aws.amazon.com/marketplace/latest/userguide/ml-service-restrictions-and-limits.html#ml-processing-time-for-inference

AWS Marketplace Seller Guide

Refund policy and approvals Documentation-only update
to clarify the refund policy and
move all refund information to
one central location in the AWS
Marketplace Seller Guide.

August 20, 2021

Select or upload EULA for
consulting partner private offers

Independent software vendors
can now select or upload an
End User License Agreement
(EULA) when creating resale
opportunities for consulting
partners.

August 17, 2021

Custom product dimensions for
SaaS contract products

Independent software vendors
(ISVs) can now customize
SaaS contract product
dimensions when creating resale
opportunities for consulting
partners.

August 17, 2021

AWS Marketplace Field
Demonstration Program

Documentation-only update to
clarify the requirements for AWS
Data Exchange dataset products
for the AWS Marketplace Field
Demonstration Program.

August 3, 2021

SaaS product guidelines update Product guidelines for SaaS
products have been updated.

July 29, 2021

Container-based product
requirements update

Container-based product
requirements have been
updated.

July 29, 2021

AMI security policy update Security policies for AMI
products have been updated.

July 29, 2021

More eligible jurisdictions The following are now eligible
to become sellers on AWS
Marketplace: Hong Kong SAR
and Qatar.

June 23, 2021

Data feeds overview Documentation-only update to
give an overview of the structure
of the data feeds available to
sellers.

June 23, 2021

Updated the machine learning
chapter

Documentation-only update to
the information about creating
and maintaining machine
learning products.

May 27, 2021

Self-service updating for
container products

Sellers now have a simpler
and faster way to update their
container-based products
through the AWS Marketplace
Management Portal.

December 17, 2020

366

https://docs.aws.amazon.com/marketplace/latest/userguide/refunds.html
https://docs.aws.amazon.com/marketplace/latest/userguide/consulting-partner-isv-info.html
https://docs.aws.amazon.com/marketplace/latest/userguide/consulting-partner-isv-info.html
https://docs.aws.amazon.com/marketplace/latest/userguide/consulting-partner-isv-info.html
https://docs.aws.amazon.com/marketplace/latest/userguide/consulting-partner-isv-info.html
https://docs.aws.amazon.com/marketplace/latest/userguide/field-demonstration-program.html
https://docs.aws.amazon.com/marketplace/latest/userguide/field-demonstration-program.html
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-guidelines.html
https://docs.aws.amazon.com/marketplace/latest/userguide/container-product-policies.html
https://docs.aws.amazon.com/marketplace/latest/userguide/container-product-policies.html
https://docs.aws.amazon.com/marketplace/latest/userguide/product-and-ami-policies.html
https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html#eligible-jurisdictions
https://docs.aws.amazon.com/marketplace/latest/userguide/data-feed-joining.html
https://docs.aws.amazon.com/marketplace/latest/userguide/machine-learning-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/machine-learning-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/create-container-product.html
https://docs.aws.amazon.com/marketplace/latest/userguide/create-container-product.html

AWS Marketplace Seller Guide

Professional services Sellers can now offer
professional services to AWS
Marketplace buyers. Added the
professional services section to
the documentation.

December 3, 2020

Self-service updating for AMI
products

Sellers now have a simpler
and faster way to update their
Amazon Machine Image (AMI)
based products through the
AWS Marketplace Management
Portal.

November 23, 2020

More eligible jurisdictions The following are now eligible
to become sellers on AWS
Marketplace: Bahrain, Norway,
Switzerland, and the United
Arab Emirates (UAE).

June 17, 2020

You can offer upgrades and
renewals on accepted private
offers

For SaaS contract and SaaS
contracts with consumption
products, you can offer upgrades
and renewals using private offers
on previously-accepted private
offers.

May 28, 2020

More information is available in
data feeds

More information from reports
is broken down into smaller data
feeds to simplify finding and
analyzing data.

May 21, 2020

Standardized license terms are
now available

You can offer standardized
license terms in place of
custom EULAs to simplify the
contracting process.

April 28, 2020

Australia and New Zealand are
eligible jurisdictions

The following are now eligible
to become sellers on AWS
Marketplace: (i) Permanent
residents and citizens of
Australia (AU) New Zealand (NZ)
or (ii) business entities organized
or incorporated in one of those
areas.

