


© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building modern applications with AWS 
containers and serverless solutions

Stephanie Chiao

Developer Solution Architect, Technical Product Manager

Asia Pacific and Japan

Amazon Web Services



Agenda

• Why are companies moving towards 
microservices?

• Addressing the complexities of 
microservices and how AWS can help 
you manage these

• Best practices for companies looking to 
break down monolithic architectures



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Monolithic applications – traditional approach

Monolith
Does everything

Advantages

• Single codebase

• Easier to develop

• All computational logic are in-memory

Disadvantages

• Applications can be difficult to modify

• All components have to be coded in the 

same language

• Long deployment cycles

• Requires a long-term commitment to a 

technology stack



Microservices – paradigm shift

Microservices
Does one thing

Key elements of microservices:

• Polyglot technical stack

• Independent components that run each 

application process as a service

• Communicate via APIs

Each microservice is:

• Elastic – scales up or down independently of 

other services

• Resilient – services provide fault isolation 

boundaries

• Composable – uniform APIs for each service



Long deployment cycles with monoliths to…

Developers Single pipelineMonolith

Build Test Release Monitor



Rapid development with microservices

Teams Services Automated release pipelines

Build Test Release Monitor

Build Test Release Monitor

Build Test Release Monitor

Build Test Release Monitor



Development transformation at Amazon: 2001-2002

Monolithic 

application + 

teams

Microservices 

+ two pizza teams

2001 2002



Two-pizza teams are fast and agile

• Full ownership and autonomy

• You build it, you run it

• DevOps – small, nimble teams

• Focused innovation



Shift to microservices

• Single-purpose

• Connect only through hardened APIs 

• Largely “black boxes” to each other

• Business logic and data only 

accessible through APIs



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Why isn’t everyone moving to microservices? 

Isn’t all of this very hard now that 

we have lots of pieces to operate?



Overcoming the fear of complexity

Serverless functions or serverless 
containers?

How do I manage clusters at scale?

How would I know if one of my clusters 
has failed?

How do I decompose a monolithic 
database?



Serverless functions or serverless containers?

Serverless containers
• Long running

• Abstracts the platform

• Fully managed orchestration

• Fully managed cluster scaling

Fargate

Serverless functions
• Short lived

• Event driven

• Many language runtimes

• Data source integrations

• Fully managed infrastructure

Lambda



Managing one resource is straightforward

Server

Guest OS

Bins/libs Bins/libs

App2App1



But imagine managing clusters at scale…

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS



Cluster management made easy with Amazon ECS

Scheduling and orchestration

Cluster manager Placement engine
ECS



Critical business requirements for McDonalds

Speed to market

Scalability and reliability

Multi-country support and integration

Cost sensitivity



Simplified view of McDonalds’ architecture

Amazon

RDS
ElastiCache

for Redis

Amazon

S3

Amazon

SQS

Auto Scaling group

Multi-AZ

Microservice 1 Microservice 2

Amazon ECS 

McD API Middleware

Third-party 

delivery 

platforms

Menu and 

restaurant

master

Restaurant

Application Load Balancer



Key business outcomes for McDonalds

• Four months from concept to 

production

• Achieved scale targets of 250k-250k 

order per hour with ~100 ms latency

• Increased speed to market

• Polyglot tech stack using .net and Java



How would I know if one of these clusters has failed?

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS

Server

Guest OS



Logging, monitoring, and tracing

• Having the ability to aggregate data is key to 
discovering trends in errors in services

• System incident and event monitoring 
systems are needed 

• Key considerations:

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?



Building blocks for observability in AWS 

C
lo

u
d

W
a

tc
h • Metrics

• Logs

• Events

• Alarms

• Dashboard

X
-R

a
y • Trace

• Debugging

• Service map

• Latency detection 
(server and client)



The data problem

• The database in a traditional enterprise 
software environment is at the center of 
everything

• It is centralized, big, inflexible, and 
relational

• Multiple applications talk to the same big 
database

• Difficult to scale



Single monolithic database

Microservice 1 Microservice 2 Microservice 3

Monolithic 

Database

Multiple microservices are 
dependent on the same database

• Introduces high coupling 
between microservices

• Introduces schema 
dependencies

• Bottlenecks and noisy 
neighbors



Centralized data service

Microservice 1 Microservice 2 Microservice 3

Monolithic 

Database

Data Access Microservice

• Still using a centralized 
database, but all access is via a 
central microservice API

• Not scalable if you have 
hundreds or thousands of 
microservices all requiring 
access to some part of the 
data



Database per microservice

Microservice 1 Microservice 2 Microservice 3

• Each microservice has its own
data layer 

• Small autonomous services 
that work together

• Teams for each microservice 
choose the database that best 
suits the service



© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Monoliths to microservices – it’s not just about tech

Cultural 

philosophy

Practices

Tools

• Tearing down barriers

• Between teams

• Mid-process

• Assign a custodian team that is in charge of the 

development, maintenance, and operation of microservices 

• More ownership and cross-functional skills in the team

• Adoption of a mindset that security is everyone’s job

• Increase visibility to the big picture and the results of work 

being done



Think about DevOps best practices

Cultural 

philosophy

Practices

Tools

• Clearly defined APIs

• Continuous integration

• Application testing/QA applied throughout the development

• Continuous delivery

• Automated deployment capabilities of code across environments

• Infrastructure as code

• Break down complicated monolithic applications in to smaller 

ones



Choose the right tool for the job and automate

Cultural 

philosophy

Practices

Tools

• Automated development pipeline tooling

• Application testing frameworks

• Code review/feedback tools

• Application management tools

• Configuration management tools

• Consistent infrastructure measurement tools

• Metrics

• Logging

• Monitoring

• Security analysis and management tools



Don’t boil the ocean
Break down the monolith gradually, rather than taking a big bang approach

THE STRANGLER PATTERN

• Build a new system around the edges 
of the old, letting it grow slowly as 
needed until the old system is 
strangled

• Gradually create events and APIs for 
various components on of the legacy 
application

• What microservices will benefit most 
from speed of innovation? 



Thank you!

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Stephanie Chiao

https://www.linkedin.com/in/stephanie-chiao-1a622576/


