dWS

\./‘7

Amazon Aurora

Performance Optimization
Techniques

Rajesh Matkar & Arabinda Pani

Prin. Database Specialist Solutions Architects

Agenda

« Amazon Aurora architecture

« Root cause vs. symptoms

« Database monitoring services

« Monitoring Aurora MySQL and Query Tuning

« Monitoring Aurora PostgreSQL, Optimizing and Query Tuning

« Partner Packages

Q&A

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora
Architecture

How is Aurora different?

Amazon Aurora - Leverages a scale-out, distributed
architecture

= Purpose-built log-structured Availability Availability Availability
distributed storage system designed Zone 1 Zone 2 Zone 3
for databases

= Storage volume is striped across
hundreds of storage nodes distributed
over 3 different availability zones

= Six copies of data, two copies in each
availability zone to protect against
AZ+1 failures

= T0GB of segment size

Storage nodes with

= Master and replicas (up to 15) all
point to the same storage

n

SDs

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Aurora Performance enhancements
5x better throughput than standard MySQL and 3x better throughput than standard PostgreSQL

Amazon Aurora

»Only writes log records to the storage
»Log buffer removed
»Checkpoints and Full page writes removed

»Survivable Cache
»Asynchronous DB backup at Aurora storage layer

Aurora MySQL Aurora PostgreSQL

» No double buffering

> Intelligent Prefetch for index and index-only range scan
> Intelligent Vacuum Prefetch

» Cluster Cache Management (CCM)

» Query Plan Management (QPM)

» Asynchronous group commit and key prefetch
» Latch-free lock manager

» Fast B-Tree inserts

> Logical read ahead

» NUMA aware and Smart thread scheduler

» High-performance auditing

> Parallel Query

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chasing root cause and
symptoms

aws

N >) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Difference between root cause and symptoms

A G High DB

execution Connections
time

Poor High
Database memory
Performance Utilization

High
read/write
latency

High active
sessions

Lower
throughput

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What can cause a slow query

Lock,
Deadlock,
mutex

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Database Monitoring
Services

aws

N >) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CloudWatch Metrics

CloudWatch

Legend: | auroralab-mysql-node-1

Q

DB Connections |

v o

3
2
1
0

Write Latency (Mi Is) Read Latency (Mil

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

C Add instance to compare Last Hour v

Freeable Memory (

6,000
4,000
2,000

0

Network Receive Throughput (!

0.001
0.001
0.001
0.001

CW alarms can be
created for
important metrics

Enhanced monitoring = viewing Operating System metrics

Connectivity & security Monitoring Logs & events Configuration Maintenance Tags

Enhanced monitoring (12) | C H Manage graphs || Monitoring ¥ | 5 minutes ¥

4/30/2021 20 3 ‘ Go |

Q

Free Memory Active Memory CPU User
1.19GiB 3.98 GiB 100

3.96 GiB
1.14 GiB 3.93 GiB

3.91 GiB

3.89 GiB

04/30 04/30 04/30
20:16 20:16 20:16

Free Memory Active Memory CPU User

CPU Total Used Filesystem Load Avg 1 min

100 274.89 MB 2
50 274.88 MB
274.89 MB

274.89 MB
04/30 04/30 04/30 04/30
20:16 20:14 20:16 20:16

CPU Total Used Filesystem Load Avg 1 min

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

RDS Performance Insights

Counter metrics

Counter Metrics

— Database Load

Top waits Top hasts Top users Top databases

Top SQL Learn more [

Load by waits (AAS) SOL statements

— Top SQL Activities

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

RDS Performance Insights — Counter metrics

Counter metrics

db.SQL.Innodb_rows_read.avg

300k

10:10:40 22:11 10:11:20 10:11:40 22:12 10:12:20 10:12:40 22:13 10:13:20 10:13:40 22:14 10:14:20 10:14:40 22:15 10:15:20

OS counter metrics

0S metrics {0) Database metrics (1) Clear all selections

Database counter metrics

0S5 metrics (0) Database metrics (1)

¥ general
numVvCPUs
cpuUtilization

guest
nice
total

diskio

avgQueuelLen
readlOsPS

rrqmPS

writelOsPS

wrgmP5
writeThroughput
aurorastorageBytesRx

fileSys

maxFiles

aws

avgReqsz

readkKb

tps

writeKb

readLatency
readThroughput
aurorastorageBytesTx

irq
system
wait

await

readKbPS

util

writeKbPS
writeLatency
diskQueueDepth

Cancel

N >) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

¥ SQL

Com_analyze
Innodb_rows_inserted

Innodb_rows_read
Select_full_join
Select_range_check
Sort_merge_passes
Sort_scan

¥ Locks

Innodb_row_lock_time
innodb_lock_timeouts

¥ Users

Connections
Threads_running
External_threads_connected

¥ Temp

Com_optimize
Innodb_rows_deleted
Questions
Select_full_range_join
Select_scan
Sort_range
innodb_rows_changed

innodb_row_lock_waits
Table_locks_immediate

Aborted_clients
Threads_created

| Clear all selections

Com_select
Innodb_rows_updated
Queries

Select_range
Slow_queries
Sort_rows

innodb_deadlocks
Table_locks_waited

Aborted_connects
Threads_connected

Cancel Update graph

RDS Performance Insights

Example after adding OS & Database counter metrics

Counter metrics Manage metrics

Rows/s

12: db.SQL.Innodb_rows_read.avg
900k
600k
300k

10:10:40 221 10:11:20 10:11:40 10:12:20 10:12:40 2 22:14 10:14:220 10:14:40 22:15 10:15:20

