
© 2021, Amazon Web Services, Inc. or its Affiliates.

Steve Abraham
Principal Data Architect

Amazon Web Services

Planning a PoC with

Amazon Aurora

© 2021, Amazon Web Services, Inc. or its Affiliates.

Agenda

• Introduction to Amazon Aurora

• When to do a proof of concept (PoC)

• PoC database environment setup

• Database metrics and statistics collection

• Best practices for running the PoC

• Types of PoC testing

• PoC test design template

• Q&A

© 2021, Amazon Web Services, Inc. or its Affiliates.

Introduction to

Amazon Aurora

© 2021, Amazon Web Services, Inc. or its Affiliates.

Speed and availability of high-end commercial databases

Simplicity and cost-effectiveness of open source databases

Drop-in compatibility with MySQL and PostgreSQL

Simple pay as you go pricing

Amazon Aurora

What is Amazon Aurora?

© 2021, Amazon Web Services, Inc. or its Affiliates.

Features

• Aurora Global Database

• Fast database cloning

• Amazon Aurora Serverless

• Database Backtrack (Aurora MySQL)

• Parallel Query (Aurora MySQL)

• Aurora multi-master (Aurora MySQL)

• Cluster cache management (Aurora

PostgreSQL)

• Query plan management (Aurora

PostgreSQL)

Differentiators

• Storage architecture

• High availability, failover process

• Disaster recovery, backup and restore

• Database endpoint management

• Logging and audit

• Security model

Understanding the value of Amazon Aurora

© 2021, Amazon Web Services, Inc. or its Affiliates.

When to do a

Proof of Concept (PoC)

© 2021, Amazon Web Services, Inc. or its Affiliates.

When should you do a proof of concept (PoC)?

When?

• Replatforming an application (and its databases)

• Modernizing an application (and its databases)

• Migrating to AWS

Why?

• Evaluate fit for purpose

• Ensure operational requirements are met

• Gauge level of effort needed to reach the goal

© 2021, Amazon Web Services, Inc. or its Affiliates.

Structuring your PoC

What are your objectives?

• Application compatibility

• Functional use cases

• Throughput and latency needs

• Operational efficiency

• Security and compliance

• Overcome scaling limitations

► Quantify and use as a baseline!

© 2021, Amazon Web Services, Inc. or its Affiliates.

Identify workload characteristics

How are you measuring your objectives?

• Run with production-representative workload

• Right mix of OLTP versus OLAP versus HTAP

• Appropriate concurrency level

• Appropriate data set size

• Number (and churn) of client connections

• Appropriate sizing

► Build appropriate monitoring instrumentation

© 2021, Amazon Web Services, Inc. or its Affiliates.

Define and rank your success criteria

How do you know it was successful?

• Align on your requirements and be specific

• Define set of success criteria against these requirements

• Distinguish between “need” and “nice to have”

• Monitor metrics that relate to the requirements

• Use scoring model to quantify

From
• “Reporting 2× slower”

• “High availability exceeds our needs”

• “Kind of meets our commit latency”

• And so on…

To

Pre-testing Post-testing

Criteria Criticality
(1, low; 2,

medium; 3, high)

Score
(0, fail; 1, sometimes;

2, met; 3, exceeded)

Reporting perf. 2 0

High availability 3 3

Commit latency 3 1

© 2021, Amazon Web Services, Inc. or its Affiliates.

PoC database environment

setup

© 2021, Amazon Web Services, Inc. or its Affiliates.

W R

Aurora Storage

P

Disk

S

Disk

R

Disk

Sample Current Environment

• Setup DB environment with equivalent topologies for high availability, durability, and H/W

configurations

• Use read replica instances to distribute read and write workload in the Aurora cluster, if your

application supports read and write splits

• Keep your PoC infrastructure separate from your current database and application

infrastructure

• Try to automate the deployment environment using AWS CloudFormation or Terraform

Sample Aurora PoC Environment

DC1 DC2 DC3 AZ1 AZ2 AZ3

PoC database environment setup

© 2021, Amazon Web Services, Inc. or its Affiliates.

Suggested database metrics

and statistics for collection

© 2021, Amazon Web Services, Inc. or its Affiliates.

