
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved..

Migrations

Breaking the Monolith

Stefan Minhas
Solution Architect

Re-factoring your legacy

applications to microservices

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 2

External On-Demand Series:
A Customer’s Journey Modernizing Microsoft Workloads on AWS

https://tinyurl.com/awsmodernization

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 3

Application Modernization

Lab:

The Application Modernization Lab is an invitation

only no-cost program that provides AWS experts

and consulting time to upskill the in-house

development teams of Windows customers to

self-modernize their Windows hosted applications.

MAP for Windows modernization:
MAP for Windows modernization offers incentives and

guidance to help customers modernize from Windows

license-based services to AWS cloud-native services. The

pilot utilizes the an EBA-based methodology to kick-

start modernization efforts through AWS SA and

ProServe resources.

1 2

re:Think for Windows

modernization:
re:Think for Windows modernization is designed

to kick-start the customer’s modernization

journey, giving them the guidance they need to

identify a workload to transform and execute a

proof-of-concept (POC).

Windows Modernization

Program (Partner-led):

The Windows Modernization Program (WMP) is a

partner funding offer. Its purpose is to help

partners, by offsetting their fees, identify and

complete Windows modernization projects.

3 4

Windows Modernization Offerings

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The
Modernization
Journey

4

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 5

Monolithic Microservices

• Simple deployments

• Binary failure modes

• Inter-module refactoring

• Technology monoculture

• Restricted scaling

• Partial deployments

• Graceful degradation

• Strong module boundaries

• Technology diversity

• Independent scalability

The Modernization Journey

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Independent deployability is the idea that we can make a change to a

microservice and deploy it into a production environment without having to

utilize any other services.

• Get into the habit of releasing the changes for a single microservice into

production without having to deploy anything else.

• To guarantee independent deployability, we need to ensure our services are

loosely coupled; in other words, we need to be able to change one service

without changing anything else.

• The desire for loosely coupled services with stable interfaces guides our

thinking about how we find service boundaries in the first place.

6

Independent Deployability is Key

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Coupling refers to the interdependencies between modules, while cohesion describes how

related the functions are within a single module.

• Low cohesion implies that a given module performs tasks which are not closely related to

each other, and hence, can create problems as the module becomes larger.

7

Addressing Coupling and Cohesion During Modernization

INVOICING

ACCOUNT

INVOICING

Coupling

Functions

Cohesion
INVOICING

Function

Function

Function

Function

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 8

Coupling Cohesion

• Reduce coupling

• Tight coupling of

unrelated services is bad

• Expensive to change code

• Multiple changes across

unrelated services

• Increase cohesion

• Code that changes

together stays together

• How code is grouped

• Bring together tightly

related code

The Modernization Journey

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Martin Fowler (paraphrased)

9

“If you do a big bang rewrite, the only thing

you’re certain of is a big bang.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 10

Customers Need to Understand Where to Start Modernizing

ACCOUNT

INVENTORY

SHOPPING

PAYROLL

INVOICING

Increasing Benefit >>>

E
a

si
e

r
to

 E
x
tr

a
c
t

>
>

>

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Organizational
Change

11

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 12

People Process Culture Change – Poor Team Structure

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Organized on technology capabilities

Monolithic Ownership

UI Team

DBA Team

App Logic Team

Web Tier

App Tier

DB

Organizational Structure
Application Architecture

R
E

Q
U

IR
E

M
E

N
T

S
Product

Sponsor

Users
13

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 14

People Process Culture Change – Service Team Structure

 API Team

Business Logic Team

Data Team

Microservice Microservices A Microservices B

Horizontal Team Structure

 API Team

Business
Logic Team

Data Team

 API Team

Business
Logic Team

Data Team

Team A Team B

Align Teams to Services

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 15

Microservice Architectures Ownership

Organized on business responsibilities

ACCOUNT INVENTORY

Accounts team

SHOPPING

Retail team eCommerce team

Product

Sponsor

Product

Sponsor
Product

Sponsor

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Conway’s Law applies to modular

software systems and states that:

16

"Any organization that designs a system

[defined more broadly here than just

information systems] will inevitably

produce a design whose structure is a copy

of the organization’s communication

structure".