@ db.SQL.Slow_queries.avg

® db.SQL.Slow_queries.avg :0.5
db.SQL.Innodb_rows_read.avg : 1516522.68
® os.cpulltilization.total.avg :98.5 i

0 T T T T T L]
10:10:40 221 10:11:20 10:11:40 10:12:20 10:12:40

Percent
&) os.cpuUtilization.total.avg

QY eeyeY - f A, dla st A n
! b ALY LAty ALY &L W A & ™,

10:10:40 2211 10:11:20 10:11:40 10:12:20 10:12:40 PIECEIPPRERTN 22:14 10:14:220 10:14:40 2215 10:15:20

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

RDS Performance Insights

Default SQL query browser view

Top waits Top SQL Top hosts Top users Top databases

Top SQL (5) Leam more [2

Load by waits (AAS) SQL statements Calls/sec Avg laten... Rows examined /call

UPDATE “mylab’ . ‘weather” SET “max_temp" =7 WHERE "id" =7 0.00 1298047 319683317

CALL “insert_temp) 16791.21 0.00

SELECT SQLNO_CACHE 'max_temp , ‘min_temp_, 'station_name FROM weather’ WHER.. 0.0¢ ks S57505.20

SELECT SQL_NO_CACHE COUNT (“id") FROM “weather " WHERE “station_name’ =7AND T... ! 333862 319683389

CALL “minute_rellup” (7)

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

RDS Performance Insights

Sample view after adding custom metrics

Top waits Top 501 Top hosts Top users Top databases

Top SQL (6) Learn mere [
@
Load by waits [AAS) QL statements Calls/sec Rows examined/sec Rows sent/sec Awg latency (ms)/c... Rows examined/call Rows sentfcall

UPDATE “mylab ™ . “weather™ SET “mas_temp’ =7 WHERE "id" =7 0.08 176846.08 0.00 1536248 319653304 0.00

0.03 0.00 000 1377089 0.00 0.0

(\1_-19-5511.95 > (0.5 > (51;3.51 > <51ﬂﬁa51.51> Q‘l.ﬂﬂ)
S s — e — o — -

6123355 1760 2856.3b 952N 2151
61.48 20.44 15.91 1806.00 600.44

0.00 0.00

SQL information

If the SQL statement exceads 4096 characters, it is truncated. To view the full 5QL statement, choose Download

CELETE from myleh. meather smhere serialic=key_value

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

DevOps Guru for RDS New!

Finds DB performance anomalies

Analyzes the anomaly
Highlights:

* Prevalent wait events
* Prevalent SQL statements

« Other anomalous metrics

Recommends next steps

dws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AMEMORY

~

Monitoring
Aurora MySQL

aws

N >) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Monitoring options for Aurora MySQL

General Logs

Slow query logs

Processlist

InnoDB Monitor

Global Status

Performance Schema

Sys Schema
Information_schema.lnnodb_metrics

* CloudWatch Metrics

* Enhanced Monitoring
 Performance Insights
 CloudWatch Log Insights
« DevOps Guru for RDS

« Explain

« Profile

e Performance schema
« Optimizer trace

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Identify slow queries using MySQL slow query log

Log queries based on pre-defined execution time and rows processing limits.
Find queries which are taking longer time to execute and target for optimization

Query_time : The statement time in seconds.

Lock_time : The time to acquire locks in seconds.

Rows_sent: The number of rows sent to client.

Rows _examined : The number of rows examined by the server layer (not counting processing internal to storage engines).

Time Id Command Argument
b Time: 2021-05-06T15:41:44.6360252

f# User@Host: masteruserimasteruser] € [54.240.197.23%) Id: 57

F | Query_time: 5.573166 Lock_time:| 0.000131) Rows_sent: 1120|Rows_examined: 3137353

use mylab;

SET timestamp=1620315704;

SELECT 2gql no cache max temp,min temp,station name FROM weather WHERE max temp > 23 and id = "USC00103B8Z' ORDER BY
Time: 2021-05-06T15:41:44.8301502

User@Host: masteruser(masteruser] @ [54.240.197.231] Id: 54

Query time: 5.637954 Lock time: 0.000110 Rows sent: 1 Rows examined: 3196833

SET timestamp=1620315704;

SELECT =ql_no_cache count{id) FROM weather WHERE station_name = 'EAGLE MTN' and type = '"Weak Cold";
f Time: 2021-05-06T15:41:44.8911702

§ UserfHost: masteruser [masteruser] @ [54.240.197.231) Id: 55

f Query time: 5.445422 Lock time: 0.000130 Rows_sent: 0 Rows_examined: 3196833

SET timestamp=1620315704;

SELECT sql_no_cache max_temp,min_temp.station_name FROM weather WHERE max_temp > 28 and id = "USCO0046692" ORDER BY

max temp DESC;