April 2, 2020

Container products now support
custom metering and pricing
enhancements

If you want to define your own
pricing units and meter that
usage to us for billing, integrate
with the AWS Marketplace
Metering Service's meterUsage
action.

November 14, 2019

AWS Marketplace supports data
products through AWS Data
Exchange

You can now provide data
products in AWS Marketplace.

November 13, 2019

367

https://docs.aws.amazon.com/marketplace/latest/userguide/proserv-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/ami-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/ami-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html#eligible-jurisdictions
https://docs.aws.amazon.com/marketplace/latest/userguide/private-offers-upgrades-and-renewals.html
https://docs.aws.amazon.com/marketplace/latest/userguide/private-offers-upgrades-and-renewals.html
https://docs.aws.amazon.com/marketplace/latest/userguide/private-offers-upgrades-and-renewals.html
https://docs.aws.amazon.com/marketplace/latest/userguide/data-feed.html
https://docs.aws.amazon.com/marketplace/latest/userguide/data-feed.html
https://docs.aws.amazon.com/marketplace/latest/userguide/standardized-license-terms.html
https://docs.aws.amazon.com/marketplace/latest/userguide/standardized-license-terms.html
https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html#additional-seller-requirements-for-paid-products
https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html#additional-seller-requirements-for-paid-products
https://docs.aws.amazon.com/marketplace/latest/userguide/entitlement-and-metering-for-paid-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/entitlement-and-metering-for-paid-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/entitlement-and-metering-for-paid-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/data-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/data-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/data-products.html

AWS Marketplace Seller Guide

Introducing the AWS
Marketplace Catalog API
service (p. 364)

The AWS Marketplace Catalog
API service provides an API
interface for approved sellers to
programmatically manage their
products.

November 12, 2019

AWS Marketplace supports paid
hourly containers

AWS Marketplace now supports
paid hourly containers running
on Amazon Elastic Kubernetes
Service (Amazon EKS).

September 25, 2019

Updated AMI product
functionality

You can now deploy AMIs and
Lambda functions together
using AWS CloudFormation.

September 11, 2019

Added Security section Consolidated security content
under a new Security section.

May 7, 2019

Updated AMI security policies Updated the security policies for
AMI products

April 11, 2019

Added versioning information
to Machine Learning Products
section (p. 364)

Added content describing
product version capability for
machine learning products.

March 21, 2019

Added Machine Learning
Products section

Added content for publishing
machine learning products

November 28, 2018

Added Container-Based Products
section

Added content for publishing
container-based products.

November 27, 2018

Updated link for submitting
seller help request

Changed email address to
webform address.

October 22, 2018

Added SaaS contracts with
consumption content

Restructured SaaS content
and added content to support
release of SaaS contracts with
consumption features.

October 18, 2018

Added content about flexible
payment schedule for private
offers

Added content to support
release of flexible payment
scheduler for private offers
content.

October 15, 2018

Updated IAM permissions
content

Added content to support of
new IAM permission for AMMP
read only access.

October 9, 2018

Added content about consulting
partner private offers

Added content to support
Consulting Partner Private
Offers feature release.

October 9, 2018

Added content about private
image builds

Added content to support
release of Private Image Build
for AMIs feature.

August 13, 2018

Added search engine
optimization guidance for
sellers.

Added guidance for sellers who
want to optimize their product
for search.

July 3, 2018

368

https://docs.aws.amazon.com/marketplace/latest/userguide/container-based-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/container-based-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/cloudformation-serverless-application.html
https://docs.aws.amazon.com/marketplace/latest/userguide/cloudformation-serverless-application.html
https://docs.aws.amazon.com/marketplace/latest/userguide/seller-security.html
https://docs.aws.amazon.com/marketplace/latest/userguide/product-and-ami-policies.html
https://docs.aws.amazon.com/marketplace/latest/userguide/machine-learning-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/machine-learning-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/container-based-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/container-based-products.html
https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html#additional-seller-requirements-for-paid-products
https://docs.aws.amazon.com/marketplace/latest/userguide/user-guide-for-sellers.html#additional-seller-requirements-for-paid-products
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-contracts.html
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-contracts.html
https://docs.aws.amazon.com/marketplace/latest/userguide/flexible-payment-scheduler.html
https://docs.aws.amazon.com/marketplace/latest/userguide/flexible-payment-scheduler.html
https://docs.aws.amazon.com/marketplace/latest/userguide/flexible-payment-scheduler.html
https://docs.aws.amazon.com/marketplace/latest/userguide/marketplace-management-portal-user-access.html#detailed-management-portal-permissions
https://docs.aws.amazon.com/marketplace/latest/userguide/marketplace-management-portal-user-access.html#detailed-management-portal-permissions
https://docs.aws.amazon.com/marketplace/latest/userguide/consulting-partner-offers.html
https://docs.aws.amazon.com/marketplace/latest/userguide/consulting-partner-offers.html
https://docs.aws.amazon.com/marketplace/latest/userguide/private-images.html
https://docs.aws.amazon.com/marketplace/latest/userguide/private-images.html
https://docs.aws.amazon.com/marketplace/latest/userguide/search-engine-optimization.html
https://docs.aws.amazon.com/marketplace/latest/userguide/search-engine-optimization.html
https://docs.aws.amazon.com/marketplace/latest/userguide/search-engine-optimization.html