• Enable Enhanced Monitoring, with monitoring frequency set to at least a 5

second interval

• Enable Amazon RDS Performance Insights

• Enable the pg_stat_statements and auto_explain extensions (Aurora

PostgreSQL)

• Enable Query Plan management (Aurora PostgreSQL)

• Enable slow log query and performance_schema on the database (Aurora

MySQL)

Apart from AWS CloudWatch metrics, you can configure

additional database and OS statistics collection

© 2021, Amazon Web Services, Inc. or its Affiliates.

Select * from information_schema.processlist WHERE command <> "sleep"\G

Show Engine Innodb Status\G

Show global status;

Select * from information_schema.innodb_trx\G

Select r.trx_id waiting_trx_id, r.trx_mysql_thread_id waiting_thread,

r.trx_query waiting_query, b.trx_id blocking_trx_id, b.trx_mysql_thread_id

blocking_thread, b.trx_query blocking_query FROM

information_schema.innodb_lock_waits w INNER JOIN

information_schema.innodb_trx b ON b.trx_id = w.blocking_trx_id INNER JOIN

information_schema.innodb_trx r ON r.trx_id = w.requesting_trx_id\G

Additional database metrics and statistics collection for

Aurora MySQL

© 2021, Amazon Web Services, Inc. or its Affiliates.

List of pg_catalog objects

• pg_stat_statements

• pg_stat_activity

• pg_stat_*

• pg_stat_io

• pg_locks

Additional database metrics and statistics collection for

Aurora PostgreSQL

© 2021, Amazon Web Services, Inc. or its Affiliates.

Best practices for running the

PoC

© 2021, Amazon Web Services, Inc. or its Affiliates.

• Create custom parameter groups, only customize parameter values when

needed

• Enable the additional logging related parameters as needed for example:

log_lock_waits=1 (Aurora PostgreSQL)

• Run test using a warm database or application caches

• Simulate the production architecture while running tests using multiple app

instances, primary and read replica database instances, as needed

• Run the tests for a period of the time that is representative of your

production workload pattern

Best practices for running the PoC

© 2021, Amazon Web Services, Inc. or its Affiliates.

• Run multiple test run to make sure the results are consistent

• Run tests for Aurora and current database engine environments with the

same data set, application load and application version. If possible, use

application payload size and concurrency similar to production to simulate a

mirror workload

• Pay attention to table bloat and autovaccum processes based on the

workload pattern (Aurora PostgreSQL)

Best practices for running the PoC (cont’d)

© 2021, Amazon Web Services, Inc. or its Affiliates.

Types of PoC testing

© 2021, Amazon Web Services, Inc. or its Affiliates.

Capabilities test

Performance test

Scalability test

Resiliency test

Security and
access control test

Backup, recovery
and DR test

Monitoring test

OperationalFunctional

Migration
test

Types of PoC testing

© 2021, Amazon Web Services, Inc. or its Affiliates.

Best practices

Importance

Test entire application functionality

• The most critical part of PoC testing

• Core main application functionality and capabilities should not

diminish

• Identify opportunity to application improvements, if applicable

• Modular testing in case of large or complex applications

• Full application testing including all use case scenarios and time

based processes (day/week/monthly/quarter end)

Functional – Capabilities test

© 2021, Amazon Web Services, Inc. or its Affiliates.

Best practices

Importance • Validate the database performance against all application load

profiles

• Ensure consistent performance within accepted SLAs

• Application load profiling

• Use production equivalent H/W infrastructure including SSL, load

balancer and firewalls

• Run PoC with production equivalent load, application payload and

concurrency

• Consider Aurora Cluster Cache Management(Aurora PostgreSQL),

Parallel Query (Aurora MySQL) based on application use case

Validate the application performance SLAs with normal and peak application

load.

Functional – Performance test

© 2021, Amazon Web Services, Inc. or its Affiliates.

Best practices

Importance • Measure application performance by scaling Aurora DB instances to

meet changing application workloads

• Use production environment architecture to test scalability

• Use auto-scaling configuration for Aurora read replicas to manage

sudden increases in connection or workload, if applicable

• Define threshold limits and performance monitoring to trigger

scaling event

• Discover the DB instance type workload throughput

Test and define database scalability strategy.

