
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora
Performance Optimization
Techniques

Rajesh Matkar & Arabinda Pani
Prin. Database Specialist Solutions Architects

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Amazon Aurora architecture

• Root cause vs. symptoms

• Database monitoring services

• Monitoring Aurora MySQL and Query Tuning

• Monitoring Aurora PostgreSQL, Optimizing and Query Tuning

• Partner Packages

• Q & A

Agenda

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora
Architecture

How is Aurora different?

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

▪ Purpose-built log-structured

distributed storage system designed

for databases

▪ Storage volume is striped across

hundreds of storage nodes distributed

over 3 different availability zones

▪ Six copies of data, two copies in each

availability zone to protect against

AZ+1 failures

▪ 10GB of segment size

▪ Master and replicas (up to 15) all

point to the same storage

Master Replica

Availability

Zone 1

Shared storage volume

Availability

Zone 2

Availability

Zone 3

Storage nodes with SSDs

SQL

Transactions

Caching

SQL

Transactions

Caching

SQL

Transactions

Caching

Amazon Aurora - Leverages a scale-out, distributed

architecture

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora Performance enhancements
5x better throughput than standard MySQL and 3x better throughput than standard PostgreSQL

Aurora MySQL

➢ Asynchronous group commit and key prefetch

➢ Latch-free lock manager

➢ Fast B-Tree inserts

➢ Logical read ahead

➢ NUMA aware and Smart thread scheduler

➢ High-performance auditing

➢ Parallel Query

Aurora PostgreSQL

➢ No double buffering

➢ Intelligent Prefetch for index and index-only range scan

➢ Intelligent Vacuum Prefetch

➢ Cluster Cache Management (CCM)

➢ Query Plan Management (QPM)

Amazon Aurora

➢Only writes log records to the storage

➢Log buffer removed

➢Checkpoints and Full page writes removed

➢Survivable Cache

➢Asynchronous DB backup at Aurora storage layer

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chasing root cause and
symptoms

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Difference between root cause and symptoms

Poor
Database

Performance

High CPU
Utilization

High DB
Connections

High
memory

Utilization

High
read/write

latency

Lower
throughput

High active
sessions

High I/O
Usage

High query
execution

time

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What can cause a slow query

Slow
query

Lock,

Deadlock,

mutex

Hardware
(CPU,RAM)

Parallel
jobs

Sub-
optimal
query

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Database Monitoring
Services

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CloudWatch Metrics

CW alarms can be

created for

important metrics

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Enhanced monitoring - Viewing Operating System metrics

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

RDS Performance Insights

Counter Metrics

Database Load

Top SQL Activities

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

OS counter metrics Database counter metrics

RDS Performance Insights – Counter metrics

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

RDS Performance Insights

Example after adding OS & Database counter metrics

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

RDS Performance Insights

Default SQL query browser view

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

RDS Performance Insights

Sample view after adding custom metrics

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DevOps Guru for RDS New!

• Finds DB performance anomalies

• Analyzes the anomaly

• Highlights:

• Prevalent wait events

• Prevalent SQL statements

• Other anomalous metrics

• Recommends next steps

LOCKS

78%

SELECT NAME FROM CUSTOMERS;

SELECT ITEM FROM F;

MEMORY

What to do

about locking

issues…

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 18

Monitoring
Aurora MySQL

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Monitoring options for Aurora MySQL

MySQL
Engine

• General Logs

• Slow query logs

• Processlist

• InnoDB Monitor

• Global Status

• Performance Schema

• Sys Schema

• Information_schema.Innodb_metrics

Aurora

• CloudWatch Metrics

• Enhanced Monitoring

• Performance Insights

• CloudWatch Log Insights

• DevOps Guru for RDS

Query
Analysis

• Explain

• Profile

• Performance schema

• Optimizer trace

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Identify slow queries using MySQL slow query log

Query_time : The statement time in seconds.

Lock_time : The time to acquire locks in seconds.

Rows_sent : The number of rows sent to client.

Rows _examined : The number of rows examined by the server layer (not counting processing internal to storage engines).

Log queries based on pre-defined execution time and rows processing limits.

Find queries which are taking longer time to execute and target for optimization

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Analyze slow query log file using pt-query-digest
pt-query-digest is a open source tool from Percona which analyzes MySQL queries from slow, general, and

binary log files.

