
David Brown – Sr. Product Manager Amazon CloudFront

September 27, 2021

Getting the most out of Edge
Computing
Best practices, use cases, and tradeoffs

Agenda

Introduction to AWS Lambda@Edge and Amazon CloudFront Functions

Choosing between CloudFront Functions and Lambda@Edge

When to use Edge Computing

CloudFront Functions best practices

Lambda@Edge best practices

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Lambda@Edge execution

Introducing CloudFront Functions

Instantly

Scalable

Highly

Secure

Cost

Effective

Developer

Friendly

New purpose-built serverless scripting feature for running lightweight

JavaScript code at the 218+ CloudFront edge locations

Adds no

perceptible

latency to

requests

Handle

millions of

requests per

second

Uses the

highest

security

standards

Fraction of

Lambda@Edge

price

Streamlined

workflow and

APIs

Ultra

Performant

CloudFront Functions execution

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Long running - Workloads that take several

milliseconds to seconds to complete.

• Adjustable Memory or CPU – Workloads that

require large CPU or memory footprint.

• Dependency on 3rd party libraries – Including the

AWS SDK which is required for integrations with

other AWS services (e.g., S3, DynamoDB).

• Networks calls – Workloads that need to call

external services or end points for data processing.

• Cache key normalization - Transform HTTP

request attributes (URL, headers, cookies, query

strings) to construct CloudFront cache key in a

more optimal way, leading to an improved cache

hit ratio.

• Header manipulation - Insert, modify or delete

any HTTP headers (e.g. True-Client-IP, CORS, or

HSTS headers).

• URL redirects/rewrites - Redirect users to other

pages or seamlessly direct requests to different

paths on the origin server.

• Request authorization - Create and validate user

generated tokens, such as HMAC tokens or JSON

web tokens (JWT).

Ideal for high scale workloads Not ideal for complex workloads

Continue to use Lambda@Edge for

these types of workloads

CloudFront Functions use cases

CloudFront Functions vs. Lambda@Edge

CloudFront Functions Lambda@Edge

Runtime support
JavaScript

(ECMAScript 5.1 compliant)
Node.js, Python

Execution location
218+ CloudFront

Edge Locations

13 CloudFront

Regional Edge Caches

CloudFront triggers

supported

Viewer request

Viewer response

Viewer request

Viewer response

Origin request

Origin response

Maximum execution

time
Less than 1 millisecond

5 seconds (viewer triggers)

30 seconds (origin triggers)

Pricing
Free tier available;

charged per request

No free tier; charged per request

and function duration

CloudFront Functions vs. Lambda@Edge

CloudFront Functions Lambda@Edge

Maximum memory 2MB
128MB (viewer triggers)

10GB (origin triggers)

Total package size 10 KB
1 MB (viewer triggers)

50 MB (origin triggers)

Network access No Yes

File system access No Yes

Access to the

request body
No Yes

Don’t choose based on price alone

Assumptions:

• 100 million requests per

month

• 10ms duration on

Lambda@Edge

• Function could run as

viewer request or origin

request

If your cache hit ratio is

high, Lambda@Edge may

be more cost effective $0.00

$5.00

$10.00

$15.00

$20.00

$25.00

$30.00

$35.00

50% 55% 60% 65% 70% 75% 80% 85% 90%

C
o

st

Cache Hit Ratio

Cost vs. Cache Hit Ratio

CloudFront Functions - Viewer Request Lambda@Edge - Origin Request

Don’t choose based on perceived performance

300

350

400

450

500

550

0
:0

0

1
:0

0

2
:0

0

3
:0

0

4
:0

0

5
:0

0

6
:0

0

7
:0

0

8
:0

0

9
:0

0

1
0

:0
0

1
1

:0
0

1
2

:0
0

1
3

:0
0

1
4

:0
0

1
5

:0
0

1
6

:0
0

1
8

:0
0

1
9

:0
0

2
0

:0
0

2
1

:0
0

2
2

:0
0

2
3

:0
0

R
e

sp
o

n
se

 t
im

e
 (

m
s)