& Time: 2021-05-06T15:41:46.0244872

UserfHost: masteruser [masteruser] @ [54.240.157.23%] Id: 56

Query_time: 6.9B0112 Lock_time: 0.000000 Rows_sent: 0 Rows_examined: 3196834
SET timestamp=1620315706;

CALL insert_temp;

& Time: 2021-05-06T15:41:48.8292882

UserBHost: masteruser[masteruser] @ [54.240.197.231] Id: 53

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Analyze slow query log file using pt-query-digest

pt-query-digest is a open source tool from Percona which analyzes MySQL queries from slow, general, and
binary log files.

ubuntufip-172-31-0-244:~§ pt-query-digest slow_log.txt Query 1: 0.13 QPS, 2.11x concurrency, ID 0x46C4B9DF12817007A6F4BC6SDAAFFEIF at byte 3042

This item is included in the report because it matches --limit.

Scores: V/M = 1.31

Time range: 2021-05-04T17:53:39 to 2021-05-04T17:56:46

Attribute pot total min max avyg 95% stddev median

140ms user time, 10ms system time, 29.84M rss, 36.85M vsz
Current date: Tue May 4 18:04:45 2021

Hostname: ip-172-31-0-244

Files: slow log.txt

1 0x46C4B9DF12817007A6F4BC6SD4AFF61F 395.1522 40.5% 24 16.4647 1.31 UPDATE mylab.weather

#

SHOW TABLE STATUS FROM “mylab” LIKE 'weather'\G
2 0xACSDDSBBF3975693C05247449313884D 341.0392 35.0% 23 14.8278 1.42

#

#

SHOW CREATE TABLE “mylab”. weather™\G

#
#
#
#
#
#
#
#
Overall: 113 total, 4 unique, 0.56 QPS, 4.87x concurrency # Lock time a9 287s 2s 22s 12s 17s 4s 11s
Time range: 2021-05-04T17:53:32 to 2021-05-04T17:56:52 # Rows sent 0 0 0 0 0 0 0 0
i i : # Rows examine 21 73.17M 3.05M 3.05M 3.05M 3.03m] 3.03M
Attribute total min max avg 95% stddev median # Query size 1s 1 a3k 61 Py a1 51 p 51
============ = ======= S====== SS===== SS=S=== SSSS=== SSSo=== SSo=s== # String:
Exec time 975s 23 273 LE] 19s 1s 4s # Databases T};;agl 0. 244
Lock time 287s 0 22s 3s 15s S 119us i e
Rows sent 31.14k 0 1.20k 282.21 1.14k 489.35 0.99 # Query_time distribution
Rows examine 344.54M 3.05M 3.05M 3.05M 3.03M 0 3.03M : 1;3:
Query size 9.15k 16 129 82.93 124.25 40.24 92.72 # 100us
ims
: # 10ms
Profile ‘ ¥ 100ms
Rank Query ID Response time Calls R/Call WV/M # 1s i
i e s s e N i # 10s+ #3ERERRRRRRRRRRRRRRRRRRRRRRRRR
Tables
#
#

3 0x39PIDCDOCOGAA3BITSCAF431D0B72222 129.1875 13.3% 36 3.5885 1.23 SELECT weather UPDATE nyleb.weather SET max_temp = 44 whare id-'USC00103802°\G
4 0x98D290535EAFFBBAO8169665326CF519 109.1601 11.2% 30 3.6387 1.41 SELECT weather B et o108 EARMITIONS*/

select max temp = 44 from mylab.weather where id='USCO00103882'\G

Slow query details

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Identify slow queries using MySQL Performance Schema

Sample queries

Queries performing full table scan

mysql> SELECT schema name, substr(digest_text, 1, 100) AS statement, count_star AS cnt, sum_select_scan AS full_ table_scan FROM performance schema.events_sta
tements_summary by digest WHERE sum select_scan > 0 and schema_name iS NOT NULL ORDER BY sum_select_scan desc limit 5;

S —— +
| schema name | statement | ent | full_table scan |
S o R S +
mylab	SELECT SQL_NO_CACHE COUNT (“id") FROM “weather' WHERE “station_name™ = ? AND TYPE = ?	25	25
mylab	SELECT SQL_NO_CACHE “max temp~ , “min_temp” , “station_name~ FROM “weather™ WHERE “max_temp™ > ? AND	22	22
mylab	SHOW TABLES	a4 4	
mylab	SHOW SCHEMAS	3 3	
mylab	SELECT “object_schema™ AS “table schema” , “object name™ AS TABLE NAME , “index name” , “count_star™	3	3
S e R S +

5 rows in set (0.00 sec)

Top 5 wait events

mysql> select event_name as wait_event, count_star as all_occurrences, CONCAT(ROUND(sum_timer wait / 1000000000000, 2), ' s') as total_wait time, CONCAT(ROUND(avg_timer wai

+ / 1000000000000, 2), ' s') as avg_wait_time from performance schema.events_waits_summary global by event name where count_star > 0 and event_name <> 'idle' order by sum t
imer wait desc limit 5;