Slow query details

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Identify slow queries using MySQL Performance Schema

Queries performing full table scan

Top 5 wait events

Sample queries

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Query Tuning in
Aurora MySQL

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Analyze slow queries using Explain Plan

Sample plan after index

Sample plan before index

Column Meaning

select_type The SELECT type

type The join type

possible_keys The possible indexes to choose

key The index actually chosen

key_len The length of the chosen key

ref The columns compared to the index

rows Estimate of rows to be examined

filtered Percentage of rows filtered by table condition

Extra Additional information

Simple -> Simple SELECT (not using UNION or subqueries)

Using filesort -> If a sort can’t be performed from an index, it’s a filesort

https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_select_type
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_type
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_possible_keys
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_key
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_key_len
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_rows
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_filtered
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_extra
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/union.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sending data*

The thread is reading and processing rows for a SELECT statement, and sending data to the client. Because operations occurring during this state tend to perform large amounts of disk access (reads), it is often the

longest-running state over the lifetime of a given query.

Sample profiling for a query without an index

Analyze slow queries using PROFILING

https://dev.mysql.com/doc/refman/8.0/en/select.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Profiling using performance_schema

Sample profiling for a query with an index

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index usages for Query performance optimization

• rows filter

• avoid temporary tables use

• avoid sort operation use

• avoid reading rows from the tables (covering index)

and much more

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Number of indexes on table

High read

performance

Higher

throughput

(QPS) for

read query

Low read

IOPS

Low CPU

utilization

for read

Lower DB

instance

type/class

use

Low temp

disk use

Low write

performance
Low throughput

for write query

High write

IOPS

High CPU

utilization

for write

Longer time for Table

re-org or level task like

Optimize table etc.

A
 d

 v
 a

 n
 t a

 g
 e

D
 i s a

 d
 v

 a
 n

 t a
 g

 e
Many indexes on table – good or bad?

High

storage

use

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Things that may go wrong

Optimizer can choose wrong index

• index scan is expensive

• statistics are outdated

• innodb_stats_persistent_sample_pages

• bad queries

How to fix/workaround it

• Force index hint

• Increase innodb_stats_persistent_sample_pages*

• Analyze

• Optimize

• Move some logic to the application

*Aurora has default pages set to 256 unlike MySQL which is 8

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Query Tuning Cycle

Poor database

performance

Monitor

performance

Find SQL query for

tunning

SQL query analysis
SQL query

optimization

CloudWatch

Metrics

Explain Profile Performance

Schema

Enhanced

Monitoring
MySQL

Slow log

Performance

Insights

Performance

Schema

3rd party

tool

Performance

analysis

Create / modify index or

re-design SQL query

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 31

Monitoring
Aurora PostgreSQL

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Logging in Aurora PostgreSQL

• Aurora PostgreSQL logging

postgresql.log.%Y-%m-%d-%H%M

• Publish PostgreSQL logs to CloudWatch

Logs, perform real-time analysis using

CloudWatch Log Insights and use

CloudWatch to create alarms and view

metrics

• Use log_fdw extension to query the

PostgreSQL log via SQL for PANIC, other

errors or information.

Number of parameters to control the logging

log_statement
log_connections
log_disconnections
log_lock_waits
Log_temp_files
log_min_duration_statement
log_autovacuum_min_duration
rds.force_autovacuum_logging_level
track_functions
log_statement_stats
pgaudit.log
auto_explain.log_min_duration
auto_explain.log_verbose
auto_explain.log_nested_statements
rds.log_retention_period

And many more …

https://aws.amazon.com/blogs/database/create-an-amazon-cloudwatch-dashboard-to-monitor-amazon-rds-for-postgresql-and-amazon-aurora-postgresql/
https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-2/
https://www.postgresql.org/docs/13/runtime-config.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL Extensions for Performance Monitoring

pg_stat_statements for tracking execution statistics of SQL statements

auto_explain for logging execution plans of slow queries automatically

pg_proctab exposes OS/proc information through SQL

plprofiler to find bottleneck in PL/pgSQL function and stored procedures

https://www.postgresql.org/docs/13/pgstatstatements.html
https://www.postgresql.org/docs/13/auto-explain.html
https://github.com/markwkm/pg_proctab
https://github.com/bigsql/plprofiler

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Other useful tools and scripts for Monitoring

pg-collector collects database information and presents it in a consolidated HTML file