Functional – Scalability test

© 2021, Amazon Web Services, Inc. or its Affiliates.

Best practices

Importance • Test the application behavior during database failures

• Determine how failures will remediate and possible impact on the

application

• Identify the process for auto remediation

• Identify and define alert notifications

• Use Amazon Aurora fault injection queries

• Conduct a Aurora writer DB instance failure test by manual failover

• Review client side DNS endpoint caching configuration

• Application based use case consider proxy solution (RDS Proxy)

Test the application resiliency with different kind of database failures.

Operational – Resiliency test

© 2021, Amazon Web Services, Inc. or its Affiliates.

Best practices

Importance • Validate all the security compliance requirement like data

encryption in transit and/or at rest, as well as access control

• Grant least privilege access control

• Validate and configure separate security policies between

production and non-production environments

• Access control via IAM to manage AWS database infrastructure

access and change management

• Password rotation and database object access management tests

• Configure Auditing (DAS) to meet security requirements, if needed

Test the application security and access control requirements.

Operational – Security & access control test

© 2021, Amazon Web Services, Inc. or its Affiliates.

Best practices

Importance • Understand the database backup and recovery procedure.

• Configure the backup retention period and set the SLAs accordingly

• Define and test the database DR procedure based on business

requirement

• Set up the automated backup retention period according to SLAs

for PiTR

• Define and test logical database/table level backup and restore

procedure based on application requirements

• Define database DR design according to your RTO and RPO SLAs

(i.e., use Aurora Global Database, snapshot copy etc.)

• Full dry run of DR database failure and failback to primary AWS

region test

Test the database backup and recovery including DR test procedures, expected

application downtime and notification alerts.

Operational – Backup, recovery & DR test

© 2021, Amazon Web Services, Inc. or its Affiliates.

Best practices

Importance

Validate critical database monitoring required and modify monitoring based on

the Aurora database, if needed.

• Understand the Aurora cluster features, CloudWatch metrics, and

RDS Event notification monitoring to manage database more

effectively

• Database availability monitoring test and notification

• Set up CloudWatch alarms for key performance indicators

• Run application with full functionality and validate the monitoring

threshold limits and alert notifications

• Configure RDS Performance Insights and Enhanced Monitoring for

additional Aurora database and OS related key metrics

• Run manual database failure process to review monitoring alert

notifications

• Define and validate key alert notifications for Aurora cost

components like backup, I/O and storage usages

Operational – Monitoring test

© 2021, Amazon Web Services, Inc. or its Affiliates.

Best practices

Importance • Familiarize yourself with the full migration procedure and

estimated the migration time

• Create the run book for migration procedure

• Use the production database copy to test migration process on

production type database architecture to avoid any unexpected

errors

• Identify and validate the database consistency and integrity during

migration testing

• Repeat documented procedures to ensure consistent results

• Create and test rollback database migration plan, if needed

Test the entire database migration procedure.

Operational – Migration test

© 2021, Amazon Web Services, Inc. or its Affiliates.

Sample PoC design doc

© 2021, Amazon Web Services, Inc. or its Affiliates.

Test Type Test Name
Test

Description

Current

Measurements

PoC

Success

Criteria

Test

Results

Test Start

Time

Test End

Time

Criticality Level

(1-> Low, 2-

>Medium, 3-

>High

Overall Score

(0->Fail, 1-

>Sometimes, 2-

>Met, 3->Exceeded

Functional Capabilities

Functional Performance

Functional Scalability

Operational Resiliency

Operational

Security &

Access

control

Operational

Backup,

Recovery &

DR

Operational Monitoring

Operational DB Migration

Sample PoC design doc template

© 2021, Amazon Web Services, Inc. or its Affiliates.