+
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

o ————————— Fo Fummmm———————— +
| wait_event | all_occurrences | total_wait_time | avg wait_time |
e e o ————————— o ———— Fummmm————————— +
wait/synch/cond/sql/FILE_AS_TABLE::cond_request	24	6840.81 s	285.03 s
wait/io/table/sql/handler	341413475	938.86 s	0.00 s
wait/synch/mutex/innodb/aurora lock_thread_slot_futex	52	512.47 s	9.86 s
wait/synch/mutex/innodb/trx_mutex	191613034	8.92 s	0.00 s
wait/synch/sxlock/innodb/hash_table_ locks	38316334	2.46 s	0.00 s
e o ———————— o —————————— Fummmm———————— +
5 rows in set (0.02 sec)

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Query Tuning in

Aurora MySQL

aws

N >) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Analyze slow queries using Explain Plan

Sample plan before index

mysgl> EXPLAIN SELECT sgl_no _cache max_temp,min_temp.station_name FROM weather WHERE max_temp > 42 and id = 'USCBB183EE2" ORDER BY max_temp DESC;

id | select_type table | partitions | type possible_keys | hkey key len | ref | rows filtered Extra

1 | SIMPLE weather | HWULL | ALL HULL | MULL NULL | WULL | 3162938 3.33 Using where; Using filesort
............................. e [S -
1 row in set_. 1 warning (B._B8 sec)

e

Sample plan after index

Eysql> EXPLAIN SELECT sql_no_cache max_tesmp,. min_tesp.station_name FROM weather WHERE max_temp > 42 and id = 'USCE@1838BZ' ORDER BY max_temp DESC:
id select type | table | partitions | type possible keys | key key len | ref | rows
& + + +
1 | SIHPLE | weather | HULL

N, Fomcamamaa O,

1 row 1n set, 1 warning (8.88 sec)

filtered Extra

-]

+ — +

I
+ L 'y 4+ + 4
ref idx_id | id=_id 13 | const | 1128 | 33,32 | Using index condition: Using where; Using filesort

- +

[

Column Meaning
select type The SELECT type
type The join type
YD Jon yP Simple -> Simple SELECT (not using UNION or subqueries)
possible_keys The possible indexes to choose
key The index actually chosen Using filesort -> If a sort can't be performed from an index, it's a filesort
key len The length of the chosen key
ref The columns compared to the index
rows Estimate of rows to be examined
filtered Percentage of rows filtered by table condition
Extra Additional information
aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_select_type
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_type
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_possible_keys
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_key
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_key_len
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_rows
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_filtered
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#explain_extra
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/union.html

Analyze slow queries using PROFILING

Sample profiling for a query without an index

mysql> SET profiling = 1;
Query OK, 8@ rows affected, 1 warning (0.88 sec)

mysql> SELECT sql_no_cache count(id) FROM weather WHERE station_name = 'EAGLE MTN' and type = 'Weak Cold';

I 348 |

S
1 row in set (1.49 sec)

mysql> SHOW PROFILES;

e R e I I
| Query_ID | Duration | Query

N L T L L L L L L L T T T L L L L L L T T T L L L L L R e N L L L L L e
| 1 | 1.49353608 | SELECT sql_no_cache count(id) FROM weather WHERE station_name = 'EAGLE MTN' and type = 'Weak Cold' |
4=-mmmaaa-- R Lt e L L L L e L LT T L P PP +

1 row in set, 1 warning (8.88 sec)

]

]

]

a

a

a
statistics 8.888016
preparing 8.888818
1
a
]
]
]
a
a

...... PR

________________________________ +
| Status Duration |
e e e e +
| starting .BBRaTT |
| checking permissions .8egea7 |
| Opening tables .88ee1T |
| imit .aapez2s |
| System lock .@agaes |
1 .aeee14 |
| |
| |

AnnnE

.493168

.688812

Sending data

I 1
| query end |
| closing tables .88p813 |
| freeing items .BBE857T |
| .eaeeaT |
| .agaass |
| |

.aegels

cleaned up
logeging slow query

+
|
+
|
|
|
|
|
optimizing |
|
|
|
I
|
|
|
|
_ |
cleaning up |

17 rows in set, 1 warning (8.88 sec)

mysql> SET profiling = 8;

Query OK, 8 rows affected. 1 warning (9.88 sec)

Sending data*

The thread is reading and processing rows for a SELECT statement, and sending data to the client. Because operations occurring during this state tend to perform large amounts of disk access (reads), it is often the
longest-running state over the lifetime of a given query.

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://dev.mysql.com/doc/refman/8.0/en/select.html

Profiling using performance_schema

Sample profiling for a query with an index

mﬁsdl> SELECT sgl_no_cache count(id) FROM weather WHERE station_name = "EAGLE MTN' and type = 'Weak Cold';

Frmm - +
| count(id) |
et +
| 348 |
- It

1 row in set (0.80 sec)

mysgl> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/10000600000080,6) as Duration, SQL_TEXT FROM performance_schema.events_statements_history_long WHE
RE SQL_TEXT like 'XEAGLE MTN%';

---------- B e I I I I I T I T L &

EVENT_ID | Duration | SQL_TEXT I
-------------------- T T ——
582117 0.801428 | SELECT sql_no_cache count(id) FROM weather WHERE station_name = 'EAGLE MTN' and type = 'Weak Cold' |
---------------------- e e m e e e m e e e e e e e mm e emammee e ammemmmmammemmmemmn ..t