PGPerfStatsSnapper for periodic collection (snapping) of PostgreSQL performance related

statistics and metrics

rds-support-tools contains collection of useful database monitoring scripts

Amazon Aurora Postgres Advanced Monitoring creates CloudWatch dashboard with useful

database monitoring metrics

Pgbadger PostgreSQL log analyzer with fully detailed reports and graphs

https://github.com/awslabs/pg-collector
https://github.com/aws-samples/aurora-and-database-migration-labs/tree/master/Code/PGPerfStatsSnapper
https://github.com/awslabs/rds-support-tools/tree/main/postgres
https://github.com/awslabs/amazon-aurora-postgres-monitoring
https://github.com/darold/pgbadger

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 35

Optimizing
Aurora PostgreSQL

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL Extensions for Database and SQL Tuning

pg_repack for rebuilding a table online

pg_partman to partition tables with less effort

pg_hint_plan to bias queries away from big operations (hints related to

Scans, Joins & Environment)

https://github.com/reorg/pg_repack
https://github.com/pgpartman/pg_partman
https://github.com/ossc-db/pg_hint_plan

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Autovacuum

In PostgreSQL, an UPDATE or DELETE operation doesn’t immediately remove the old version of

the row to gain benefits of Multi-Version Concurrency Control (MVCC)

AUTOVACUUM processes tables and related indexes on a regular basis

• To recover or reuse disk space occupied by updated or deleted rows.

• Also defragments/rearranges rows on data pages to maintain contiguous free space

• To update data statistics used by the PostgreSQL query planner.

• To update the visibility map, which speeds up index-only scans.

• To protect against loss of very old data due to transaction ID wraparound or multixact ID wraparound.

tuple1

tuple2

tuple3

tuple4

tuple5

tuple6

tuple1tuple1

tuple2 tuple2

tuple7

tuple8

tuple9

tuple10

Autovacuum runstuple3

tuple4

tuple3

tuple4

Page # 1 Page # 2 Page # 3

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Autovacuum Issues

Indicator of Vacuuming issues
• Database storage growing with no new data influx?

• Noticing that your queries are running slow?

• Explain plan of a slow query shows sub-optimal plan (e.g. number of buffers read is much higher

than number of actual rows returned) ?

• Maximum used transaction IDs constantly increasing beyond 200M transactions (by default)?

Detect
• List tables and its bloat ratio

• List indexes and its bloat ratio

• Implement Early Warning for Transaction ID Wraparound

Root causes
• Autovacuum not able to keep up

• Autovacuum getting blocked

https://raw.githubusercontent.com/awslabs/rds-support-tools/main/postgres/diag/sql/list-tables-bloated.sql
https://raw.githubusercontent.com/awslabs/rds-support-tools/main/postgres/diag/sql/list-btree-bloat.sql
https://aws.amazon.com/blogs/database/implement-an-early-warning-system-for-transaction-id-wraparound-in-amazon-rds-for-postgresql/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fixing Autovacuum Issues

• Adjust Autovacuum related parameters

• Vacuuming related parameters can be set at the

table level (using alter table <> set <>)

• Check and kill EXCLUSIVE locks on tables

• Check and kill “idle in transaction” session

• Check and kill long-running transactions

• Check and drop abandoned replication slots

• Check and rollback orphaned prepared

transactions

• Run a manual vacuum (if needed)

• Vacuum [table_name];

• Vacuum ANALYZE [table_name];

• Vacuum FULL [table_name];

Number of parameters to tune

Autovacuum

vacuum_freeze_min_age
vacuum_freeze_table_age
autovacuum_freeze_max_age

autovacuum_max_workers
autovacuum_naptime
autovacuum_vacuum_cost_delay
autovacuum_vacuum_scale_factor
autovacuum_vacuum_cost_limit
maintenance_work_mem

https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/

https://wiki.postgresql.org/wiki/Lock_Monitoring
https://aws.amazon.com/blogs/database/a-case-study-of-tuning-autovacuum-in-amazon-rds-for-postgresql/
https://www.cybertec-postgresql.com/en/reasons-why-vacuum-wont-remove-dead-rows/
https://www.cybertec-postgresql.com/en/reasons-why-vacuum-wont-remove-dead-rows/
https://www.cybertec-postgresql.com/en/reasons-why-vacuum-wont-remove-dead-rows/
https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimizing Updates Using Fillfactor and HOT Updates

• Fillfactor specifies the % of a page to be filled by INSERT operations, reserving the rest of

the space for subsequent UPDATE operations. Default Fillfactor for tables is 100% and for

index is 90%.

• UPDATE operations insert a new row (or tuple) and mark the old row as dead.

