
© 2020, Amazon Web Services, Inc. or its Affiliates.

Amazon Neptune
Fast, fully managed graph database service

Karthik Bharathy
Product Leader, Neptune

Agenda

• Graph and its use cases
• Amazon Neptune overview
• Architecture
• Graph Data Model
• Capabilities
• Resources

Graphs are all around us

Why graph?

Connected Data Queries
Navigate (variably) connected structure
Filter or compute a result based on strength, weight or quality of relationships

Social
Networking

RecommendationsKnowledge
Graphs

Fraud Detection Life Sciences Network & IT
Operations

Relationships enable new applications. connections paths patterns

Knowledge Graph

https://aws.amazon.com/blogs/apn/exploring-knowledge-graphs-on-amazon-neptune-using-metaphactory/
https://aws.amazon.com/blogs/database/building-and-querying-the-aws-covid-19-knowledge-graph/

Brings context and semantic meaning by linked entities and events

Identity Graph

A single unified view of customers and prospects based
on their interactions with a product or website across a
set of devices and identifiers

https://aws.amazon.com/blogs/database/building-a-customer-identity-graph-with-amazon-neptune/

Customer 360

https://aws.amazon.com/blogs/database/building-a-customer-360-knowledge-repository-with-amazon-neptune-and-amazon-redshift/

Gain a 360° view of your customers so you can better
understand purchasing patterns and improve marketing
attribution.

Fraud Detection

Detect fraud patterns - a potential purchaser is using the same email address and credit card, multiple
people associated with an email address, or multiple people sharing the same IP address but residing in
different physical addresses.

Social Recommendation

Manage relationships between information such as customer interests, friends, or purchase
history in a graph and quickly query it to make recommendations that are personalized.

Entitlements and access checks

If you detect a malicious file was downloaded on a host, a graph can help you to find the
connections between the hosts that spread the malicious file, and enable you to trace it to
the original host that downloaded it.

Highly connected data and relational database

Unnatural for
querying graph

Inefficient
graph processing

Rigid schema inflexible
for changing data

Challenges of existing graph databases

Difficult to maintain
high availabilityDifficult to scale Limited support for

open standardsToo expensive

Amazon Neptune - fully managed graph database

Fast Reliable Open

Query billions of
relationships with

millisecond latency

Six replicas of your data
across three AZs with full

backup and restore

Build powerful queries
easily with Gremlin and

SPARQL

Supports Apache
TinkerPop & W3C RDF

graph models

Easy

Neptune customers

Neptune General Availability
• Announced on 5/30/2018

• 18 AWS Regions: Americas (N. Virginia,
Montréal, Ohio, Oregon), Europe (Frankfurt,
Ireland, London, Paris, Stockholm), Middle East
(Bahrain), Asia Pacific (Mumbai, Seoul,
Singapore, Sydney, Tokyo), AWS China (Ningxia),
and AWS GovCloud (US-East) and (US-West)

• Encryption-at-rest with AWS Key Management
Service (AWS KMS)

• Encryption-in-transit with TLS 1.2 client
connections

• ISO, HIPAA, SOC, PCI/DSS compliance
certifications

© 2020, Amazon Web Services, Inc. or its Affiliates.

Architecture

Fast, fully managed graph database service

High performance graph engine

Graph models and query languages

Shared storage service - multi AZ upto 64TB

Endpoints for Load, Streams, Status, Explain, Profile

`

Neptune: Distributed storage architecture

 Performance, availability, durability

 Scale-out replica architecture

 Shared storage volume with 10 GB
segments striped across hundreds of
nodes

 Data is replicated 6 times across 3 AZs

 Hotspot rebalance, Fast database
recovery

 Log applicator embedded in storage layer

Master Replica Replica Replica

Primary

Shared storage volume

Replica Replica
Gremlin /

Sparql

Transactions

Caching

Gremlin /
Sparql

Transactions

Caching

Gremlin /
Sparql

Transactions

Caching

Delivered as a managed service

AZ1 AZ2 AZ3

Read Replicas and High Availability

PAGE CACHE
UPDATE

Neptune Primary

30% Read

70% Write

Neptune Replica

100% New Reads

Shared Multi-AZ Storage

Amazon Neptune read scaling

Performance
• Applications can scale out read traffic

across up to 15 read replicas

Low Replica Lag
• Typically < 10ms
• Master ships redo logs to replica
• Cached pages have redo applied
• Un-cached pages from shared storage

Availability
• Failing database nodes are automatically

detected and replaced
• If primary fails, a replica replaces it

(typically < 60s failover time)
• Primary upgrade by forced failover

© 2020, Amazon Web Services, Inc. or its Affiliates.