1 row in set (0.00 sec)

mysgql> SELECT event_name AS Stage, TRUNCATE(TIMER_WAIT/1006800880888,6) AS Duration FROM performance_schema.events_stages_history_long WHERE
NESTING_EVENT_ID=582117;

#m=msmsmmsmsmssssssss=sss=======a==== $o=mm===na= +
| Stage | Duration |
L dommmmmmn-- +
stage/sgql/starting	©.000867
stage/sql/checking permissions	©.808884
stage/sql/Opening tables	8.888815
stage/sql/init	8.808823
stage/sql/System lock	©.008804
stage/sql/optimizing	©.808010
stage/sql/statistics	8.000075
stage/sql/preparing	8.888012
etanalfenl favarmiitina I T = =T =T =T =	
stage/sagl/Sending data	8.801168

stagessql/ena	U.0uuEel
stage/sql/query end	©.808805
stage/sql/closing tables	©.008005
stage/sql/freeing items	©.000029
stage/sql/cleaned up	8.e880801
stage/sgql/cleaning up	©.ee8000

16 rows in set (0.01 sec)

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Index usages for Query performance optimization

e rows filter
« avoid temporary tables use

e avolid sort operation use

« avoid reading rows from the tables (covering index)

and much more

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

Many indexes on table - good or bad?

Higher Lower DB

throughput Low CPU instance
High read (QPS) for Low read utilization type/class Low temp
performance read query IOPS for read use disk use

Number of indexes on table

{

|
|

A
Low write Low throughput High write High CPU allely Longer time for Table
performance for write query [O] utilization storage re-org or level task like
for write use Optimize table etc.

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Things that may go wrong

Optimizer can choose wrong index

« index scan is expensive
- statistics are outdated
« innodb_stats_persistent_sample_pages

- bad queries

How to fix/workaround it

* Force index hint

« Increase innodb_stats_persistent_sample_pages*
* Analyze

* Optimize

* Move some logic to the application

*Aurora has default pages set to 256 unlike MySQL which is 8
aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Query Tuning Cycle

@ D]

CloudWatch |

Metrics

Poor database
performance

aws
~—

@

)} @

Performance
Insights

Performance
Schema

(] D] @
Enhanced MySQL
Monitoring Slow log
ac —
Monitor
performance
_____ SQL query)
optimization
3

Create / modify index or
re-design SQL query

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance
analysis

SQL query analysis

4

A\
Find SQL query for

tunning

A

Q

Performance
Schema

Monitoring
Aurora PostgreSQL

aws

N >) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Logging in Aurora PostgreSQL

* Aurora PostgreSQL logging Number of parameters to control the logging
postgresql.log.%Y-%m-%d-%H%M

log statement
log connections

* Publish PostgreSQL logs to CloudWatch Lo ok votte
Logs, perform real-time analysis using Log_temp_files
. log min_duration_statement
CloudWatch Log Insights and use log_autovacuum_min_duration
CloudWatch to create alarms and view rds.force_autovacuum_logging_level

track_functions

metrics log statement_stats
pgaudit.log

auto_explain.log min_duration
auto_explain.log verbose

‘ Use lOCl de EXtEI:lSIOn tO query the auto_explain.log nested statements
PostgreSQL log via SQL for PANIC, other rds.log_retention_period
errors or information.

And many more ..

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://aws.amazon.com/blogs/database/create-an-amazon-cloudwatch-dashboard-to-monitor-amazon-rds-for-postgresql-and-amazon-aurora-postgresql/
https://aws.amazon.com/blogs/database/working-with-rds-and-aurora-postgresql-logs-part-2/
https://www.postgresql.org/docs/13/runtime-config.html

PostgreSQL Extensions for Performance Monitoring

pg_stat_statements for tracking execution statistics of SQL statements

auto_explain for logging execution plans of slow queries automatically

pg_proctab exposes OS/proc information through SQL

plprofiler to find bottleneck in PL/pgSQL function and stored procedures

N >) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

https://www.postgresql.org/docs/13/pgstatstatements.html
https://www.postgresql.org/docs/13/auto-explain.html
https://github.com/markwkm/pg_proctab
https://github.com/bigsql/plprofiler

Other useful tools and scripts for Monitoring

pg-collector collects database information and presents it in a consolidated HTML file

PGPerfStatsSnapper for periodic collection (snapping) of PostgreSQL performance related
statistics and metrics

rds-support-tools contains collection of useful database monitoring scripts

Amazon Aurora Postgres Advanced Monitoring creates CloudWatch dashboard with useful
database monitoring metrics

Pgbadger PostgreSQL log analyzer with fully detailed reports and graphs

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://github.com/awslabs/pg-collector
https://github.com/aws-samples/aurora-and-database-migration-labs/tree/master/Code/PGPerfStatsSnapper
https://github.com/awslabs/rds-support-tools/tree/main/postgres
https://github.com/awslabs/amazon-aurora-postgres-monitoring
https://github.com/darold/pgbadger