People Process Culture Change

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Modernization
Failure Modes

17

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 18

Common Modernization Failure Modes

Re-creating old problems in newer ways • Re-creating smaller monoliths

• Adding to troubleshooting nightmares

• Incrementally bloating operational burden

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 19

Common Modernization Failure Modes

Re-creating old problems in newer ways • Re-creating smaller monoliths

• Adding to troubleshooting nightmares

• Incrementally bloating operational burden

Misaligned organizational and cultural practices • Large teams without clear ownership

• Big bang releases

• Siloed product teams, disconnected customer

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 20

Common Modernization Failure Modes

Re-creating old problems in newer ways • Re-creating smaller monoliths

• Adding to troubleshooting nightmares

• Incrementally bloating operational burden

Misaligned organizational and cultural practices • Large teams without clear ownership

• Big bang releases

• Siloed product teams, disconnected customer

One vision for the future • Siloed innovation teams

• Innovation blockers with misaligned

business values

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 21

Common Modernization Failure Modes

Re-creating old problems in newer ways • Re-creating smaller monoliths

• Adding to troubleshooting nightmares

• Incrementally bloating operational burden

Misaligned organizational and cultural practices • Large teams without clear ownership

• Big bang releases

• Siloed product teams, disconnected customer

One vision for the future • Siloed innovation teams

• Innovation blockers with misaligned

business values

Transformation fatigue and unclear business value • Piped vision with business value at

the tail end

• Unclear and delayed business

value realization

• Multi-year wait

• Biting off more than can be chewed

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Modernization
Strategies

22

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Too much effort to re-use legacy code and port to microservice

• Original product was way off the mark, didn’t achieve goals (e.g. no user

adoption)

• Original product does not have traction

• Significant deviation from original intent of product, going after a new market

• Technology holding you back (Mainframe, Visual Basic overly-customized SFDC

or AEM)

• You can redefine the business process around the new system

23

When should you Re-Factor?

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Breaking the
Monolith

The Strangler Fig

24

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• You have a tremendous amount of resources invested in existing

monolithic applications

• You are looking for a sane way to capture the benefits of

microservices without having to completely rewrite

• AWS provides a path forward for microservice-based apps in the

future

• AWS provides familiarity and a microservices proving ground

25

Breaking the Monolith

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• The Strangler Fig is a form of vine that
comes from the natural of growth
around the host tree.

• Gradually, the roots wrap around the
host tree, widen, and slowly form a
latticework that surrounds the host’s
trunk.

• We can think of the vine as the
modernization effort and the host tree as
the legacy monolith.

• Eventually, the host tree is replaced,
leaving the fig with a hollow trunk

26

Breaking the Monolith Using the Strangler Fig Pattern

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• This modernization method is based on incrementally replacing existing

functionalities of the old legacy system with new applications and services in a

phased approach until the new application system eventually replaces all of the

old, or key part of legacy system’s features.

27

Strangling The Monolith

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Strangling – means

incrementally replacing

functionality in the app with

something better (cheaper,

faster, easier to maintain).

28

Strangling The Monolith

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Strangling – means

incrementally replacing

functionality in the app with

something better (cheaper,

faster, easier to maintain).

• As functionality is replaced,

“dead” parts of monolith can be

removed/retired.

29

Strangling The Monolith

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Strangling – means
incrementally replacing
functionality in the app with
something better (cheaper,
faster, easier to maintain).

• As functionality is replaced,
“dead” parts of monolith can be
removed/retired.

• Includes new functionality
during strangulation to make it
more attractive to business
stakeholders.

• The proxy will redirect traffic to
the new service as it goes to
production.

30

Strangling The Monolith

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The following guidance will ensure that you don't have to redeploy the entire

monolithic application regularly, and by breaking services out, it will allow you to

independently scale and deploy the application more smoothly.

