
© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Arun Thiagarajan – DMS Database Engineer

15th June 2018

Migrating your Oracle

database to Amazon Aurora

using DMS and SCT

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Agenda

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What to expect from this session

1. Introduction

2. Migration Playbook

3. Common Oracle to Aurora PostgreSQL Feature

Comparison with Examples

4. Schema Conversion Tool

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Introduction - Database Migration Service (DMS)

& Schema Conversion Tool (SCT)

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What are DMS and SCT?

AWS Database Migration Service (DMS) easily and securely

migrates and/or replicate your databases and data

warehouses to AWS

AWS Schema Conversion Tool (SCT) converts your commercial

database and data warehouse schemas to open-source engines or

AWS-native services, such as Amazon Aurora and Redshift

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Database Migration Process

Step 1: Convert or Copy your Schema

Source DB or DW

AWS SCT

Native Tool

Destination DB or DW

Step 2: Move your data

Source DB or DW

AWS SCT

Destination DB or DW

AWS DMS

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How does DMS work?

Customer

premises

Application users

AWS

Internet

VPN

Start a replication instance

Connect to source and target

databases

Create Tasks

 Let AWS DMS create tables,
load data, and keep them in
sync

 Switch applications over to
the target at your convenience

AWS

DMS

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Oracle to Aurora Migration Playbook

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Oracle to Aurora Migration PlaybookOracle to Aurora Migration Playbook

• Topic-by-topic overview of Oracle to Aurora

PostgreSQL migrations and “hand-on” best

practices

• How to migrate from proprietary features and the

different database objects

• Migration best practices

SCT DMS Playbook

Schema Data Best Practices

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Top Oracle to Aurora PostgreSQL Feature

Comparison

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Materialized Views

Oracle PostgreSQL

Creation CREATE MATERIALIZED

VIEW mv1

AS SELECT * FROM

employees;

CREATE MATERIALIZED VIEW

mv1

AS SELECT * FROM

employees;

Manual

Refresh

DBMS_MVIEW.REFRESH('mv

1', 'cf');

The --cf parameter configured

the refresh method: c is

complete and f is fast

REFRESH MATERIALIZED VIEW

mv1;

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Materialized Views

CREATE MATERIALIZED VIEW mv1

REFRESH FAST ON COMMIT AS

SELECT * FROM employees;

- Supports automatic incremental refresh

- Supports DML on the materialized view

Create a trigger that will initiate a

refresh after every DML command on

the underlying tables:

CREATE OR REPLACE FUNCTION

refresh_mv1()

returns trigger language

plpgsql

as $$

begin

refresh materialized view

mv1;

return null;

end $$;

create trigger refresh_ mv1

after insert or update or

delete or truncate

on employees for each

statement

execute procedure

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Partitioning

• PostgreSQL started supporting declarative partitioning

from version 10.

• Prior to PostgreSQL 10, partitions could be used via

inheritance.

• Oracle supports various partitioning mechanisms (hash,

range, list, composite) whereas PostgreSQL currently

supports list and range partitioning.

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Partitioning

Oracle example: List Partitioning

SQL> CREATE TABLE SYSTEM_LOGS

(EVENT_NO NUMBER NOT NULL,

EVENT_DATE DATE NOT NULL,

EVENT_STR VARCHAR2(500),

ERROR_CODE VARCHAR2(10))

PARTITION BY LIST (ERROR_CODE)

(PARTITION warning VALUES ('err1', 'err2', 'err3') TABLESPACE TB1,

PARTITION critical VALUES ('err4', 'err5', 'err6') TABLESPACE TB2);

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Partitioning

PostgreSQL example: List Partitioning

It is a 5 step process using inheritance prior to PostgreSQL 10:

1. Create parent table

2. Create child tables with check constraints

3. Create indexes on child tables

4. Create a function to redirect data inserted into the parent

table

5. Create trigger to execute function on DML event

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Partitioning
1. Create Parent table:

demo=# CREATE TABLE SYSTEM_LOGS

(EVENT_NO NUMERIC NOT NULL,

EVENT_DATE DATE NOT NULL,

EVENT_STR VARCHAR(500),

ERROR_CODE VARCHAR(10));

2. Create Child tables with check constraints:

demo=# CREATE TABLE SYSTEM_LOGS_WARNING (

CHECK (ERROR_CODE IN('err1', 'err2', 'err3')))

