
E-book:

How to choose the
best application
modernization journey
A roadmap to a cloud-native transformation

Introduction
Application modernization is the process of progressively transforming applications,
infrastructure and processes to gain the availability, scalability, business agility and
cost optimization benefits that the cloud was designed to offer. Modernization is not
about meeting the needs of a single point in time, because it’s not trying to achieve
a static state. Instead, it’s ever changing in ways that allow organizations to meet the
needs of the present and future — in particular, the frequency required to consistently
deliver value to customers.

Why modernize?
It’s no surprise that today 90% of CEOs believe their industry will be disrupted
(McKinsey). They believe that the next Uber or Netflix will come along and unseat
them. To remain competitive, 67% of business leaders believe they have to move to a
high-frequency mode (Gartner) (source: https://aws.amazon.com/blogs/enterprise-
strategy/tackling-transformation-you-can-get-there-from-here/). Even if a new startup
isn’t coming along to unseat them, they still want to deliver new experiences to their
customers more frequently, stay relevant and provide more value.

Moving from low to high frequency
Achieving a high-frequency state means having the ability to reduce innovation
delays so that organizations can develop new features and capabilities faster. Large
organizations burdened by existing workflows and legacy applications are likely to be
low frequency. Younger and more nimble companies often operate at a high frequency.
The difference is significant. Companies that have successfully implemented high-
frequency practices deliver value 46 times more frequently than traditional, low-
frequency enterprises (Puppet Labs State of DevOps Report).

Low High

No change is
the default state

Change is
constant

Frequency

Caption: The Frequency Spectrum: On the left you have low frequency enterprises where no change is
the default state. Change is hard, risky, and takes a lot of time and effort. Versus the right side where
change is constant. There is a flywheel of frequent value delivery. Ideas are considered hypotheses,
and teams are closer to customers and generally more focused on customer value.

Low High

No change is
the default state

Change is
constant

Frequency

of CEOs believe
their industry will
be digitally disrupted 90%

feel well
positioned to
execute on a
high frequency
digital strategy

15%

Caption: According to McKinsey, 90% of CEOs believe their industry will be digitally disrupted, but only
15% feel well-positioned to execute on a high frequency digital strategy. (source: https://aws.amazon.
com/blogs/enterprise-strategy/tackling-transformation-you-can-get-there-from-here/). Containers
versus virtual machines

The Frequency Spectrum

Enterprises Feel Pressure to Close the Gap

2Onica E-book How to Choose The Best App Modernization Journey

A new approach to high frequency
As organizations are experiencing this paradigm shift, they’re in the process of moving
from old-school, single-application monoliths to modern applications. This shift is
driven by a process that begins with winning customers, then working backwards.

Our goal is to automate and abstract away as much as possible so
customers can focus on building applications for their business

Win Customers Build better
products

Release
features
faster

Experiment
and Innovate
more often

Focus on
business logic

Decouple
software

1. To win more customers, you need to build better products

2. To build better products, you need the ability to release features faster

3. To release features faster, you need to experiment and innovate often

4. To experiment and innovate often, you need the ability to focus on differentiating
business logic

5. To differentiate business logic, you need to enable better release processes and
decouple your software systems

6. To decouple software systems, you need to break up the monolith into smaller
microservices so they can be released at their own pace

The hallmark of a modern application centers around shrinking the project scope
to solve business challenges faster. This means automating everything to support
rapid and continuous innovation and applying the right tools to create purpose-built
solutions with less effort and lower costs.

To carry out an application modernization initiative, organizations must apply
structure to applications with modern frameworks, such as microservices or domain-
driven design. Whenever possible, they must use cloud-native technologies versus
trying to shift legacy IT to the cloud. And they must look for ways to use code to
model applications and infrastructure versus building them by hand. While the
path to modernizing applications can be complex, the benefits are well worth the
journey, including:

 • Everything is automated, codified and programmatic, so releases are easy
and consistent

 • Applications are resilient and elastic, automatically adapting to usage spikes and
transparently healing from service outages

 • Everything is modular and interoperable, which provides the confidence
to move quickly

 • Security is built into every aspect of the application lifecycle rather than being added
at the end of development to reduce the likelihood of risk

Three application modernization journeys
So how do organizations achieve these desired outcomes? There are three primary
options: container platforms, serverless and cloud-native replatforming. Each approach
offers different opportunities and advantages.

