
© 2020, Amazon Web Services, Inc. or its Affiliates.

James Beswick
Sr. Developer Advocate, AWS Serverless

Innovator Island – Day 2
Build a serverless web app for a theme park

© 2020, Amazon Web Services, Inc. or its Affiliates.

About me

• James Beswick
• Email: jbeswick@amazon.com
• Twitter: @jbesw

• Senior Developer Advocate – AWS Serverless
• Self-confessed serverless geek
• Software Developer
• Product Manager
• Previously:

• Multiple start-up tech guy
• Rackspace, USAA, Morgan Stanley, J P Morgan
• Enjoys travel, coffee, comedy and theme parks…

© 2020, Amazon Web Services, Inc. or its Affiliates.

Day 2 agenda

Full 5-day agenda at
http://bit.ly/islandworkshop

© 2020, Amazon Web Services, Inc. or its Affiliates.

Prerequisites

• AWS account – personal account with full admin access
• Cost:

• Attending workshop is free BUT
• Running the workshop is might incur small charges

• Workshop cannot be completed with a tablet
• Compatible with Chrome/Firefox (not Safari)
• Familiarity with the AWS Management Console
• You need everything you built from Day 1

Code repo and instructions at
http://bit.ly/innovatorisland

© 2020, Amazon Web Services, Inc. or its Affiliates.

This week's adventure

Day 1: Set up the app
• Deploy the frontend and backend

applications

Day 2: Ride wait times
• Integrate your app with the ride systems

so guests can see wait times

Day 3: Ride photos
• Build a photo-processing flow so guests

can take selfies around the park

Day 4: Analyzing visitor stats
• Gain insights from all the wristband data

collected from visitors

Day 5: Processing events
• Use an event bus to handle maintenance

and ride malfunctions to improve
operations

Code repo and instructions at
http://bit.ly/innovatorisland

© 2020, Amazon Web Services, Inc. or its Affiliates.

Day 2: Ride wait times

Upload
Bucket

Save object name

Park alerts topic

Realtime
publisher

Initialize app

Photo Uploader

API endpoint

API endpoint

SNS topic

Processing BucketProcessing Final
Bucket

Compositing Post-process

Notify frontend

Wait times service

Frontend app Configuration table

Code repo and instructions at
http://bit.ly/innovatorisland

© 2020, Amazon Web Services, Inc. or its Affiliates.

Go to
http://bit.ly/innovatorisland

© 2020, Amazon Web Services, Inc. or its Affiliates.

Ways to interact between front-end and back-end

1. API Gateway – synchronous request and response.
2. API Gateway – WebSockets.
3. API Gateway – asynchronous request with polling.
4. API Gateway – asynchronous request with webhooks.
5. IoT Core – realtime pub/sub over MQTT.

© 2020, Amazon Web Services, Inc. or its Affiliates.

Publish/Subscribe

Publisher

Topic A

Topic B

Topic C

Subscriber 1

Subscriber 2

Subscriber 3

Subscriber 4

Subscriber 5

© 2020, Amazon Web Services, Inc. or its Affiliates.

Publish/Subscribe with AWS IoT Core

Publisher

Topic A

Topic B

Topic C

Subscriber 1

Subscriber 2

Subscriber 3

Subscriber 4

Subscriber 5

IoT
topics

await iotdata.publish({
topic: "theme-park-rides",
qos: 0,
payload: message

}).promise()

// A message has arrived
mqttClient.on('message', (topic,
payload) => {
if (topic === "theme-park-rides") {
// Save/process ride times

}
})

© 2020, Amazon Web Services, Inc. or its Affiliates.

Setting up the IoT Core resources in SAM

© 2020, Amazon Web Services, Inc. or its Affiliates.

Setting up the Cognito roles in SAM

© 2020, Amazon Web Services, Inc. or its Affiliates.

#InnovatorIsland

© 2020, Amazon Web Services, Inc. or its Affiliates.

Thank you - see you tomorrow!
James Beswick, AWS Serverless
jbeswick@amazon.com
@jbesw

	Slide Number 1
	About me
	Day 2 agenda
	Prerequisites
	This week's adventure
	Day 2: Ride wait times
	Slide Number 7
	Ways to interact between front-end and back-end
	Publish/Subscribe
	Publish/Subscribe with AWS IoT Core
	Setting up the IoT Core resources in SAM
	Setting up the Cognito roles in SAM
	Slide Number 13
	Thank you - see you tomorrow!