Graph Data Model

Leading graph models and frameworks

Open Source Apache TinkerPop™
Gremlin Traversal Language

W3C Standard
SPARQL Query Language

PROPERTY GRAPH

Many customers want both.

RESOURCE DESCRIPTION
FRAMEWORK (RDF)

Example: Air routes dataset

• Models the world’s airline route
network

• Queries operating over the airport
connectivity graph

• Sample query
Given source and target airports
Find all one-stop connections

https://github.com/krlawrence/graph/tree/master/sample-data

Gremlin

g.V() // start out with all vertices

.has('code','SEA’) // select vertices having code = ‘SEA’

.out('route’) // follow ’route’ edge

.as('via’) // save node in variable ’via’

.out('route’) // follow ‘route edge again

.has('code','FRA’) // assert we ended up in FRA

.select('via’) // jump back to the via airport

.values('code’) // select airport code

“Find all of the airport codes for one-
stop connections from SEA to FRA”

Neptune graph data model

https://docs.aws.amazon.com/neptune/latest/userguide/feature-overview-data-model.html

Subject Predicate Object Graph
22 code "SEA" default

22 route 105 e1

22 route 130 e2

22 route 122 e3

105 code "HND" default

105 route 52 e4

130 code "LAS" default

130 route 52 e5

122 code "ICN" default

122 route 52 e6

52 code "FRA" default

SPARQL

PREFIX airport: <http://kelvinlawrence.net/air-
routes/resource/airport/>

PREFIX edge: <http://kelvinlawrence.net/air-routes/objectProperty/>

PREFIX prop: <http://kelvinlawrence.net/air-routes/datatypeProperty/>

SELECT ?viaCode WHERE {

airport:SEA edge:route ?via .

?via prop:code ?viaCode .

?via edge:route airport:FRA .

}

”Find all of the airport codes for one-
stop connections from SEA to FRA”

Neptune graph data model

https://docs.aws.amazon.com/neptune/latest/userguide/feature-overview-data-model.html

PREFIX resource: <http://kelvinlawrence.net/air-routes/resource/>
PREFIX airport: <http://kelvinlawrence.net/air-routes/resource/airport/>
PREFIX edge: <http://kelvinlawrence.net/air-routes/objectProperty/>
PREFIX prop: <http://kelvinlawrence.net/air-routes/datatypeProperty/>

Subject Predicate Object Graph
airport:SEA prop:code "SEA" default
airport:SEA edge:route airport:HND resource:1
airport:SEA edge:route airport:LAS resource:2
airport:SEA edge:route airport:ICN resource:3
airport:HND prop:code "HND" default
airport:HND edge:route airport:FRA resource:4
airport:LAS prop:code "LAS" default
airport:LAS edge:route airport:FRA resource:5
airport:ICN prop:code "ICN" default
airport:ICN edge:route airport:FRA resource:6
airport:FRA prop:code "FRA" default

Neptune graph data model – indices

https://docs.aws.amazon.com/neptune/latest/userguide/feature-overview-data-model.html

SPOG – Uses a key composed of Subject + Predicate + Object + Graph

Efficient lookup whenever a prefix of the positions, such as the vertex (subject) or vertex and
property identifier, is bound: Find airport:SEA (22) with code “SEA”

POGS – Uses a key composed of Predicate + Object + Graph + Subject

Efficient access when only the edge or property label stored in P position is bound:
What nodes have code “SEA”?

GPSO – Uses a key composed of Graph + Predicate + Subject + Object

Efficient access with the graph (or edge ID) and a property identifier is bound:
What edges are have routes to “FRA”?

Subject Predicate Object Graph

© 2020, Amazon Web Services, Inc. or its Affiliates.