Containers — self-contained platforms
A container is a lightweight, stand-alone, executable package of software that includes
all of the elements needed to run applications, including code, runtime, system tools,
system libraries and settings. It has long roots in other technologies, but Docker
changed the game when it simplified the creation, management and operation of
containers, making them more approachable for nearly any type of application.

Containers deliver a wide range of benefits, including:

 • Bridges the gap from a simple lift-and-shift to full cloud-native serverless

 • Delivers a portable application environment that can run anywhere, providing
support for hybrid strategies

 • Packages applications and dependencies into a single artifact that simplifies
deployment and promotion across environments

 • Isolates software from its surroundings in self-contained packages

 • Reduces conflicts between teams running different software on the same
infrastructure

 • Speeds up development and deployment cycles

 • Provides better resource utilization

Focus on business value, win customers

3Onica E-book How to Choose The Best App Modernization Journey

Containers versus virtual machines
When comparing containers to virtual machines (VMs), organizations gain many
advantages, including reducing application size, becoming more agile, scaling faster
and deploying rapidly.

AWS delivers services for containers
We no longer live in a world with a single database or architectural option. For example,
Amazon Web Services (AWS) is providing ways for organizations to shrink the scope of
their initiatives, offload the undifferentiated parts, choose the right tool for the job and
automate everything. In this way, organizations can build modern applications that win
customers and retain their competitive
advantage in the marketplace.

AWS offers a range of compute, orchestration and registry services to help run
containers, including those depicted in this image:

Compute Orchestration Registry

AWS Fargate

Amazon Elastic Compute
Cloud (EC2)

Amazon Elastic
Container Service
(ECS)

Amazon
ECS Anywhere

Amazon Elastic
Kubernetes Service
(EKS)

Amazon EKS
Anywhere

Amazon Elastic
Container Registry

Registry

Amazon Elastic
Kubermetes Distro

Serverless supports self-healing and autoscaling
applications
Serverless computing introduced a unique capability into the IT world. It provided a
place where applications run without much management. This has allowed them to
focus on application development without worrying about infrastructure constraints. It
has enabled organizations to break free from the constraints of maintaining the place
where their applications run, so they can focus on the application itself and what it
needs to do. This freedom supports several advantages, including:

 • Reduces operational complexity and increases developer productivity

 • Reduces most concerns around provisioning and utilization, availability, fault
tolerance, scaling, operations and management

 • Supports innovation by freeing internal teams to focus on business challenges

 • Frees organizations from dealing with legacy issues that predate it

 • Speeds up time-to-market

 • Reduces infrastructure costs by eliminating the need to pay for idle resources

AWS delivers services for serverless
When most people think of serverless, they think of compute and AWS Lambda. While
Lambda epitomizes the serverless revolution, it’s just the tip of the spear. AWS provides
a serverless ecosystem that consists of a number of services that, when combined,
help build fully serverless applications, for example:

Serverless operation best practices
There are three key ways to make the most of serverless environments, including
strategic code organization, serverless-specific tooling to enable automated
deployment, and streamlined operations and governance. Together, they make
serverless an important consideration when organizations want to develop
modern applications.

Containers AWS Services

4Onica E-book How to Choose The Best App Modernization Journey

Strategic code organization: AWS Lambda functions should contain the minimal
code required to handle an event — from an API, IoT message, or other trigger —
before handing off processing into code that’s abstracted from the runtime. By
following this organization pattern, developers can continue to leverage best practice
code organization techniques, including those that enable automated unit and
integration testing.

Serverless-specific tooling: Serverless apps have dozens or even hundreds of
moving parts, which means deploying by hand is not only a waste of time, but nearly
impossible. Moreover, to effectively test apps, developers must constantly deploy them
to AWS, overwhelming traditional infrastructure as code (IaC) approaches. Serverless-
specific IaC tools provide the right level of abstraction to ensure simple and quick
deployments for each developer, as well as promotion paths to quality assurance
and production.

Automated operations and governance: The number of pieces involved in a serverless
app means operations and security teams struggle to identify problems and security
issues. Rather than requiring pre-approval and manual audits for every developer
decision, automated monitoring techniques and security guardrails provide operations
and security teams with the visibility and governance required, without stifling
developer innovation or reducing overall project velocity.

Cloud-native replatforming — lift, tinker and shift
This is a leading-edge option. By incorporating cloud managed services, organizations
gain elasticity and responsiveness without rebuilding their applications.