AWS Marketplace Seller Guide

Updated link to AWS
Marketplace logos

Updated link to point to new
AWS Marketplace logos.

June 12, 2018

Added seller guides Converted all PDF seller guides
to online content.

May 9, 2018

369

https://docs.aws.amazon.com/marketplace/latest/userguide/product-marketing.html#using-the-aws-marketplace-logo
https://docs.aws.amazon.com/marketplace/latest/userguide/product-marketing.html#using-the-aws-marketplace-logo
https://docs.aws.amazon.com/marketplace/latest/userguide/what-is-marketplace.html

AWS Marketplace Seller Guide

AWS glossary
For the latest AWS terminology, see the AWS glossary in the AWS General Reference.

370

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	AWS Marketplace
	Table of Contents
	What is AWS Marketplace?
	Using AWS Marketplace as a seller
	Pricing

	Getting started as a seller
	Seller requirements for publishing free software products
	Additional seller requirements for paid products
	Eligible jurisdictions for paid products

	AWS Marketplace Management Portal
	Seller registration process
	Creating your public profile
	Providing tax information
	Providing US bank account information
	Completing the Know Your Customer process
	Completing bank account verification process
	Providing additional bank information
	Downloading your bank statement from Hyperwallet

	(Optional) Add secondary users for the Know Your Customer procedure
	Enrolling in the AWS Marketplace Tax Calculation Service
	Disbursement and buyer billing
	Already a seller?
	Complaints handling policy – Amazon Payments Europe
	Submitting a complaint
	Amazon Payments Europe Complaint resolution time frames
	Complaint escalation

	Seller toolkit
	AWS Marketplace Commerce Analytics Service
	Terms and conditions
	Onboarding guide
	Set up your AWS account with permissions
	Create a destination Amazon S3 bucket
	Configure an Amazon SNS topic for response notifications
	Enroll in the Commerce Analytics Service program
	Verify your configuration

	Technical implementation guide
	IAM policy for Commerce Analytics Service
	Making Requests with the AWS CLI
	Making requests with the AWS SDK for Java

	Technical documentation
	Responses
	Outputs

	Troubleshooting

	AWS Marketplace Field Demonstration Program
	Product Support Connection
	Technical implementation guide
	IAM policy for PSC
	Making requests with the AWS CLI

	API request parameters and responses
	StartSupportDataExport method
	Request parameters

	Responses
	Output data format

	More resources in AWS Marketplace Management Portal

	Preparing your product
	Product delivery
	Product pricing
	Pricing models
	Annual pricing
	Price change
	End user license agreement

	Usage pricing
	Contract pricing
	Bring Your Own License pricing

	Changing pricing models
	Changing prices
	Private offers
	Refunds
	Refund request types
	Refund policy and approvals
	Refund process

	Regions and countries for your AWS Marketplace product
	AWS Regions
	Countries

	Private offers
	How private offers work
	Private offer experience for buyer

	Private offers through consulting partners
	Notes about private offers
	Supported product types
	Private offers for AMI products
	Private offers for container products
	Private offers for professional services products
	Private offers for SaaS products

	Offer submission process
	Reporting for private offers
	Flexible payment scheduler
	Creating a payment schedule
	Reporting for flexible payment scheduler

	Consulting partner private offers
	Additional information
	ISV setup of resell opportunities
	Consulting partner setup of resell opportunities
	Putting an agreement in place with an ISV
	Extending a private offer based on an opportunity
	Accepted offers