August 18th, 2021 - Response Times

Lambda@Edge [Avg 422.83 ms] CloudFront Functions [Avg 419.01 ms]

Assumptions:

• Function could run as

viewer request or origin

request

• Dynamic content (i.e., no

caching)

On cache misses,

Lambda@Edge and

CloudFront Functions

have similar performance

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

When to use Edge Computing

• Stateless logic

• Logic needs to run on every request

• Performance is paramount

• Origin scaling is a challenge

Simple HTTP manipulations Dynamic content generation Origin independence

User-Agent header

normalization
Image manipulation Pretty URLs

Adding security headers Render pages API wrapper

Enforcing Cache-Control

headers
Redirections User Authorization

A/B testing SEO optimization Bot mitigation

When to use Edge Computing

Just because you can move something to edge doesn’t mean you should

The edge is always going to be a constrained environment:

• Edge Compute power will always be less than an AWS Region

• Maintaining state will always be more difficult than in an AWS Region

• Edge Compute will add complexity to builds, deployments, and
monitoring

Use case: making network calls

20ms 80ms

25KB payload from origin = 200ms

Origin

Should you use Edge
Computing?

let S3data;

function fetchData() {

if (!S3data) {

s3data = fetchFromS3();

setTimeout(() => {

s3data = undefined;

}, 300000;)} // TTL of 5 minutes

return redirections;

}

Can you use

caching within

the function?

• How frequently does

the data change?

• How many different

responses will I get?

• How many requests for

the function will I get?

Use case: making network calls

Can you reduce

the payload to

under 15KB?

• TCP’s Initial congestion

window is 10

• Maximum transmission

unit (MTU) ~1500 bytes

• Maximum data

transferred in a single

round trip ~15KB

Origin

10KB payload from

origin = 120ms

25KB payload from

origin = 200ms

20ms 80ms

Use case: making network calls

Use case: URL Redirects

20ms 80ms

Response from origin = 125ms

Origin

Should you use Edge
Computing?

DynamoDB

5ms

Use case: URL Redirects

Can you use

DynamoDB

Global Tables?

• How often are these

URLs requested?

• How much does this

really reduce latency?

• How much cost does

this add to your

overall architecture?

const AWS_REGION = process.env;

const replicatedRegions = {

'us-east-1': true,

'us-east-2': true,

'us-west-2': true,

'eu-west-2': true,

'eu-central-1': true

};

const documentClient =

new aws.DynamoDB.DocumentClient({

region: replicatedRegions[AWS_REGION] ?
AWS_REGION : 'us-east-1',

httpOptions: {

agent: new https.Agent({

keepAlive: true})

}

});

Use Case: URL Redirects

 $-

 $20.00

 $40.00

 $60.00

 $80.00

 $100.00

 $120.00

M
o

n
th

ly
 C

o
st

Cache Hit Ratio

Chart title

API Gateway + Lambda CloudFront Functions

Assumptions:

• 100 million requests per

month

• Origin uses API Gateway +

Lambda to serve redirects

• API Gateway uses HTTP

APIs

• 128 MB function with avg. 5

ms duration on Lambda

Caching is your friend,

use it as often as

possible. CloudFront can

cache 3XX status codes.

Use case: user authentication

Should you use Edge
Computing?

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-TARGETDURATION:5
#EXT-X-MEDIA-SEQUENCE:2680
#EXTINF:5,
fileSequence2680.ts?token=SflKxwRJSMeKKF2QT4fwpMeJf
#EXTINF:5,
fileSequence2681.ts?token=SflKxwRJSMeKKF2QT4fwpMeJf
#EXTINF:5,
fileSequence2682.ts?token=SflKxwRJSMeKKF2QT4fwpMeJf
#EXTINF:5,
fileSequence2683.ts?token=SflKxwRJSMeKKF2QT4fwpMeJf
#EXTINF:5,
fileSequence2684.ts?token=SflKxwRJSMeKKF2QT4fwpMeJf

{

"keys": [{

"alg": "RS256",

"e": "AQAB",

"kid": "abcdefghijklmnopqrsexample=",

"kty": "RSA",

"n":"lsjhglskjhgslkjgh43ljexample",

“use": "sig"

}, {

"alg": "RS256",

"e": "AQAB",

"kid": "fgjhlkhjlkhexample=",

"kty": "RSA",

"n": "sgjhlk6jp98ugp98up34hpexample",

"use": "sig"

}]

}

Do you need to

make a network

call to validate?