Optimizing

Aurora PostgreSQL

aws

N >) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL Extensions for Database and SQL Tuning

pg_repack for rebuilding a table online

pg_partman to partition tables with less effort

pg_hint_plan to bias queries away from big operations (hints related to
Scans, Joins & Environment)

N >) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved

https://github.com/reorg/pg_repack
https://github.com/pgpartman/pg_partman
https://github.com/ossc-db/pg_hint_plan

Autovacuum

In PostgreSQL, an UPDATE or DELETE operation doesn’'t immediately remove the old version of
the row to gain benefits of Multi-Version Concurrency Control (MVCC)

AUTOVACUUM processes tables and related indexes on a regular basis

« To recover or reuse disk space occupied by updated or deleted rows.
Also defragments/rearranges rows on data pages to maintain contiguous free space

« To update data statistics used by the PostgreSQL query planner.
» To update the visibility map, which speeds up index-only scans.
« To protect against loss of very old data due to transaction ID wraparound or multixact ID wraparound.

Page # 1 Page # 2 Page # 3

tuple3
tuple4
tuple3
tuple4

Autovacuum runs

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Autovacuum Issues

Indicator of Vacuuming issues

» Database storage growing with no new data influx?

* Noticing that your queries are running slow?

« Explain plan of a slow query shows sub-optimal plan (e.g. number of buffers read is much higher
than number of actual rows returned) ?

« Maximum used transaction IDs constantly increasing beyond 200M transactions (by default)?

Detect

 List tables and its bloat ratio
 Listindexes and its bloat ratio
« Implement Early Warning for Transaction ID Wraparound

Root causes

» Autovacuum not able to keep up
* Autovacuum getting blocked

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://raw.githubusercontent.com/awslabs/rds-support-tools/main/postgres/diag/sql/list-tables-bloated.sql
https://raw.githubusercontent.com/awslabs/rds-support-tools/main/postgres/diag/sql/list-btree-bloat.sql
https://aws.amazon.com/blogs/database/implement-an-early-warning-system-for-transaction-id-wraparound-in-amazon-rds-for-postgresql/

Fixing Autovacuum Issues

* Adjust Autovacuum related parameters Number of parameters to tune
* Vacuuming related parameters can be set at the
table level (using alter table <> set <>) Autovacu um

* Check and kill EXCLUSIVE locks on tables . .

vacuum rtreeze min age
 Check and kill “idle in transaction” session vacuum:fr'eeze:tabiefage
 Check and kill long-running transactions autovacuum_freeze max_age
* Check and drop abandoned replication slots
 Check and rollback orphaned prepared

autovacuum_max_workers
autovacuum_naptime

transactions autovacuum_vacuum_cost_delay
e Run a manual vacuum (if needed) autovacuum_vacuum_scale factor
. Ve Ralble mere auFovacuum_vacuum_cost_limit
. Vacuum ANALYZE [table_name]; maintenance_work_mem
. Vacuum FULL [table_name];

https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresqgl-environments/

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://wiki.postgresql.org/wiki/Lock_Monitoring
https://aws.amazon.com/blogs/database/a-case-study-of-tuning-autovacuum-in-amazon-rds-for-postgresql/
https://www.cybertec-postgresql.com/en/reasons-why-vacuum-wont-remove-dead-rows/
https://www.cybertec-postgresql.com/en/reasons-why-vacuum-wont-remove-dead-rows/
https://www.cybertec-postgresql.com/en/reasons-why-vacuum-wont-remove-dead-rows/
https://aws.amazon.com/blogs/database/understanding-autovacuum-in-amazon-rds-for-postgresql-environments/

Optimizing Updates Using Fillfactor and HOT Updates

Fillfactor specifies the % of a page to be filled by INSERT operations, reserving the rest of
the space for subsequent UPDATE operations. Default Fillfactor for tables is 100% and for
index is 90%.

- UPDATE operations insert a new row (or tuple) and mark the old row as dead.

- Every update by default requires new index entries to be added even if no indexed attribute
is modified and modifying an index is much more expensive than modifying the table.

- Heavily updated tables can become “bloated” with dead tuples. Autovacuum operation
cleans the dead row versions in the table and the index.

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimizing Updates Using Fillfactor and HOT Updates

HOT (Heap Only Tuples) updates avoids updating index records by maintaining a chain of updated tuples
linking a new version to the old in the data page.

Conditions

New tuple is inserted in the same page as the old version of the tuple

None of the indexed columns get changed i id_other columns

Advantages
UPDATEs are faster

. Dead tuples can be removed without the need for VACUUM. Any backend that processes a block and
detects a HOT chain with dead tuples will try to lock and defragment the block, removing dead tuples.