• Every update by default requires new index entries to be added even if no indexed attribute

is modified and modifying an index is much more expensive than modifying the table.

• Heavily updated tables can become “bloated” with dead tuples. Autovacuum operation

cleans the dead row versions in the table and the index.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimizing Updates Using Fillfactor and HOT Updates

Conditions

• New tuple is inserted in the same page as the old version of the tuple

• None of the indexed columns get changed

Advantages

• UPDATEs are faster

• Dead tuples can be removed without the need for VACUUM. Any backend that processes a block and
detects a HOT chain with dead tuples will try to lock and defragment the block, removing dead tuples.

Detect

Top30 tables with low HOT updates

Fix

1. ALTER TABLE <table_name> SET (fillfactor = 90)

2. Run pg_repack on the table to re-organize the table

3. Drop Unused, Duplicate and useless Indexes

HOT (Heap Only Tuples) updates avoids updating index records by maintaining a chain of updated tuples

linking a new version to the old in the data page.

HOT Updates

https://raw.githubusercontent.com/awslabs/rds-support-tools/main/postgres/diag/sql/top30-tables-with-low-hotupdates.sql
https://xzilla.net/blog/2008/Jul/Index-pruning-techniques.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimizing Large Tables using Partitioning

Benefits

• Partition Pruning: A query optimization technique where only a single

partition or small number of partitions are accessed instead of all the

partitions to fetch data to improve query performance

• Bulk loads and deletion can be done by adding or removing partitions

which avoids Vacuum overhead

• Partition wise joins and partition wise aggregation

• Multiple vacuum workers can vacuum individual partitions in parallel

Allows to split a large table into smaller pieces using

List, Range or Hash partitioning techniques

https://aws.amazon.com/blogs/database/improve-performance-and-manageability-of-large-postgresql-tables-

by-migrating-to-partitioned-tables-on-amazon-aurora-and-amazon-rds/

https://aws.amazon.com/blogs/database/improve-performance-and-manageability-of-large-postgresql-tables-by-migrating-to-partitioned-tables-on-amazon-aurora-and-amazon-rds/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimizing Connection overhead using Connection
Pooling

• PostgreSQL has a postmaster process, which spawns new processes for each

new connection to the database.

• Each open connection in PostgreSQL whether idle or active consumes

memory (~10MB). This creates a problem if the number of connections are

too high.

• Connection pooling refers to the method of creating a pool of connections

and caching those connections for reuse.

• A database side connection pooler is recommended even if you have

connection pool on the application side

• Connection poolers : RDS Proxy (fully managed and highly available),

PgBouncer, Pgpool

Connection

Pooler

App

App

App

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL considerations for performance

Avoid using numeric datatype and consider bigint instead
• Numeric is designed for accurately storing monetary amounts. Can hold 131k digits before decimal and 16k digits after decimal.

• Joins and calculations on numeric columns are very slow compared to integer datatype.

• A simple pgbench test on numeric vs. bigint on write performance shows more than 15% difference.

Use limited number of Temporary tables
• Heavy usage can cause bloat in pg_catalog leading to slow performance and high CPU usage for queries touching dictionary tables.

• Monitor bloat in pg_catalog tables and tweak autovacuum to run aggressively if using temporary tables excessively.

• Autovacuum can’t access temporary tables. So run Analyze on temporary tables after creation to help optimizer generate an optimal

plan.

Pay attention to AUTOCOMMIT and “Idle in Transaction” session
• With autocommit OFF, even a select query opens a transaction and without implicit commit/rollback, transitions to idle in transaction

state.

• “Idle in Transaction” session prevents autovacuum from cleaning up pages.

• Monitor and kill “Idle in Transaction” sessions or set idle_in_transaction_session_timeout parameter to kill these sessions automatically

Create separate Triggers for insert & update events and avoid using exception clauses
• Checking the value of TG_OP inside a trigger can be costly

• Each execution of an exception block results in allocation of an additional XID. This can rapidly exhaust transaction ids with high writes

throughput.

Pay attention to the Volatility category (Volatile, Stable, and Immutable) of functions
• The Immutable variant takes the minimum amount of time.

https://www.postgresql.org/docs/13/datatype-numeric.html
https://aws.amazon.com/blogs/database/code-conversion-challenges-while-migrating-from-oracle-or-microsoft-sql-server-to-postgresql/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 45

Query Tuning in
Aurora PostgreSQL

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Query Tuning Methodology

Active Session Summary (Performance Insights, etc.)