To understand cloud native replatforming, think of it as a process of “lifting, tinkering
and shifting” to a cloud-native environment, while minimizing intrusive code change.
By adding tinkering to the traditional lift-and-shift paradigm, application environments
can be simplified. For example, instead of managing a database cluster, leveraging
Amazon Relational Database Service (RDS), offloads complex but undifferentiated work
around software patching, data durability, availability, scaling and backup management
to AWS. Though the applications don’t change, the simplified environment improves the
overall application experience and allows teams to focus on what matters.

Server Farm (on-premises)

VM VMVM

Web Tier

VM
Application

Tier

Memcache
Server

Database
Server

Log Server

Web Tier

Application
Tier

Auto-Scaling
Groups

Amazon
EC2

AWS Auto
Scaling

Application
Lead Balancer

AWS
CloudFormation

Amazon
CloudWatch

Amazon
ElastiCache

Amazon Elastic
File System
(Amazon EFS)

Amazon
Relational
Database
Service
(Amazon RDS)

AWS
CodeCommit

AWS
CodePipeline

AWS
CodeDeploy

Managed services for cloud-native replatforming
Cloud-native replatforming is moving applications to the cloud in a way that enables
you to take advantage of the benefits that the cloud was designed to deliver. Managed
services play a significant role in this process.

To embrace managed services for cloud-native replatforming, organizations need
to identify the nonproprietary services they’re running and managing with their
applications. Common dependencies include databases, queues, cache layers, load
balancers, API gateways, email-sending services and container orchestration layers.
Finally, they need to identify AWS managed solutions that can replace the dependency
to simplify overall management responsibilities.

The goal is not to replicate what the organization had on-premises, but rather, to
take what they had and pull off the pieces that aren’t unique to it, such as relational
databases, and then switch those to a managed solution, such as Amazon RDS. In
this way, without really changing the applications, organizations can improve their
reliability, reduce their management overhead and save money.

What does “Cloud Native Replatforming” mean?

5Onica E-book How to Choose The Best App Modernization Journey

AWS delivers services for cloud-native replatforming
AWS provides a range of services to support cloud-native replatforming
operations, including:

AWS native services:

 • AWS CodeCommit: source control

 • Amazon CloudWatch: monitoring

 • AWS CodeDeploy: deployment

Reducing operational pain:

 • AWS Auto Scaling: elasticity and resiliency

 • AWS CloudFormation: automated and consistent infrastructure management

 • Amazon Elastic File System: automated backups

Lowering cost:

 • Amazon CloudWatch: accountability

 • AWS Lambda: usage-based billing

Iterative DevSecOps:

 • AWS CodePipeline: multi-environment

 • AWS Config: governance and guardrails

Which modernization path should you choose?
There are considerations and tradeoffs for containers, serverless and cloud-native
replatforming. The right approach for you will depend on your specific workloads,
processes, and team’s level of understanding and maturity. As your capabilities evolve,
you can start to incorporate other approaches to the mix. The goal is to match your
specific workloads to the right approach at the right time.

The following insight provides guidance for making the best decision for your
organization.

When to consider containers
The common lingua franca of all cloud providers, offers portability, scalability and
immutability:

 • When consistency between stages, clouds and environments is a priority

 • When you want to develop microservices applications using familiar languages
and frameworks

 • If you’re just beginning to break apart monolithic applications and you need a
good steppingstone

 • In situations that require rapid scaling, potentially across platforms

 • When you need to build stateful or long-running applications

When to consider serverless
Next-level abstraction, moving applications further away from the infrastructure, with
usage-based billing:

 • Public cloud as the primary deployment target is a good place to start

 • Event-driven workloads, such as API backends or stream-processing applications

 • Short-lived, responsive applications that typically complete a task in seconds

 • Net-new or rebuilt applications or services, where prior architecture and tools don’t
constrain technical decisions

 • In stateless applications, where data can be stored externally versus applications
that require in-memory

 • When hybrid deployments and cloud-to-cloud portability are not requirements

6Onica E-book How to Choose The Best App Modernization Journey

About Onica by Rackspace
Technology
Onica by Rackspace Technology is the dedicated
Amazon Web Services (AWS) business unit at
Rackspace Technology serving North America.
Onica helps customers drive innovation, agility,
cost savings and operational efficiency in the
AWS cloud. Onica delivers professional services
and engagement practices focused on bringing
the most cutting-edge AWS capabilities to
every customer through deep expertise in AWS
strategy, cloud native development, containers,
application modernization, AI and machine
learning, and IoT. With in-depth advisory services
built on 15 competencies and experience with
1,000+ customer launches, Onica by Rackspace
Technology is here to help you accelerate cloud
native transformation on AWS.