	Private offer upgrades and renewals
	Supported product types
	Submission process for upgrades and renewals
	Reporting for upgrades and renewals

	Standardized license terms
	Standard Contract for AWS Marketplace (SCMP)
	Getting started with SCMP

	Enterprise Contract for AWS Marketplace (ECMP)
	Getting started with ECMP

	Categories and metadata
	Naming and describing your product
	Creating the product name
	Writing the product description
	Writing the product highlights
	Writing the release notes
	Writing the usage instructions
	Writing the upgrade instructions

	Choosing categories and keywords
	Creating search keywords

	Search engine optimization for products
	Keywords
	Software categories
	Highlights section
	Short description

	AWS Marketplace for Desktop Applications (AMDA)
	Starting the onboarding process
	Product submission and packaging
	Application packaging types
	Building the AMDA package
	Application metadata
	Ingestion and new version updates

	AMI-based products
	AMI-based product delivery methods
	Understanding AMI-based products
	Product lifecycle
	AMI product codes
	Change requests
	Product Load Forms

	Single-AMI products
	Prerequisites
	Creating your product
	Creating a change request
	Getting status of a request
	Updating product information
	Updating version information
	Adding a new version
	Giving AWS Marketplace access to your AMI
	Restricting a version
	Removing a product from AWS Marketplace
	Common errors when submitting change requests

	AMI-based delivery using AWS CloudFormation
	Building your product listing
	Preparing your AWS CloudFormation template
	Template prerequisites
	Template input parameters
	Network and security parameters

	Getting the cost estimate for your template infrastructure
	Topology diagram
	Meeting the submission requirements
	Submitting your product request
	Adding serverless application components
	Create a serverless application
	Publish your application to the repository
	Create the CloudFormation template
	Submit your CloudFormation template and configuration files
	Update your AWS Serverless Application Repository application permissions
	Share your AMI
	Submit your CloudFormation product with AMI and serverless application

	Private images
	Package group requirements
	Submitting your package group
	Scan status
	Package group state
	OS build state

	Submitting your product to AWS Marketplace

	Best practices for building AMIs
	Verifying your AMI
	Securing resell rights
	Building an AMI
	Verifying your software is running on your AWS Marketplace AMI
	Securing an AMI

	AMI product pricing
	AMI pricing models
	AWS charges and software charges
	Free trial for single AMI hourly products

	Contract pricing for AMI products
	Automatic renewals

	AWS Marketplace Metering Service integration
	Metering service concepts
	Pricing your software
	Example: Provisioned bandwidth with nonlinear pricing
	Example: Concurrent hosts with multiple dimensions

	Adding your product to AWS Marketplace
	Modifying your software to use the Metering Service
	Measuring consumption

	Call AWS Marketplace Metering Service
	Failure handling
	Limitations
	Vendor-metered tagging (Optional)
	Seller experience
	Buyer experience

	Code example
	MeterUsage with usage allocation tagging (Optional)
	Example response

	AWS License Manager integration
	License models
	Configurable license model
	Drawdown licenses
	Floating licenses

	Tiered license model
	Request
	Response

	Integration workflow
	License Manager integration prerequisites
	Integrating an AMI product with License Manager
	License Manager API calls

	License renewals and upgrades

	Amazon SNS notifications for AMI products
	Amazon SNS topic: aws-mp-subscription-notification
	Subscribing an Amazon SQS queue to the Amazon SNS topic
	Polling the SQS queue for notifications

	AMI product checklist
	AMI security policies
	Security policies
	Access policies
	General access policies
	Linux-specific access policies
	Windows-specific access policies

	Customer information policies
	Product usage policies
	Architecture policies

	Container-based products
	Getting help
	Getting started with container products
	Prerequisites
	Creating a container product
	Creating the product ID for your container product
	Creating or updating pricing details for container products
	Integrating AWS Marketplace Metering Service for your container product
	Integrating AWS License Manager for your container product
	Adding a new version of your product
	Step 1: Adding repositories
	Step 2: Uploading container images and artifacts to repositories
	Adding a new delivery option without a template

	Step 3: Adding a new version to your container product

	Updating version information
	Creating or updating product information for your container product
	Publishing container products
	Container product scans for security issues

	Container-based product requirements
	Security requirements
	Access requirements
	Customer information requirements
	Product usage requirements
	Architecture requirements

