
SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

W E B I N A R

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How Careem achieved running
container workloads at scale using
Amazon EKS and KEDA

Talal Shobaita

Sr Solutions Architect

AWS

Sami Shabaneh

Snr SRE Engineer

Careem

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

Why are customers choosing Amazon EKS

Scaling with Kubernetes

Serving millions of users with Careem

Careem technical implementation

Key takeaways

2

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why modernize with Kubernetes?

Ease
Declarative and self-reconciling

Flexible and extensible

Consistency
Same API, regardless of where

you run or at what scale

Ecosystem
Hundreds of solutions across the CNCF

ecosystem

Community
De facto standard with numerous

enterprises helping chart the future

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon EKS in the cloud

Availability Zone 1

Etcd

API
API

Availability Zone 2 Availability Zone 3

Etcd Etcd

• Single tenant

• Highly available cluster

API endpoint

• 99.95% SLA

• 24x7x365 support

• Instances scaled up/down

seamlessly

• Upgrade and patching

• Focus on apps

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kubernetes with AWS
H O W Y O U W A N T I T , W H E R E Y O U N E E D I T

AWS is pushing the boundaries with AWS Outposts, AWS Wavelength,

AWS Local Zones, and now on-premises, edge, and hybrid capabilities

Amazon EKS Anywhere

AWS

Outposts

AWS

Wavelength

AWS

Local Zones

AWS

Regions

Customer

infrastructure

Amazon EKS

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 6

Kubernetes scaling
mechanisms

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon EKS scaling dimensions

Kubernetes data planeKubernetes control plane

Cluster services
(controllers, CoreDNS, metrics server, autoscalers)

Workload(s)

Cluster services
(controllers, CoreDNS, metrics server, autoscalers)

Kubernetes control plane

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 8

Kubernetes data plane
scaling mechanisms

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Managed node groups or Karpenter is recommended for
large-scale clusters

Managed node groups with
Kubernetes Cluster Autoscaler

Karpenter

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 10

Kubernetes pod scaling

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Kubernetes Workload Autoscaling

1. Horizontal Pod
Autoscaling (HPA)

2. Vertical Pod
Autoscaling (VPA)

Metrics

Store

HPA

VPA

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

85%

90%

93%

88%

Scaling workloads with HPA

• If pods are heavily loaded, then starting
new pods may bring average load down

• If pods are barely loaded, then stopping
pods will free resources

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

85%

90%

93%

88%

Scaling workloads with HPA

• If pods are heavily loaded, then starting
new pods may bring average load down

• If pods are barely loaded, then stopping
pods will free resources

• Specify the target for the load

▪ e.g. target = cpu utilization 70%

TARGET

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

68%

72%

71%

69%

Scaling workloads with HPA

• If pods are heavily loaded, then starting
new pods may bring average load down

• If pods are barely loaded, then stopping
pods will free resources

• Specify the target for the load

▪ e.g. target = cpu utilization 70%

▪ Too small spike buffer may overload your
replicas

▪ Too big buffer causes resource waste

TARGET

Spike Buffer

73%

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

KEDA (Kubernetes-based Event driven Autoscaler)

• Works alongside with HPA to support event-driven scale

• HPA is CPU based. Using Custom Metrics is available but complicated

• Keda does not scale a cluster. It auto scales in/out Kubernetes deployments

• KEDA acts as a Metrics server that exposes rich event data

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

8 best practices to consider

Similar node =
consistent

performance

Workload Pod Node

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Choose appropriate scaling metrics when using HPA

It should be a proportional metric

• Average CPU utilization

• Average queue depth

Generally not as good metrics

• Average response time

• Memory utilization

• Max (N)

• P-values (p95, p99, etc.)

