
© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 1

Architecting Secure 
Serverless and 
Containerized Applications

Josh Kahn

AWS

Tech Leader, Serverless

Jimmy Ray

AWS

Sr. Developer Advocate, AWS Kubernetes



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Security is everyone’s job

Werner Vogel
AWS CTO

2



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Four principles to securing modern applications

1. Understand shared responsibility model

2. Grant least privilege

3. Implement defense in depth

4. Secure your software supply chain

3



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Building modern applications with microservices

AWS Step 

Functions 

fulfillment 

workflow

Payment service

Loyalty service

Order service

Software supply chain

4



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Security considerations for microservices

• More transient and dynamic

• More distributed and complex

• More services interdependencies over network

• Scheduling / scaling / resource management

• Isolation is similar to virtual machines, but different:

• May share a kernel

• May share a network and a network interface

5



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

(Subset of) Options to build microservices

AWS 
Fargate

AWS 
Lambda

Amazon 
EKS

Amazon 
ECS

6



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Comparison of operational responsibility

Lambda
Serverless functions

Fargate
Serverless containers

Amazon ECS/

Amazon EKS
Container management as a service

Amazon EC2
Infrastructure as a service

More opinionated

Less opinionated

AWS manages Customer manages

• Data source integrations
• Physical hardware, software, networking, 

and facilities

• Provisioning

• Application code

• Container orchestration, provisioning
• Cluster scaling

• Physical hardware, host OS/kernel, 
networking, and facilities

• Application code
• Data source integrations

• Security config and updates, network config, 
management tasks

• Container orchestration control plane
• Physical hardware software, 

networking, and facilities

• Application code
• Data source integrations

• Work clusters
• Security config and updates, network config, 

firewall, management tasks

• Physical hardware software, 
networking, and facilities

• Application code
• Data source integrations

• Scaling
• Security config and updates, network config, 

management tasks
• Provisioning, managing scaling and 

patching of servers

7



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Security Principle #1:
Shared Responsibility 
with AWS

8



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Foundation Services

Compute Storage Database Networking

AWS Infrastructure Regions, AZs & Datacenters

Client-side Data Encryption & Data 

Integrity Authentication

Server-side Encryption 

(File System and/or Data)
Network Traffic Protection

(Encryption/Integrity/Identity)

Platform, Applications, Identity & Access Management

Operating System, Network & Firewall Configuration

Customer Data
A

W
S

C
u

st
o

m
e

r

Customers are 

responsible for 

their security and 

compliance IN the 

Cloud

AWS is 

responsible for 

the security OF

the Cloud

Security principle #1: Shared Responsibility with AWS

9



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Compute Storage Database Networking

AWS Infrastructure Regions, AZs & Datacenters

ECS/EKS Control Plane

Responsibilities change with AWS Fargate

A
W

S
 I

A
M

Data Client-Side 

Encryption

Server-Side 

Encryption
Network Traffic 

Protection

Network

Config
NACLs

Security 

Groups
Route Tables VPC

Worker Node Configuration Hardening Monitoring Patching

Task/Pod

Container Hardening Monitoring Patching

Application

C
u

st
o

m
e

r 
IA

M

Managed by AWS

Managed by 

Customer

10



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Security benefits of AWS Fargate

We do more, you do less.

• Patching (OS, Docker, Amazon ECS agent, etc.)

• Task isolation

• No --privileged mode for containers

• AES-256 Server side encryption of ephemeral storage

11



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Container orchestration

AWS managed control planes

• Elastic Container Service (ECS)

• Elastic Kubernetes Services (EKS)

• Responsible for managing the 

scheduling and lifecycle of containers

Data plane

• Self managed EC2

• Managed node groups (EKS only)

• Fargate (ECS and EKS)

12



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Compute Storage Database Networking

AWS Infrastructure Regions, AZs & Datacenters

Operating System & Network Configuration

Customer Data, Applications, IAM
A

W
S

C
u

st
o

m
e

r

With Serverless, AWS takes an even greater share of 
responsibility

A
W

S
 I

d
e

n
ti

ty
 &

 A
cc

e
ss

 M
a

n
a

g
e

m
e

n
t

Platform Management
Code Encryption

(Data at rest)

Network Traffic Protection

Firewall Configuration
(Data in transit)

Data Encryption & Integrity

Authentication

Application 

Management

Internet Access

Monitoring & Logging
(Tools provided by platform)

13



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Lambda service composed of control plane and data plane

Control Plane

• Management APIs, such as:

• CreateFunction

• UpdateFunctionCode

• Requires IAM permission to access

Data Plane

• Invoke Lambda function via Invoke

• Requires IAM permission or resource policy

• When invoked, data plane runs code on:

• Existing execution environment, if exists

• New environment, after allocation

Data plane

Controller

Requests

ResponsesClient

14



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Security Principle #2:
Least Privilege

15



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Security principle #2: Least Privilege

• Grant only the essential privileges 

needed to perform intended work

• Attach to compute via execution role

• Prefer unique role per function 

or task

• Enforce permission boundaries

• Be specific: identify limited set of 

resources and actions allowed

• Scrutinize use of “*”

16



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Use AWS IAM to assign and audit fine-grained 
permissions

• IAM roles can be assigned to:

• ECS Tasks 

• Kubernetes Pods

• Lambda Functions

• Step Functions Workflows

• … and more …

• Allow (or deny) access to AWS APIs 
(management, data planes)

• Periodically audit access

• AWS Access Advisor

• Amazon CloudTrail Insights

• Kubernetes audit log/CloudWatch

17



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

User access

Apply principles of least privilege.

• Authenticate all user access to hosts 

and containers.

• Implement IAM policies and roles to 

restrict access to only required 

services.

• Restrict access and write permissions 

to image registry.

AWS Identity and Access 

Management (IAM)

Permissions Role AWS CloudTrail

Security, 
Governance, and 

Oversight

Authentication 

+ 

Authorization

+

Audit/Log 

18



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Security Principle #3:
Practice Defense in Depth

19



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Common vectors of attack

SQL Injection

Cross-site Scripting (XSS)

OWASP Top 10

Common Vulnerabilities and 

Exposures (CVE)

Libraries

Distributions

Base Images

App Vulnerabilities Dependencies

Patching

Network Segmentation

Host / Network

20



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Security principle #3: Practice Defense in Depth

• Implement multiple, redundant 

measures across system to address 

common attack vectors

• Leverage AWS managed services and 

integrations

• Consider service features, e.g. backup 

and encryption

Amazon

API Gateway

AWS Lambda

Function

AWS Fargate

Task
Amazon DynamoDB

Table

Amazon S3

Bucket

AWS Identity and 

Access 

Management (IAM)

AWS WAF

AWS KMS Key

21



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Container versus Virtual Machine

Infrastructure

Host OS

Hypervisor

Application 1

Guest OS 1

Binaries 1

Application 2

Guest OS 2

Binaries 2

Application 3

Guest OS.3

Binaries 3

Infrastructure

Host OS

Container 

Engine

Application 1

Binaries 1

Application 2

Binaries 2

Application 3

Binaries 3

Virtual Machine Containers

22



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Physical Server 

Hypervisor 

Guest kernel & OS 

Fargate Agent 

Container Runtime

Fargate Task

EC2 Instance

Container
Another 

Fargate Task

One & only one task per EC2 instance

Trusted 

Untrusted 

Hardware 
virtualized 

Fargate Instance

cgroups, 
namespaces, 

seccomp

23



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Containers: Runtime security options

• Containers run as processes on the Linux 

kernel

• Linux options:

• cgroups

• namespaces

• Linux capabilities

• seccomp*

• AppArmor*

• SELinux*

* Not applicable to serverless containers (Fargate)

• 3rd party and open source security options 

include:

• Aqua

• Falco (CNCF project)

• PA Primsa

• Redhat StackRox

• Sysdig Secure

24



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Containers: Network security options

Service specific options

• EKS

• Kubernetes Network Policies

• Security Groups for Pods

• App Mesh (TLS & mTLS)

• SSL/TLS (load balancing/ingress)

• ECS

• Security Groups for Tasks

• App Mesh (TLS & mTLS)

• SSL/TLS (load balancing)

• Restrict communication between: 

• Pods and Tasks

• Containerized applications and 

other resources that run within or 

outside the VPC

• Encrypt traffic between: 

• Pods, Tasks, Instances, Lambda 

functions (future)

• AWS load balancers and 

tasks/pods

25



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Fargate networking: A deeper look

Fargate VPC

EC2 Instances

Physical Server

Hypervisor 

Guest kernel & OS

Fargate Agent

Container Runtime

Your containers

EC2 Instance

Fargate task

eth0 
Fargate ENI

eth1 
Customer ENI

Your VPC

Other entities in your VPC

Managed by EC2

User space

Managed by Fargate

26



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Fargate: Process isolation

Fargate implements a shared nothing architecture

• Disk

• Memory

• CPU

• Network

Each task/pod runs as a separate virtual machine (EC2 or 

Firecracker)

Both VM types provide a hard security boundary

27



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Firecracker is built on KVM, the same 
hypervisor that EC2 Nitro instances are 
built on. 

Hardware virtualization ensures that 
tasks from different customers can run 
safely on the same physical machine.