	Container product pricing
	Container pricing models
	Contract pricing for container products
	Automatic renewals
	When a container contract ends

	Billing, metering, and licensing integrations
	Hourly and custom metering with AWS Marketplace Metering Service
	Entitlement
	Integration guidelines
	Supported AWS Regions
	Obtaining the AWS Region for metering

	Preventing metering modification

	Contract pricing with AWS License Manager
	Integration workflow

	Hourly metering with AWS Marketplace Metering Service
	Hourly metering prerequisites
	Product load form for hourly metering
	Testing integration and preview mode for RegisterUsage
	Error handling for RegisterUsage
	Integrating your container product with the AWS Marketplace Metering Service using the AWS SDK for Java
	RegisterUsage Java example

	Custom metering with AWS Marketplace Metering Service
	Custom metering prerequisites
	Product load form for custom metering
	Testing MeterUsage integration and preview mode
	Error handling for MeterUsage
	Vendor-metered tagging (Optional)
	Seller experience
	Buyer experience

	Code example
	MeterUsage code example with usage allocation tagging (Optional)
	Example response

	Integrating your container product with the AWS Marketplace Metering Service using the AWS SDK for Java
	MeterUsage Java examples

	Contract pricing with AWS License Manager
	License models
	Configurable license model
	Drawdown license
	Floating licenses

	Tiered license model
	Request
	Response

	AWS License Manager integration prerequisites
	Integrating a container product with License Manager
	License Manager API operations
	License renewals and upgrades
	Integrating an AWS Marketplace for Containers Anywhere product with License Manager
	Integrating an AWS Marketplace for Containers Anywhere product with License Manager
	Testing License Manager integration locally
	Testing License Manager integration on Amazon EKS
	Floating license entitlements with License Manager
	Best practices for integrating with License Manager for on-premises deployments
	LicenseManagerCredentialsProvider - Java implementation
	LicenseManagerCredentialsProvider - Golang implementation

	Amazon SNS notifications for container products
	Amazon SNS topic: aws-mp-subscription-notification
	Subscribing an Amazon SQS queue to the Amazon SNS topic
	Polling the SQS queue for notifications

	Machine learning products
	Getting started with machine learning products
	SageMaker model package
	SageMaker algorithm
	Deploying an inference model

	Security and intellectual property
	Protecting intellectual property
	No network access
	Security of customer data

	Machine learning product pricing
	Infrastructure pricing
	Software pricing
	Free pricing
	Hourly pricing
	Inference pricing
	Free trial
	Private offers

	Prepare your product in SageMaker
	Packaging your code into images
	Which type of container image do I create?
	Model package images
	Creating an inference image for model packages
	Step 1: Creating the container image
	Create the web server script
	Create the script for the container run
	Create the Dockerfile
	Package or upload the model artifacts

	Step 2: Building and testing the image locally
	Build the image
	Run locally
	Test the ping HTTP endpoint
	Test the inference HTTP endpoint

	Algorithm images
	Creating a training image for algorithms
	Step 1: Creating the container image
	Prepare your program to read configuration inputs
	Prepare your program to read data inputs
	Prepare your program to write training outputs
	Create the script for the container run
	Create the Dockerfile

	Step 2: Building and testing the image locally
	Build the image
	Run locally

	Creating an inference image for algorithms
	Step 1: Creating the inference image
	Create the web server script
	Create the script for the container run
	Create the Dockerfile
	Preparing your program to dynamically load model artifacts

	Step 2: Building and testing the image locally
	Build the image
	Run locally
	Test the ping HTTP endpoint
	Test the inference HTTP endpoint

	Uploading your images
	Which images must I upload?
	What IAM permissions are required?
	Log your Docker client into AWS
	Create repository and upload image
	Scan your uploaded image

	Creating your Amazon SageMaker resource
	Creating your model package
	Creating the model package resources

	Creating your algorithm
	Creating the algorithm resources

	Publishing your product in AWS Marketplace
	Overview of publishing process
	Permissions required
	Creating your product listing
	Testing your product
	Updating your product
	Adding new versions
	Restricting versions
	Remove a product

	Requirements and best practices for creating machine learning products
	Required assets
	General best practices for ML products
	Requirements for usage information
	Requirements for inputs and outputs
	Inference inputs and outputs
	Training inputs