Memory utilization

Time

Load

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Configure and resource requests and limits for workloads

Non-compressible resources

during exhaustion are terminated

(e.g., OOM)

Compressible resources

during contention things work more

slowly

apiVersion: v1

kind: Pod

metadata:

name: resources-pod

spec:

containers:

- name: container

image: <image>

resources:

limits:

memory: "200Mi"

requests:

cpu: 500m

memory: "200Mi"

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use Kubernetes pod topology spread constraints or pod
anti-affinities

Availability Zone 1 Availability Zone 2

topologyKey: "topology.kubernetes.io/zone” | "kubernetes.io/hostname”

karpenter.sh/capacity-type

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use pod disruption budgets and consider pod readiness
gates

Control pod termination during
voluntary disruptions

Pod readiness gates to avoid
timeouts with AWS Load
Balancer Controller during
target registration

apiVersion: policy/v1

kind: PodDisruptionBudget

metadata:

name: my-app

spec:

minAvailable: 20

selector:

matchLabels:

app: my-scaled-app

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Avoid overly constraining instance type selection and
compute purchase options
Attribute based approach over
instance configuration

Karpenter Provisioner

…
requirements:

- key: karpenter.sh/capacity-type
operator: In
values: ["on-demand","spot"]

- key: kubernetes.io/arch
operator: In
values: ["amd64","arm64"]

…
managedNodeGroups:

- name: my-managed-node-group
desiredCapacity: 2
spot: true
instanceSelector:

vCPUs: 2
memory: 2GiB
cpuArchitecture: x86_64

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use similar nodes for consistent compute performance

kind: deployment

...

spec:

containers:

nodeSelector:

karpenter.k8s.aws/instance-size: 8xlarge

spec:

affinity:

nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:

- matchExpressions:

- key: eks.amazonaws.com/nodegroup

operator: In

values:

- 8-core-node-group

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Use compute resources more efficiently

Optimized capacityExisting capacity

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Automate Kubernetes node updates

• Treat infrastructure as immutable

• If speed is a necessity

• AWS Systems Manager Patch

Manager for in-place patching

• For OS with a read-only root file

system, consider update operators

for the OS (e.g., Bottlerocket

update operator)

apiVersion:
karpenter.sh/v1alpha5
kind: Provisioner
metadata:
name: default

spec:
requirements:

....
limits:
resources:

cpu: 1000
ttlSecondsUntilExpired: 1800

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. 25

Careem: Scaling Workloads
on EKS with KEDA

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

● Careem SuperApp & Cloud footprint

● Scaling Challenges in Careem

● Community’s scaling options and challenges

● KEDA architecture and how it works

● How do we use KEDA

● Challenges

● Best practices

Agenda

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

● Our mission is to simplify the life of people.

● Founded in 2012, operating in >70 cities and 10

countries.

● Ride Hailing, Food & Groceries delivery, Payments

solutions , Bike & Car renting and more…

● Acquired by Uber for $3.1B in 2020.

● 2.5m+ registered captains.

● 50m+ total registered users.

Who we are?

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

With over 800+ services, Careem utilizes a wide range of AWS offerings to support its

operations EBS , ECS, Lambda ,EKS ,SQS ,Kinesis,DynamoDb, RDS etc…

We handle more than ~13k Requests per seconds on our APIs or 1 billion requests a day.

Careem is leveraging the power of AWS with more than 50+ AWS accounts.

Careem Cloud Footprint

1

2

3

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Scaling Challenges in Careem

Careem receives sudden increases in traffic due to promo codes or

random events/discounts

The CPU/Memory often falls short for most 'consumers' workloads,

creating scalability challenges in ECS/Beanstalk based on

SQS/Kinesis/Kafka load.

Sudden Increases in

Traffic

CPU/Memory

Limitations

Near Real-Time

Scaling
We cannot afford delays due to the critical nature of our operations.

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Community’s Scaling Solution

ECS Autoscaling with SQS & Custom Metrics

● EventBridge Scheduled Event:

● Triggers Lambda periodically (e.g., every 5 minutes).

● Lambda polls ApproximateNumberOfMessages from SQS.

● Calculates backlog per task based on current ECS tasks.

● CloudWatch Custom Metric:

● Monitors messages in the queue per task.

● Metric value determined by Lambda.

● Target Tracking Policy:

● Scales ECS service based on custom metric & set target

value.

● Analogous to a thermostat: set desired value, system

adjusts.

● CloudWatch Alarms:

● Invokes scaling policy based on backlog per task

measurements.