Detect
Top30 tables with low HOT updates
Fix HOT Updates

1. ALTER TABLE <table_name> SET (fillfactor = 90)
2. Run pg_repack on the table to re-organize the table

3. Drop Unused, Duplicate and useless Indexes

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://raw.githubusercontent.com/awslabs/rds-support-tools/main/postgres/diag/sql/top30-tables-with-low-hotupdates.sql
https://xzilla.net/blog/2008/Jul/Index-pruning-techniques.html

Optimizing Large Tables using Partitioning

Allows to split a large table into smaller pieces using
List, Range or Hash partitioning techniques

Benefits

« Partition Pruning: A query optimization technique where only a single
partition or small number of partitions are accessed instead of all the
partitions to fetch data to improve query performance

 Bulk loads and deletion can be done by adding or removing partitions
which avoids Vacuum overhead

- Partition wise joins and partition wise aggregation

« Multiple vacuum workers can vacuum individual partitions in parallel

https://aws.amazon.com/blogs/database/improve-performance-and-manageability-of-large-postgresgl-tables-
by-migrating-to-partitioned-tables-on-amazon-aurora-and-amazon-rds/

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://aws.amazon.com/blogs/database/improve-performance-and-manageability-of-large-postgresql-tables-by-migrating-to-partitioned-tables-on-amazon-aurora-and-amazon-rds/

Optimizing Connection overhead using Connection
Pooling

* PostgreSQL has a postmaster process, which spawns new processes for each
new connection to the database.

» Each open connection in PostgreSQL whether idle or active consumes

memory (~T10MB). This creates a problem if the number of connections are 5

too high.
A) Connection
» Connection pooling refers to the method of creating a pool of connections PP Pooler

and caching those connections for reuse. —

« A database side connection pooler is recommended even if you have
connection pool on the application side

» Connection poolers : RDS Proxy (fully managed and highly available),
PgBouncer, Pgpool

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL considerations for performance

Avoid using numeric datatype and consider bigint instead

. Numeric is designed for accurately storing monetary amounts. Can hold 131k digits before decimal and 16k digits after decimal.
. Joins and calculations on numeric columns are very slow compared to integer datatype.
. A simple pgbench test on numeric vs. bigint on write performance shows more than 15% difference.

Use limited number of Temporary tables

. Heavy usage can cause bloat in pg_catalog leading to slow performance and high CPU usage for queries touching dictionary tables.

. Monitor bloat in pg_catalog tables and tweak autovacuum to run aggressively if using temporary tables excessively.

. Autovacuum can't access temporary tables. So run Analyze on temporary tables after creation to help optimizer generate an optimal
plan.

Pay attentlon to AUTOCOMMIT and “Idle in Transaction” session

With autocommit OFF, even a select query opens a transaction and without implicit commit/rollback, transitions to idle in transaction

state.
. “Idle in Transaction” session prevents autovacuum from cleaning up pages.
. Monitor and kill “Idle in Transaction” sessions or set idle_in_transaction_session_timeout parameter to kill these sessions automatically

Create separate Triggers for insert & update events and avoid using exception clauses

. Checking the value of TG_OP inside a trigger can be costly
. Each execution of an exception block results in allocation of an additional XID. This can rapidly exhaust transaction ids with high writes
throughput.

Pay attention to the Volatility category (Volatile, Stable, and Immutable) of functions

. The Immutable variant takes the minimum amount of time.

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://www.postgresql.org/docs/13/datatype-numeric.html
https://aws.amazon.com/blogs/database/code-conversion-challenges-while-migrating-from-oracle-or-microsoft-sql-server-to-postgresql/

Query Tuning in

Aurora PostgreSQL

aws

N >) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Query Tuning Methodology

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Solving Problems with Wait Events

pg_stat_activity : One row per server process showing information related to
the current activity of that process

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://www.postgresql.org/docs/13/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW

Explain Query Plan

explain (analyze,verbose,buffers,settings) <query>

A\ Use transaction (begin, end) for running explain analyze on DML
commands, so that you can rollback.

GroupAggregate (cost=17612.84..19769.68 (rows=107842 width=40) (actual time=861.091..884.817(rows=521)1o0ps=1)
Group Key: (st_geohash(geometry, 2))
-> Sort (cost=17612.84..17882.44 rows=107842 width=32)((actual time=861.084..872.597 Jrows=107842 loops=1)
Sort Key: (st_geohash(geometry, 2))
Sort Method: external merge Disk: 1376kB
-> Seq Scan on plan_item (cost=0.00..6015.02 rows=107842 width=32) (actual time=0.018..50.245 rows=107842 loops=1)
Planning time: 0.094 ms
Execution time: 891.762 ms

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://www.postgresql.org/docs/13/sql-explain.html

Visualize Query Plan

Slowest JOB with no help from AQO, SQL Hash: -1951831435, Plan Hash: 1646433915 #

10.04 43 £ 2,832,555 2,626.12
planning tim

07,842 width=40)

AGGREGATE

under es!

NESTED LOOP

Inner

ridth=32)

NESTED LOOP 2 INDEX SCAN 7 = 1)

public.na

NESTED LOOP 396.54 INDEX SCAN
Inner

[bad estimata

under estimats

NESTED LOOP 1 INDEX SCAN

Inner

NESTED LOOP 9 INDEX SCAN

NESTED LOOP 7 INDEX ONLY SCAN

Inner - public title

mated rows by 1,231x

SEQ SCAN .96 INDEX SCAN

http://tatiyants.com/pev/#/plans/new

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Problems to look for in EXPLAIN ANALYZE output

« Large difference between estimated and actual rows
GroupAggregate (cost=17612.84..19769.68|rows=107842 width=46) (actual time=861.891..884.817| rows=521}loops=1)