INHERITS (SYSTEM_LOGS);

demo=# CREATE TABLE SYSTEM_LOGS_CRITICAL (

CHECK (ERROR_CODE IN('err4', 'err5', 'err6')))

INHERITS (SYSTEM_LOGS);

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Partitioning

3. Create indexes on each of the child tables (“partitions”):

demo=# CREATE INDEX IDX_SYSTEM_LOGS_WARNING ON

SYSTEM_LOGS_WARNING(ERROR_CODE);

demo=# CREATE INDEX IDX_SYSTEM_LOGS_CRITICAL ON

SYSTEM_LOGS_CRITICAL(ERROR_CODE);

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Partitioning

4. Create a function to redirect data inserted into the parent

table

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Partitioning

4. Create trigger to execute function on DML

demo=# CREATE TRIGGER SYSTEM_LOGS_ERR_TRIG
BEFORE INSERT ON SYSTEM_LOGS FOR EACH ROW
EXECUTE PROCEDURE SYSTEM_LOGS_ERR_CODE_INS();

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Triggers

Oracle PostgreSQL

Triggers can be executed after:

a. DML

b. DDL

c. Certain database operations

Triggers can be execute:

a. DML

b. Event (DDL is also covered in this)

Different types:

a. DML trigger

b. Instead of trigger

c. System event trigger

Different types:

a. BEFORE OR AFTER events

b. INSTEAD OF

c. For each row or statement

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

PostgreSQL triggers

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

DML Trigger Example - Oracle

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

DML Trigger Example - PostgreSQL

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Sequences

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Sequence caching in PostgreSQL per session

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Virtual Columns

Oracle PostgreSQL

Oracle Virtual Columns appear as normal

columns but their values are calculated

instead of being stored in the database.

No virtual column support. It can be

created through views or function as a

column.

Virtual Columns cannot be created based

on other Virtual Columns and can only

reference columns from the same table

NA

When creating a Virtual Column, you can

explicitly specify the datatype or let the

database choose the datatype based on

the expression.

If the column needs to be part of the object,

a view must be created. If not, function as

a column can be used as part of the select

statement.

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Virtual Columns - Oracle

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Virtual Columns - PostgreSQL

1.

2.

3.

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Virtual Columns - PostgreSQL

OR

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Number in Oracle vs integer or bigint in PostgreSQL

• The limit for numbers in Postgres (up to 131072 digits before the decimal

point; up to 16383 digits after the decimal point) is much higher than in

Oracle.

• The appropriate data type for NUMBER in Oracle might seem to be

NUMERIC in PostgreSQL. However, PostgreSQL Numeric field is less

efficient than native integer / bigint fields.

• Given the implementation differences, we have many customers who

reduced CPU usage on Aurora from 100% to 20% by changing the

generated column data types from Numeric to Bigint on Primary keys.

• If a number field in Oracle is being used as a PK or FK (relating to another

table), we should look at using integer or bigint in Aurora PostgreSQL.

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Character Sets

Oracle PostgreSQL

Supports most national and international

character sets including Unicode.

PostgreSQL supports a variety of different

character sets, also known as encoding,

including support for both

single-byte and multi-byte languages.

Supports VARCHAR2 (for non-Unicode)

and NVARCHAR2 (for UTF-16).

Does not natively support NVARCHAR2 or

UTF-16.

Can be defined at the instance level or

pluggable database level.

Called encoding at database level and

locale at table/column level.

Changing character set might require an

export/import or use database migration

assistant for Unicode.

Changing character set requires

export/import to a new database.

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Schema Conversion Tool (SCT)

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

When to use SCT?

Modernize

Modernize your database tier

Modernize and Migrate your Data

Warehouse to Amazon Redshift

Amazon Aurora

Amazon Redshift

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SCT Migration Assessment Report

• Assessment of migration

compatibility of source databases

with open-source database

engines – RDS MySQL, RDS

PostgreSQL and Aurora

• Recommends best target engine

• Provides details level of efforts to

complete migration

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SCT helps with converting tables, views, and code

Sequences

User-defined types

Synonyms

Packages

Stored procedures

Functions

Triggers

Schemas

Tables

Indexes

Views

Sort and distribution keys

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Thank you!