Learn more at
rackspace.com/onica-by-rackspace-technology or
call 1-800-961-2888.

© 2023 Rackspace US, Inc. :: Rackspace®, Fanatical Support®, Fanatical Experience™ and other
Rackspace marks are either service marks or registered service marks of Rackspace US, Inc . in
the United States and other countries . All other trademarks, service marks, images, products
and brands remain the sole property of their respective holders and do not imply endorsement
or sponsorship.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS A GENERAL INTRODUCTION TO RACKSPACE
TECHNOLOGY SERVICES AND DOES NOT INCLUDE ANY LEGAL COMMITMENT ON THE PART OF
RACKSPACE TECHNOLOGY.

You should not rely solely on this document to decide whether to purchase the service.
Rackspace Technology detailed services descriptions and legal commitments are stated in its
services agreements. Rackspace Technology services’ features and benefits depend on system
configuration and may require enabled hardware, software or additional service activation.

Except as set forth in Rackspace Technology general terms and conditions, cloud terms of service
and/or other agreement you sign with Rackspace Technology, Rackspace Technology assumes
no liability whatsoever, and disclaims any express or implied warranty, relating to its services
including, but not limited to, the implied warranty of merchantability, fitness for a particular
purpose, and noninfringement.

Although part of the document explains how Rackspace Technology services may work with
third party products, the information contained in the document is not designed to work with all
scenarios. any use or changes to third party products and/or configurations should be made at
the discretion of your administrators and subject to the applicable terms and conditions of such
third party. Rackspace Technology does not provide technical support for third party products,
other than specified in your hosting services or other agreement you have with Rackspace
Technology and Rackspace Technology accepts no responsibility for third-party products.

Rackspace Technology cannot guarantee the accuracy of any information presented after the date
of publication.

Rackspace-Ebook-App-Modernization-on-AWS-TSK-8146-V2 :: March 8, 2023

When to consider cloud-native replatforming
Leverage a “rising tides lifts all boats” approach:

 • Applications that are being actively developed or have
recently evolved can use cloud-native replatforming
to recoup that investment and continue to grow

 • When you’re using off-the-shelf commercial software
that you want to make more cloud native

 • When you have integrated software platforms, such
as ERP, that are highly complex within your cloud-
native platforms

 • If you want to improve pieces of an application that
are creating dependencies or technical debt, but you
don’t want to reinvent the entire application

 • If you’re replacing single-function VMs and self-
managed dependent services with PaaS

 • If you’re looking to enable automation and auto-
scaling without investing in an entirely event-
driven approach

 • If you’re looking to embrace DevOps and need to
modernize legacy workloads as a steppingstone
toward improving some of your larger
operational concerns

Questions to consider
As you make your transition, you want to do more
than just select tools. You want to ensure your team is
structured in a way that supports the new development
process. The right approach will find the right balance.
To choose the best path forward, consider your answers
to these questions:

 • How do we approach this from an infrastructure-
as-code perspective, in other words, automate the
provisioning of infrastructure and applications?

 • How do we build applications and structure for our
team to test as early in the process as possible, and
automate testing before it reaches users?

 • How do we build and monitor safety every step of
the way to reduce organizational risk while becoming
more high frequency?

 • What capabilities do we need to innovate quickly to
meet the needs of our customers in ways that help us
continue to stay relevant in the marketplace?

Choose your modernization journey
Choosing between the three main pathways to
application modernization is largely based on the age
of your application, its need to change and your ability
to change it. By following one of these pathways, you
will be able to leverage AWS services to modernize an
existing application system, solution or workload.

To achieve the best of all worlds on your journey to
application modernization, you’ll want to consider
both the tools and the way you structure your teams
to support the development processes, and to take
advantage of best practices throughout the entire
application lifecycle management. In this way, you’ll
optimize every advantage of application modernization
— and set your organization up for maximum success.

To start down that path, request your complimentary
Application Modernization Strategy Session today.

https://www.rackspace.com/onica-by-rackspace-technology
https://www.rackspace.com/lp/app-modernization-2-hour-strategy-session