	Requirements for Jupyter notebook
	Summary of requirements and recommendations for ML product listings

	Service restrictions and quotas
	Network isolation
	Image size
	Storage size
	Instance size
	Payload size for inference
	Processing time for inference
	Service quotas
	Managed spot training
	Docker images and AWS accounts
	Publishing model packages from built-in algorithms or AWS Marketplace
	Supported AWS Regions for publishing

	Troubleshooting
	Reporting
	Daily business report
	Monthly revenue report
	Disbursement report
	Other reports and analysis

	Software as a service (SaaS)–based products
	Getting started with SaaS products
	Prerequisites
	Creating a SaaS product
	Create an initial SaaS product page
	Integrate your SaaS subscription product
	Scenario: Your service validates new customers
	Scenario: Meter usage
	Scenario: Monitor changes to user subscriptions
	Scenario: Verify customer subscription
	Testing your SaaS subscription product integration

	Integrate your SaaS contract product
	Scenario: Your service validates new customers
	Scenario: Your service handles customer requests
	Scenario: Monitor changes to user subscriptions
	Testing your SaaS contract product integration

	Integrate your SaaS contract with pay-as-you-go product
	Scenario: Your service validates new customers
	Scenario: Your service handles customer requests
	Scenario: Meter usage
	Scenario: Monitor changes to user entitlements
	Testing your SaaS contract product integration

	Deploy a serverless SaaS integration solution

	Plan your SaaS product
	Plan your pricing
	Plan your billing integration
	Plan your Amazon SNS integration
	Plan how customers will access your product
	Plan your SaaS product registration Website
	Using AWS PrivateLink for customers to access your SaaS product
	Using your own registration website

	SaaS product guidelines
	Product setup guidelines
	Customer information requirements
	Product usage guidelines
	Architecture guidelines

	SaaS product pricing
	
	

	Pricing for SaaS subscriptions
	When a SaaS subscription ends
	When a SaaS subscription is cancelled

	Pricing for SaaS contracts
	SaaS contract upgrades
	Automatic renewals
	When a SaaS contract ends
	When a SaaS contract is cancelled

	SaaS customer onboarding
	Configuring your SaaS product to accept new buyers
	Security and ordering

	Amazon SNS notifications for SaaS products
	Amazon SNS topic: aws-mp-entitlement-notification
	Amazon SNS topic: aws-mp-subscription-notification
	Subscribing an SQS queue to the SNS topic
	Polling the SQS queue for notifications

	Accessing the AWS Marketplace Metering and Entitlement Service APIs
	Metering for usage
	Configure your product to meter usage
	Example: Host scanning
	Example: Log analysis

	Vendor-metered tagging (Optional)
	Seller experience
	Buyer experience

	Checking entitlements
	Retrieving entitlement on user actions
	Example: User-based product
	Example: Data storage product

	SaaS product integration checklist

	Reporting
	Code examples for SaaS product integration
	ResolveCustomer code example
	Example response

	GetEntitlement code example
	Example response

	BatchMeterUsage code example
	Example response

	BatchMeterUsage with usage allocation tagging code example (Optional)
	Example response

	Using AWS PrivateLink with AWS Marketplace
	Introduction
	Configuring your product
	Submitting your product to AWS Marketplace
	Buyer access to VPC endpoints
	Appendix: Checklists
	Product creation checklist
	Product testing

	Professional services products
	Getting help
	Getting started with professional services products
	Prerequisites
	Creating a professional services product
	Creating private offers
	Editing product information
	Editing product pricing
	Editing product visibility
	Removing a professional services product

	Providing details for a professional services product
	Product descriptions
	Additional resources
	Support information
	Pricing dimensions
	Product visibility

	Requirements for professional services products
	Product setup guidelines
	Customer information requirements
	Product usage guidelines
	Architecture guidelines

	Professional services product pricing

	Data products
	Submitting your product for publication
	Using the Products tab
	Company and product logo requirements
	Requirements for submitting paid repackaged software
	AWS CloudFormation-launched product (free or paid) or usage-based paid AMI product
	Submitting your product
	Updating your product

	Product changes and updates
	Timing and expectations
	Submitting AMIs to AWS Marketplace
	AMI self-service scanning
	AMI cloning and product code assignment