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

● Customizing these solutions for developers, especially when integrating

with Kinesis/Kafka/Prometheus or non-AWS services, can be challenging.

● Publishing custom metrics often requires altering application logic,

hindering cloud nativity and increasing effort.

● The costs associated with solutions like Lambda and custom metrics can be

significant.

Challenges with Community AutoScaling Methods

● We require near real-time scaling , cannot afford timeouts due to the

critical nature of our operations.

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

32

EKS & KEDA scaler to the Rescue

● Keda allows you to scale any deployment resource or

job based on events, not only CPU / Memory

● KEDA integrates with popular event sources like SQS,

Prometheus, Kinesis, Kafka and much more.

● KEDA is a Kubernetes-based event-driven autoscaler that

aims to make Kubernetes event driven scaling very

simple.

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

33

How Keda Works?

● You can tweak HPA related settings

● You can use multiple scaler under triggers.

● Create ScaledObject/ScaledJob

apiVersion: keda.sh/v1alpha1

kind: ScaledObject

metadata:

name: sqs-consumer

spec:

scaleTargetRef:

name: example-sqs-consumer

pollingInterval: 30

minReplicaCount: 1

maxReplicaCount: 100

fallback:

failureThreshold: 3

replicas: 6

triggers:

- type: aws-sqs-queue

metadata:

queueURL: https://sqs...com/account_id/QueueName

queueLength: "5"

awsRegion: "eu-west-1"

● KEDA creates the HPA and provide required metrics to

it.

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

KEDA architecture

● The KEDA-operator poll the metrics from external sources and

stores it, it also activates and deactivates Kubernetes Deployments

to scale 0←>1.

●Metric-adapter: acts as a Kubernetes metrics server that exposes

rich event data like queue length or stream lag to the Horizontal

Pod Autoscaler to drive scale out.

●Admission-controller: ensure best practices, preventing issues like

multiple ScaledObjects targeting the same scale point.

source: KEDA docs

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why Choose KEDA Over HPA?

KEDA offers easy fallback

mechanisms and intuitive

configurations, making it

more developer-friendly.

HPA's custom metrics

often require publishing

metrics to CloudWatch

and deploying additional

components in the

cluster, adding

complexity and effort,

AWS deprecated

cloudwatch adapter.

KEDA has the ability to

scale down to zero,

allowing for efficient

resource utilization.

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How Careem Uses KEDA ?

36

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How Careem uses KEDA cont

Scaling based on SQS messages Scaling based on Kinesis ShardCount For Scaling HTTP services and Kafka
consumer we rely on prometheus scaler

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How Careem uses KEDA cont

spec:

minReplicas: 2

maxReplicas: 25

pollingInterval: 6 # How frequently we should go for

metrics (in seconds)

cooldownPeriod: 300

fallback:

failureThreshold: 5

replicas: 25

triggers:

- type: aws-sqs-queue

metadata:

queueURL: <QUEUE_URL>

queueLength: "10" # How many messages can a pod

handle in a specific time

awsRegion: "eu-west-1"

identityOwner: operator

Scaling based on SQS messages

● KEDA periodically polls the SQS queue to retrieve the

ApproximateNumberOfMessagesVisible metric

● Based on the current number of messages in the queue and the

thresholds defined (e.g., queueLength), KEDA decides whether

to scale your workload up or down.

● fallback is usually equals the maxReplicas

● identityOwner = operator since most of our SQS’s are in the

same account as KEDA

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How Careem uses KEDA cont

triggers:

- type: aws-kinesis-stream

authenticationRef:

name: keda-trigger-auth-aws-credentials

metadata:

awsRegion: eu-west-1

shardCount: '1'

streamName: k8s-container-logs

identityOwner: pod

Scaling based on Kinesis Shards

● KEDA periodically checks the number of shards in the specified

Kinesis stream.

● Based on the current number of shards and the shardCount

defined (which represents the number of shards a single pod

can handle), KEDA decides whether to scale your workload up or

down.

● To scale Kinesis Shards we use a custom solution built on

Lambdas.