Top SQL & Top Wait Events

EXPLAIN ANALYZE with Buffers, IO timing, etc.

Investigate STEP & WAIT taking the most time

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Solving Problems with Wait Events

pg_stat_activity

https://www.postgresql.org/docs/13/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Explain Query Plan

explain (analyze,verbose,buffers,settings) <query>

Use transaction (begin, end) for running explain analyze on DML

commands, so that you can rollback.

https://www.postgresql.org/docs/13/sql-explain.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visualize Query Plan

https://explain.depesz.com/

http://tatiyants.com/pev/#/plans/new

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Problems to look for in EXPLAIN ANALYZE output

• Large difference between estimated and actual rows

• Wrong index, no index, or index not being used as expected

• Large number of buffers read (working set not cached)

• Slow nodes: Sort [Agg], NOT IN, OR, large SeqScan, COUNT

– apg_enable_not_in_transform parameter in Aurora PostgreSQL

– can help speed up NOT IN queries

• Bitmap heap scan reporting “lossy” (need to increase WORK_MEM)

• Large number of rows filtered by a post-join predicate

• Reading more data than necessary (pruning, clustering, index-only)

• Slow VOLATILE functions that are really IMMUTABLE

https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-3-optimizer-parameters/

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Query Plan Management (QPM)

1. Capture plans

2. Approve plans

Use baseline

3. Evolve Unapproved plans

Automatically happens if query runs
more than once

First captured plan is automatically
approved

5. See the effect of changing an optimizer

setting for any set of statements, without

risk of plan regression. Any new plans are

created with status ‘Unapproved’.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Analyzing a top statement from Performance Insights
Using QPM

SELECT evolve_plan_baselines (sql_hash, plan_hash, 1.0, ‘approve’)

FROM dba_plans WHERE

sql_text LIKE ‘select count(*) from authors where id < (select %’ AND

plan_last_used (sql_hash, plan_hash) = current_date -- used today

ORDER BY status DESC; -- Unapproved first

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Things you can do to make a slow query faster

• Collect more statistics (default_statistics_target) or extended statistics

• Modify parameters (GUCs) related to query planning and resource consumption

(e.g. work_mem)

▪ Review and Modify Aurora PostgreSQL specific optimizer parameters

• Fix the plan with pg_hint_plan, and then remove the hint

• Add secondary indexes, Foreign Key indexes and Drop unused indexes

▪ Consider not only B-tree indexes, but also hash/BRIN/partial/expression indexes.

• Rewrite the SQL to a more efficiently executed form

• Reduce planning overhead or per-execution overhead (use prepared statements)

• CLUSTER cold parts of the heap to exploit access patterns

• Implement or change the table partitioning strategy

• Scale up to a larger instance class (to improve cache hit ratio)

https://www.postgresql.org/docs/13/planner-stats.html
https://www.postgresql.org/docs/13/runtime-config.html
https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-3-optimizer-parameters/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Optimize.Maintenance.html#AuroraPostgreSQL.Optimize.Maintenance.pg_hint_plan

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Query Tuning Cycle

Poor database

performance

Monitor performance Performance analysis

Find SQL query for

tunning

Query analysisQuery optimization

RDS Performance

Insights & DevOps Guru

for RDS

CloudWatch

Metrics

Enhance

Monitoring

auto_explain 3rd party toolPostgreSQL dictionary

tables

Explain Visualize PlanCreate / modify index or

re-design SQL query

QPM

pg_hint_plan Update GUC

Parameters

Partition Large

Tables

Collect

more/accurate

statistics

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. 55

Partner Packages

Aurora Performance Optimization

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Partner Packages – Aurora Performance Optimization

Aurora Performance

Optimization Offer

Aurora Performance

Optimization Offer

Aurora Performance

Optimization Offer

Aurora Performance

Optimization Offer

https://www.agilisium.com/amazon-aurora/
https://www.agilisium.com/amazon-aurora/
https://www.datavail.com/service-overview/Datavail_SO-Amazon_Aurora_Optimization_Offer.pdf
https://www.datavail.com/service-overview/Datavail_SO-Amazon_Aurora_Optimization_Offer.pdf
https://www.pwc.com/us/en/services/alliances/amazon-web-services.html
https://www.pwc.com/us/en/services/alliances/amazon-web-services.html
https://www.virtusa.com/partners/aws
https://www.virtusa.com/partners/aws

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