• If I fetch the public key,

can I cache it?

• Is the rest of validation

logic stateless?

• How many requests for

the function will I get?

Use case: user authentication

header:

{

"alg" : "HS256",

"typ" : "JWT"

}

payload:

{

"sub": "1234567890",

"name": "John Doe",

"iat": 1516239022

}

secret: MySuperSecretKet

Is the validation

stateless?

• Is the entire validation

logic stateless?

• Is this validation

required on every

request?

If the validation is

stateless and required on

every request, edge

computing is a good

option

Use case: user authentication

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Invoke functions when you need it

• For every request or only on cache misses?

• Use the most specific CloudFront behavior:

• Caching will always be faster than edge computing

Global variables aren’t reused

var expires = 0;

function handler(event) {

var req = event.request;

var host = req.headers.host.value;

var now = Date.now();

if (now < expires)

return req;

expires = now + 30000;

req.querystring[‘expired’] = true;

return req;

}

function handler(event) {

var req = event.request;

var host = req.headers.host.value;

var now = Date.now();

var expires = 0;

if (now < expires)

return req;

expires = now + 30000;

req.querystring[‘expired’] = true;

return req;

}

Regular expression is expensive

function handler(event) {

var req = event.request;

var host = req.headers.host.value;

var HOST_REGEX = /.*\.example.com$/g;

if(HOST_REGEX.test(host))

return req;

req.headers.host.value = ‘example.com’;

return req;

}

function handler(event) {

var req = event.request;

var host = req.headers.host.value;

if(host.includes(‘example.com’)

return req;

req.headers.host.value = ‘example.com’;

return req;

}

Don’t let limits limit you

• The >1ms execution limit is CPU clock time NOT wall clock time
• That’s still 2.5 million operations per 1ms of CPU clock time!

• The 10KB function size limit is total size, don’t forget to minify
• You can can easily fit 20KB or more into function if you minify

• When it doubt, test
• Compute utilization is your friend, use it when testing

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Choose the optimal memory configuration

$3.94

$4.81

$7.85

 $-

 $1.00

 $2.00

 $3.00

 $4.00

 $5.00

 $6.00

 $7.00

 $8.00

 $9.00

128MB 256MB 512MB

Cost

Cost of 1M executions

535

337

290

0

100

200

300

400

500

600

128MB 256MB 512MB

Function duration

Duration (ms)

Use global variables

const dns = require('dns');

let bestOrigin;

let expires = 0;

exports.handler = async (event) => {

let req = event.Records[0].cf.request;

getBestOrigin().then((origin) => {

req.origin.domainName = origin;

req.headers.host[0].value = origin;

return req;

});

}

function getBestOrigin() {

const now = Date.now();

if (now < expires)

return Promise.resolve(bestOrigin);

return new Promise((resolve, reject)=>{

dns.resolveCname(DNS_HOST, (err,addr)=>{

bestOrigin = addr[0];

expires = now + 30000;

resolve(bestOrigin);

});

});

}

Use parallelism and make async calls

let responses = await Promise.all([

httpGet({ hostname: 'HTML template', path: '' }),

ddbGet({ TableName: ddbTableName, Key: { name: 'mytable' } })

]);

Optimize external network calls

const http = require('https');

const keepAliveAgent = new http.Agent({ keepAlive: true, keepAliveMsecs: 2000 });

exports.handler = (event, context, callback) => {

http.get({ hostname: 'hello.com', path: '/', agent: keepAliveAgent }, (resp) => {

let data = ’’;

resp.on('data', (chunk) => { data += chunk; });

resp.on('end', () => { resolve(data); });

});

}

Thank you!

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2021, Amazon Web Services, Inc. or its affiliates. All rights reserved.