● Since most of our Kinesis streams are in different accounts we

use identityOwner = Pod with TriggerAuthentication to

authenticate using AWS_ROLE

apiVersion: v1

kind: Secret

metadata:

name: test-secrets

data:

AWS_ROLE_ARN: <encoded-iam-role-arn>

apiVersion: keda.sh/v1alpha1

kind: TriggerAuthentication

metadata:

name: keda-trigger-auth-aws-credentials

namespace: keda-test

spec:

secretTargetRef:

- parameter: awsRoleArn

name: test-secrets

key: AWS_ROLE_ARN

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How Careem uses KEDA cont

spec:

minReplicas: 2

maxReplicas: 25

pollingInterval: 30

advanced:

horizontalPodAutoscalerConfig:

scaleDown:

stabilizationWindowSeconds: 300

policies:

- type: Percent

value: 100

periodSeconds: 60

triggers:

- type: prometheus

metadata:

serverAddress: http://prom.link:port

metricName: http_server_requests_seconds_count

threshold: "120"

query: sum(rate(http_server_requests_seconds_count{}[5m]))

Scaling based on Custom Metric

● KEDA periodically query prometheus for the metric.

● KEDA will divide the threshold to the metric’s result to

specify the number of pods.

● overriding default scaleDown behaviour is crucial for

stable scaling and to prevent fluctuating.

● we use it to scale HTTP services mostly

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Results of using KEDA and moving to EKS

0 incidents

No incident contributed to

Autoscaling

90%

Cost Savings - Scaling Down Min

Replicas down to 2

100%

Cost Savings on staging - Scaling

Down Non HTTP Services to 0

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fallback issue with PrometheusConflicts with Kubernetes native rollout

method

Flagger

Challenges Encountered

01 02 03

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges: Progressive Delivery with KEDA

● Current Setup: Using Flagger for progressive delivery in our clusters.

● Challenge:

● Flagger's limitation with consumer-based workloads due to the absence of

HTTP traffic.

● Solution:

● Adopted Kubernetes native rollout method.

● Heavy reliance on probes for health checks.

● Issue with KEDA:

● On new deployments, KEDA scales the new replicaSet to match the old one

immediately.

● Results in rapid promotion during rollout.

● Risk: Faulty deployments get promoted quickly.

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Combining Progressive Delivery & KEDA Autoscaling: Our Solution

● Objective: Merge the benefits of progressive delivery with metrics analysis,

KEDA autoscaling, and granular control over new deployments.

● Decision: Adopted Argo Rollouts.

● Benefits:

● Granular control over new deployment stages.

● No conflicts with KEDA.

● Harmonious integration of progressive delivery and autoscaling.

steps:

- setWeight: 10

- pause: { duration: 30s }

- analysis:

templates:

- templateName: sqs-error-rate

- setWeight: 100

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenges: Prometheus Scaler & KEDA An Incident Avoided

● Issue:

● In case of losing Prometheus target, KEDA should fallback to a predefined

number of replicas. This is the behaviour in SQS and Kinesis scalers.

● Reality:

● Lost Prometheus target in production.

● Expected Behavior: KEDA should fallback to a defined number of replicas.

● Actual Behavior: KEDA scaled down the deployment to minimum replicas.

● Root Cause:

● Default behavior returns an empty list when Prometheus target is lost, This

empty list is interpreted as a 0 value, leading to the scale-down.

● Solution:

● Set "ignoreNullValues" to false to address the issue.

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best Practices & Falloffs

1. Override default scaleDown behaviour with stabilization window to prevent scaling fluctuation.

2. Handle Null Values: Be aware of the "ignoreNullValues" setting. If your metrics source might return
null or empty values, configure this setting appropriately to prevent unintended scaling.

3. Fine-tune Poll Interval as it is only relevant when scaling 0<->1 .
● 1<->N scaling is controlled by HPA –horizontal-pod-autoscaler-sync-period defaults to 15

seconds
● To prevent excessive API calls and improve performance consider using “Metric Cache”

46

SCALING CONTAINERIZED APPLICATIONS WITH AMAZON EKS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

Sami Shabaneh

https://www.linkedin.com/in/thasami/

Talal Shobaita

https://www.linkedin.com/in/talalshobaita