Capabilities

New features in Amazon Neptune
• Complete sequence of change-log entries, which record every change made to graphNeptune Streams

• Use SPARQL to express queries across diverse data sourcesSPARQL 1.1 Federated Query

• Formalized semantics to help you avoid data anomaliesTransaction semantics

• Gain insights into the query plan and evaluation orderGremlin/SPARQL Explain

• Queries run during the session are committed as part of a single transactionGremlin sessions

• Create multiple clones of a DB cluster using copy-on-write semanticsDatabase cloning

• Full-text search using Elasticsearch with graph data in NeptuneElasticsearch integration

• In-console notebook experience to query your graphNeptune Workbench

• Next generation burstable general-purpose instance type as low as 10 cents/HrLow cost T3 instances

• Configure a cluster with deletion protection to prevent accidental deletes by any userDelete Protection

• Stop databases when it is not required to be running all of the timeStart/Stop cluster

• Copy snapshots across regions for testing and disaster recoveryCross region snapshot copy

• Enforce SSL connections with option to disable SSL in regions where both are
supported.Enforce SSL connections

• Simplified console experience to manage cluster, instances and their properties.Simplified Console Management

Connect to Neptune

• HTTP or Web Socket (WS)
• Can send queries using curl
• Gremlin console

• Gremlin Language Variants (GLV)
• Java (reference impl.)
• Python, Node.js, .Net
• Other OSS clients available.

• Queries sent as strings or as Gremlin “Byte
Code” from GLVs.

• Tuning of client, batching and threading helps
with performance.

• Need special client for SigV4 signing if IAM
authentication is enabled on Neptune.

• HTTP
• Can send queries using curl
• Can use open source Eclipse RDF4J

console.
• Send queries from an application as text.
• Eclipse RDF4J also has Java libraries.
• Apache Jena has full RDF support.
• Many open source client libraries for

languages such as Python.
• Client tuning helps overall throughput.
• Many third party open source and

commercial tools available for query
development.

• https://www.w3.org/2001/sw/wiki/Tools

https://docs.aws.amazon.com/neptune/latest/userguide/intro.html

Copy data from relational DB to Neptune using DMS

Table
mapping

Graph
mapping

S3 Bucket (Staging data)

Source endpoint Destination endpoint

Amazon NeptuneAWS DMS

CloudWatch Logs

• JSON for Property Graph
• W3C R2RML for RDF

Other ways to load data

• Bulk import data from S3 bucket for Property Graph or RDF
• Use insert queries
• Import data from Neo4j

Neptune Workbench – Query Neptune
Query easily using Jupyter notebooks

Magic commands:
• Gremlin queries
• SPARQL queries
• Explain and Profile
• Status query
• Bulk load data

Neptune Elasticsearch integration

• Full-text search queries using Elasticsearch

• Use match, fuzzy, prefix, query_string options

• Supported for both SPARQL and Gremlin queries

Amazon
Neptune

Elasticsearch
cluster

Neptune Elasticsearch integration

SELECT * WHERE {
SERVICE

<http://aws.amazon.com/neptune/vocab/v01/fts#search>
{

?desc fts:query "regional" .
?desc fts:maxResults 100 .

}
}

g.withSideEffect("Neptune#fts.endpoint",
"https://....amazonaws.com").
V().has('desc','Neptune#fts regional').
local(values('code','desc').fold()).
limit(100)

Leverage Elasticsearch for graph data in Amazon Neptune

==>[HYA, Barnstable Municipal Boardman Polando Field]
==>[SPS, Sheppard Air Force Base-Wichita Falls Municipal Airport]
==>[ABR, Aberdeen Regional Airport]
==>[SLK, Adirondack Regional Airport]
==>[BFD, Bradford Regional Airport]

SPARQL

Gremlin

Making the most of your graph queries

https://docs.aws.amazon.com/neptune/latest/userguide/gremlin-explain.html

Making the most of your graph queries

https://docs.aws.amazon.com/neptune/latest/userguide/sparql-explain.html

https://aws.amazon.com/blogs/database/using-sparql-explain-to-understand-query-execution-in-amazon-neptune/

© 2020, Amazon Web Services, Inc. or its Affiliates.

Resources

Documentation

Learn Gremlin

Reference architectures

Samples

Use cases, videos, blog posts, code

© 2020, Amazon Web Services, Inc. or its Affiliates.

Questions?

© 2020, Amazon Web Services, Inc. or its Affiliates.

Thank you!