- Wrong index, no index, or index not being used as expected ik e ey D,) . |
-> Sort (cost=17612.84..17882.44 rows=167842 width=32)((actual time=861.084..872.597 Jrons=107842 loops=1)
Sort Key: (st_geohash(geometry, 2)) '
Sort Method: external merge Disk: 1376kB
-> Seq Scan on plan_item (cost=0.00..6615.02 rows=107842 width=32) (actual time=.018..50.245 rows=107842 loops=1)
Planning time: 0.894 ms
Execution time: 891.762 ms

« Large number of buffers read (working set not cached)
« Slow nodes: Sort [Agg], NOT IN, OR, large SeqScan, COUNT

apg_enable_not_in_transform parameter in Aurora PostgreSQL

can help speed up NOT IN queries
« Bitmap heap scan reporting “lossy” (need to increase WORK_MEM)

« Large number of rows filtered by a post-join predicate
« Reading more data than necessary (pruning, clustering, index-only)
« Slow VOLATILE functions that are really IMMUTABLE

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-3-optimizer-parameters/

Query Plan Management (QPM)

Use baseline
1. Capture plans C query A - plan v3)

Automatically happens if query runs
. _

2. Approve plans \ J
First captured plan is automatically

approved query A - plan v2

Compare

3. Evolve Unapproved plans

If an Unapproved plan is faster (slower),
Approve (Reject) it.
4. Re-test Approved plans
and possibly change to
Preferred or Rejected

query A - plan v3

SET work _mem = '4GB’; -- try a different parameter setting

5. See the effect of changing an optimizer SELECT validate_plans (sql_hash, plan_hash, ") FROM dba_plans
setting for any set of statements, without WHERE
risk of plan regression. Any new plans are status in ("Approved’, ‘Preferred’) AND
created with status ‘Unapproved'. execution_time._ms >= 10000; _
RESET work_mem; -- restore the parameter to its default value

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Analyzing a top statement from Performance Insights
Using QPM

Load By Waits (AAS) SQL

delete from authors where id < { select * from (select max(id) - ? from aut...
WITH cte AS (SELECT id FROM authors LIMIT ?) UPDATE authors s SET e...
INSERT INTO authors (id,name,email) VALUES (nextval(?) ,?,7), (nextval(?...

select count(*) from authors where id < (select max(id) - ? from authors) ...

autovacuum: VACUUM ANALYZE public.authors

SELECT evolve_plan_baselines (sql_hash, plan_hash, 1.0, ‘approve’)
FROM dba_plans WHERE
sqgl_text LIKE ‘select count(*) from authors where id < (select %' AND
plan_last_used (sql_hash, plan_hash) = current_date -- used today

ORDER BY status DESC; -- Unapproved first

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Things you can do to make a slow query faster

« Collect more statistics (default_statistics_target) or extended statistics

« Modify parameters (GUCs) related to query planning and resource consumption
(e.g. work_mem)

= Review and Modify Aurora PostgreSQL specific optimizer parameters

« Fix the plan with pg_hint_plan, and then remove the hint

« Add secondary indexes, Foreign Key indexes and Drop unused indexes

= Consider not only B-tree indexes, but also hash/BRIN/partial/expression indexes.
« Rewrite the SQL to a more efficiently executed form
« Reduce planning overhead or per-execution overhead (use prepared statements)
« CLUSTER cold parts of the heap to exploit access patterns
« Implement or change the table partitioning strategy

« Scale up to a larger instance class (to improve cache hit ratio)

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://www.postgresql.org/docs/13/planner-stats.html
https://www.postgresql.org/docs/13/runtime-config.html
https://aws.amazon.com/blogs/database/amazon-aurora-postgresql-parameters-part-3-optimizer-parameters/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Optimize.Maintenance.html#AuroraPostgreSQL.Optimize.Maintenance.pg_hint_plan

Query Tuning Cycle

CloudWatch Enhance
Metrics

RDS Performance PostgreSQL dictionary 3rd party tool

e Insights & DevOps Guru auto_explain taples
Monitoring f5r RDS

Monitor performance Performance analysis

Find SQL query for

tunning
Poor database
performance
Query optimization Query analysis
Collect
more/accurate Partition Large /\
statistics T
QFM o Explain Visualize Plan
Create./ modify index or oq_hint_plan Update GUC
re-design SQL query — = DR

aws

N =) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Partner Packages

Aurora Performance Optimization

Partner Packages — Aurora Performance Optimization

ASILISILUINM

datAvalil

Aurora Performance Aurora Performance
Optimization Offer Optimization Offer

virtusar
Aurora Performance Aurora Performance
Optimization Offer Optimization Offer

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://www.agilisium.com/amazon-aurora/
https://www.agilisium.com/amazon-aurora/
https://www.datavail.com/service-overview/Datavail_SO-Amazon_Aurora_Optimization_Offer.pdf
https://www.datavail.com/service-overview/Datavail_SO-Amazon_Aurora_Optimization_Offer.pdf
https://www.pwc.com/us/en/services/alliances/amazon-web-services.html
https://www.pwc.com/us/en/services/alliances/amazon-web-services.html
https://www.virtusa.com/partners/aws
https://www.virtusa.com/partners/aws

dWs
~—

Thank you!

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