31

When to Use the Strangler Pattern

• Select a component that has good test coverage and less technical debt

associated with it. Starting with this component can give teams a lot of

confidence during the modernization process.

• Select components that have scalability requirements. Start with one of these

components.

• Select a component that has frequent business requirement changes and more

frequent deployments.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 32

Branch By Abstraction
"Branch by Abstraction" is a technique for

making a large-scale change to a software

system in a gradual way that allows you to

release the system regularly while the

changes are still in-progress.

ACCOUNT

INVENTORY

SHOPPING

PAYROLL

INVOICING

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 33

Branch By Abstraction

Introducing an Anti-Corruption Layer

ACCOUNT

INVENTORY

INVOICING

1. Create abstraction Point via an

Interface

Interface

Service Calling

Implementation

Inventory

Service

2. Start work on new service

implementation

3. Switch Over

4. Clean Up

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Where do I start?
Follow the Data!

34

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 35

Follow the Data

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What you need to discover:

• Trace the path of a request as it travels across a complex system

• Discover the latency of the components along that path

• Know which component in the path is creating a bottleneck

36

Follow the Data - Distributed Tracing

Modern applications and sites increasingly use many interconnected

services. An application architecture that relies on many services or

microservices is often referred to as a distributed system.

Distributed tracing is the process of tracking the activity resulting from a

request to an application.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Strangling The Monolith – Follow the Data

VPC

Availability

Zone 1

Availability

Zone 2

Users

EC2

instances

ELB

RDS

master

Synchronous

replication

RDS

standby

Auto Scaling

group
EC2

instances

Web and

app layer

Database

layer

37

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Strangling The Monolith – Facade with Amazon API Gateway

VPC

Availability

Zone 1

Availability

Zone 2

Users

API

Gateway

EC2

instances

ELB

RDS

master

Synchronous

replication

RDS

standby

Auto Scaling

group
EC2

instances

Web and

app layer

Database

layer

38

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Strangling The Monolith – Follow the Data with AWS X-Ray

VPC

Availability

Zone 1

Availability

Zone 2

Users

API

Gateway

EC2

instances

ELB

RDS

master

Synchronous

replication

RDS

standby

Auto Scaling

group
EC2

instances

Web and

app layer

Database

layer

AWS X-Ray

39

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Strangling The Monolith – Follow the Data with AWS X-Ray

40

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 41

Strangling The Monolith – Hot Spot Services

ACCOUNT

INVENTORY

SHOPPING

PAYROLL

INVOICING

Increasing Benefit >>>

E
a

si
e

r
to

 E
x
tr

a
c
t

>
>

>

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Deployment of New Strangled Service

ACCOUNT

INVENTORY

INVOICING

API

Gateway

MONOLITH

INVENTORY

42

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Blue/Green or a Canary Release?

INVENTORYAPI

Gateway

MONOLITH

INVENTORY

INVENTORYAPI

Gateway

MONOLITH

INVENTORY

“Blue/Green” Switch between

Old and New Inventory Service

Traffic split between

Old and New Inventory Service

90%

10%

43

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Canary Release

• In a Canary Deployment, you send a small percentage of requests to your new

application as a way of testing it without exposing the majority of your users to

this new and untested app.

• If the app performs well, you can continue to increase the percentage of

requests that it receives until finally, you have promoted it to receive 100% of

the requests.

INVENTORYAPI

Gateway

MONOLITH

INVENTORY

Traffic split between

Old and New Inventory Service

90%

10%

44

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 45

Strangling The Monolith – Canary Release

VPC

Availability

Zone 1

Availability

Zone 2

API

Gateway

EC2

instances

ELB

RDS

master

Synchronous

replication

RDS

standby

Auto Scaling

group
EC2

instances

Web and

app layer

Database

layer

Amazon

DynamoDB

AWS Database

Migration Service

Function

invocations

10% > every hour

INVENTORY

SERVICE

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