28



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Managed by EC2

Firecracker MicroVM

Fargate on Firecracker networking: A deeper look

Physical Server

Host OS 

Fargate Agent

firecracker-containerd

EC2 Bare Metal Instance

Firecracker VMM

Guest kernel & OS 

Fargate task
Your containers

Fargate ENI 
on bare 

metal 
instance

Customer 
ENI on 

MicroVM

Fargate VPC

Control Plane

Managed by Fargate

User Space

29



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Fargate ENI 
on bare 

metal 
instance

Firecracker MicroVM

Firecracker enhances isolation of tasks

Host OS 

Fargate Agent

firecracker-containerd

EC2 Bare Metal Instance

Firecracker VMM

Fargate task
Your containers

Hardware virtualized 
Trusted 

Container Boundary

cgroups, namespaces, seccomp
Untrusted 

Guest kernel & OS 
Reduced Surface Area 

of exposure

Fargate VPC

Control Plane Managed by EC2

Managed by Fargate

User Space

Physical Server

Customer 
ENI on 

MicroVM

30



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Function, 

Layer Code

Lambda

Runtime

Execution 

Environment

MicroVM

Function, 

Layer Code

Lambda

Runtime

Execution 

Environment

Function, 

Layer Code

Lambda

Runtime

Execution 

Environment

Function, 

Layer Code

Lambda

Runtime

Execution 

Environment

Hypervisor

Host OS

Lambda Worker (EC2 Instance, bare metal)

Lambda Function

Boundary

AWS Account Boundary

Lambda Function isolation

• Each function runs in a dedicated

execution environment

• Each execution environment handles 

one concurrent invocation

• Execution environment may be 

reused between invocations

• Use caution when storing sensitive 

data in memory or /tmp

• AWS maintains runtime and execution 

environment

• Patching, etc.

• Does not apply to container packaging

MicroVM MicroVM MicroVM

31



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Serverless architectures are small pieces, 
loosely joined

32



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Securing a Serverless web service

Amazon

API Gateway

AWS

Lambda

Amazon

DynamoDB

AWS WAF

XSS rules

SQLi rules

OWASP Top 10

Request validation

Authorization

mTLS

Rate limiting

Throttling

Sanitize input

Execution Role

Minimize dependencies

Vulnerability scanning

33



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

• Options for authorization:

• IAM

• Cognito user pool/JWT

• Lambda authorizer

• Can be used with:

• AWS WAF

• Resource policies

• Mutual TLS (mTLS)

Amazon

API Gateway

AWS Lambda

function

AWS Fargate

task
Amazon DynamoDB

table

Amazon S3

bucket

Common ask: How do I secure access to my API? Are 
API keys good enough?

34



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Common ask: Should my Lambda function be VPC-enabled?

• Lambda functions always run in VPCs 

owned by the Lambda service team

• When VPC enabled, configured with 

access to your VPC via an ENI

• Lambda functions are always invoked 

via Invoke action

• Access controlled by AWS IAM

• Answer: Only if your function:

• Needs access to resources in the VPC

• Desire to restrict outbound network 

path

Customer VPC AWS Lambda Service VPC

VPC to VPC

NAT

Elastic network

interface(s)

35



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Security Principle #4:
Secure Your Software 
Supply Chain

36



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Security principle #4: Secure Your Software Supply 
Chain

• Keep it simple

• Prefer single responsibility

• Easier to debug; cleaner IAM privileges

• Never hardcode secrets in code

• Use AWS Secrets Manager, Parameter Store

• Again, never…

• Leverage code and vulnerability 

scanning

• Don’t forget dependencies

do “x”

do “y”

do “z”

37



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Components of the software supply chain

• Base image*

• Language runtime*

• Open source, third-party packages

• Your code

Kernel

Base Image

Image

Image

Container
references

parent

image

* May be supplied and/or managed by AWS

38



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Managing dependencies is key

• Understand you dependencies: https://deps.dev/

• Minimize dependencies

• Keep dependencies up-to-date to reduce risk and effort

• Software Bill of Material (SBOM)

• Leverage dependency check tools, such as:

• OWASP

• Protego

• Snyk

• Twistlock

• Puresec

39



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Build secure container images for Fargate and Lambda

Minimizing the attack surface

• Create images from Scratch

• Create minimal images (docker-slim)

• Use distro-less images without package manager or shell

• Run the application as a non-root user

• “Defang” your containers

• Lint your Dockerfiles with Dockle or Hadolint

• Scan your images for vulnerabilities (CVEs)

40

https://github.com/goodwithtech/dockle
https://github.com/hadolint/hadolint


© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Securing your code

Educate about writing secure code

Perform static code analysis (whitebox testing)

Perform dynamic security testing

• Proactively inject faults into the application

• Fuzz testing

41



© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 

Thank you!

42