	Final checklist

	Marketing your product
	180-day GTM Academy
	Announcing your product's availability
	AWS Marketplace messaging
	Reviews on AWS Marketplace
	Linking to AWS Marketplace
	Using the AWS Marketplace logo
	Linking directly to your product on AWS Marketplace
	Press releases
	AWS Marketplace trademark usage guidelines

	Seller reports and data feeds
	Seller reports
	Accessing reports
	Daily business report
	Publication schedule
	Section 1: Usage by instance type
	Section 2: Fees
	Section 3: Free trial conversions
	Section 4: New instances
	Section 5: New product subscribers
	Section 6: Canceled product subscribers

	Daily customer subscriber report
	Publication schedule
	Section 1: Hourly and monthly subscriptions
	Section 2: Variable length subscriptions

	Disbursement report
	Publication schedule
	Section 1: Disbursed amount by product
	Section 2: Disbursed amount by customer geography
	Section 3: Disbursed amount by instance hours
	Section 4: Age of uncollected funds
	Section 5: Age of disbursed funds
	Section 6: Age of past due funds
	Section 7: Uncollected funds breakdown

	Monthly billed revenue report
	Publication schedule
	Section 1: Billing and revenue data
	Section 2: Variable length subscriptions
	Section 3: AWS field demonstration usage
	Section 4: Contracts with flexible payment schedule

	Sales compensation report
	Publication schedule
	Billed revenue

	US sales and use tax report
	Publication schedule
	US sales and use tax records

	Data feeds
	Storage and structure of data feeds
	Historization of the data

	Accessing data feeds
	Data feed policies

	Using data feeds
	Example: Use AWS services to collect and analyze data

	Data feed tables overview
	Catalog-related tables
	Accounts-related tables
	Revenue-related tables

	Data feed query examples
	Example 1: Disbursements by product
	Example 2: Sales compensation report

	Account data feed
	Example of account data feed

	Address data feed
	Example of address data feed

	Billing event data feed
	Taxing scenarios
	Examples of billing event data feed
	Billing event data feed for seller of record
	Billing event data feed for manufacturer

	Example queries
	Example 1: Amount invoiced, including taxes
	Example 2: Amount invoiced to buyers on seller's behalf
	Example 3: Amount AWS can collect on seller's behalf
	Example 4: Amount seller can collect
	Example 5: Amount of disbursements
	Example 6: Amount pending disbursement
	Example 7: Balance of set of invoices

	Legacy mapping data feed
	Example of legacy mapping data feed

	Offer data feed
	Example of offer data feed

	Offer product data feed
	Example of Offer product data feed

	Offer target data feed
	Example of offer target data feed

	Product data feed
	Example of product data feed

	Tax item data feed
	Example of tax item data feed

	AWS Marketplace security
	Controlling access to AWS Marketplace Management Portal
	Creating users
	Creating or using groups
	Signing in as an IAM user

	Policies and permissions for AWS Marketplace sellers
	Policies for AWS Marketplace sellers
	Permissions for AWS Marketplace sellers
	Example 1: Permissions to access the Marketing and File Upload pages.
	Example 2: Permissions to create upgrades and renewals for private offers
	Example 3: Permissions to access the Offers page and create new private offers
	Using IAM groups

	AWS managed policies for AWS Marketplace sellers
	AWS managed policy: AWSMarketplaceAmiIngestion
	AWS managed policy: AWSMarketplaceFullAccess
	AWS managed policy: AWSMarketplaceGetEntitlements
	AWS managed policy: AWSMarketplaceMeteringFullAccess
	AWS managed policy: AWSMarketplaceMeteringRegisterUsage
	AWS managed policy: AWSMarketplaceSellerFullAccess
	AWS managed policy: AWSMarketplaceSellerProductsFullAccess
	AWS managed policy: AWSMarketplaceSellerProductsReadOnly
	AWS Marketplace updates to AWS managed policies

	AWS Marketplace Commerce Analytics Service account permissions
	AWS Marketplace Product Support Connection account permissions
	Amazon SQS permissions
	AWS Marketplace metering and entitlement API permissions
	IAM policy for SaaS products
	IAM policy for AMI products
	IAM policy for container products

	Logging AWS Marketplace API calls with AWS CloudTrail
	AWS Marketplace log file entry examples
	Example: BatchMeterUsage
	Example: RegisterUsage for containers
	Example: MeterUsage for containers on Amazon EKS
	Example: MeterUsage on AMIs

	Related Topics

	Document history
	AWS glossary