Test Type Test Name
Test

Description

Current

Measurements

PoC Success

Criteria

Test

Results

Test

Start

Time

Test

End

Time

Criticality

Level (1-> Low,

2->Medium, 3-

>High

Overall Score

(0->Fail, 1-

>Sometimes, 2-

>Met, 3->Exceeded

Functional Capabilities

All modules

ETL processing

Other app

integration

Pass

Pass

Pass

Pass

Pass

Pass

3

1

2

Functional Performance

Production

load

App Users: 1000

QPS:3000

Read Latency: 4ms

Write Latency:6ms

App Users: 1000

QPS:3000

Read Latency: 4ms

Write Latency:6ms

3

3

Functional Scalability

prod load

150% prod

load

1W+2RR

1W+3RR

1W+2RR

1W+3RR

3

2

Operational Resiliency
DB failover 5 minutes 1 minute 3

Operational
Security &

Access control

IAM roles

PCI

requirements

Current setup

Current setup

Pass

Pass

3

3

Sample PoC design doc

© 2021, Amazon Web Services, Inc. or its Affiliates.

Test Type Test Name
Test

Description

Current

Measurements

PoC Success

Criteria

Test

Results

Test

Start

Time

Test

End

Time

Criticality

Level (1-> Low,

2->Medium, 3-

>High

Overall Score

(0->Fail, 1-

>Sometimes, 2-

>Met, 3->Exceeded

Operational

Backup,

Recovery &

DR

Daily backup-

14 days

retention

DR failure

Pass

20 minutes

Pass

10 minutes

3

2

Operational Monitoring

DB, critical

processes &

Infrastructure

monitoring

Pass Pass 2

Operational DB Migration

2 successful

tests

Migration

downtime 10

minutes

Pass

10 minutes

Pass

10 minutes

3

2

Sample PoC design doc (cont’d)

© 2021, Amazon Web Services, Inc. or its Affiliates.

Test Type Test Name
Test

Description

Current

Measurements

PoC Success

Criteria
Test Results

Test

Start

Time

Test End

Time

Criticality

Level (1->

Low, 2-

>Medium,

3->High

Overall Score

(0->Fail, 1-

>Sometimes, 2-

>Met, 3->Exceeded

Functional Capabilities

All modules

ETL processing

Other app

integration

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Pass

3

1

2

3

0

2

Functional Performance

Production

load

App Users: 1000

QPS:3000

Read Latency: 4ms

Write Latency:6ms

App Users: 1000

QPS:3000

Read Latency: 4ms

Write Latency:6ms

App Users: 1000

QPS:4000

Read Latency: 3ms

Write Latency:3ms

3

3

3

3

Functional Scalability

prod load

150% prod

load

1W+2RR

1W+3RR

1W+2RR

1W+3RR

1W+1RR

1W+2RR

3

2

3

3

Operational Resiliency
DB failover 5 minutes 1 minute 30 seconds 3 3

Operational
Security &

Access control

IAM roles

PCI

requirements

Current setup

Current setup

Pass

Pass

Pass

Pass

3

3

2

2

Sample PoC design doc

© 2021, Amazon Web Services, Inc. or its Affiliates.

Test Type Test Name
Test

Description

Current

Measurements

PoC

Success

Criteria

Test Results

Test

Start

Time

Test

End

Time

Criticality

Level (1-> Low,

2->Medium, 3-

>High

Overall Score

(0->Fail, 1-

>Sometimes, 2-

>Met, 3->Exceeded

Operational

Backup,

Recovery &

DR

Daily backup-

14 days

retention

DR failure

Pass

20 minutes

Pass

10 minutes

Pass

2 minutes

3

2

2

3

Operational Monitoring

DB, critical

processes &

Infrastructure

monitoring

Pass Pass Pass 2 2

Operational DB Migration

2 successful

tests

Migration

downtime 10

minutes

Pass

10 minutes

Pass

10 minutes

Pass

5 minutes

3

2

2

3

Sample PoC design doc (cont’d)

© 2021, Amazon Web Services, Inc. or its Affiliates.

Q&A

Steve Abraham

abrsteve@amazon.com

© 2021, Amazon Web Services, Inc. or its Affiliates.

Thank you!

© 2021, Amazon Web Services, Inc. or its Affiliates.

Team Virtusa

2/8/2021

Enrollment Broker

Application Migration
Pilot - Oracle to Aurora PostgreSQL

Migration

© 2021, Amazon Web Services, Inc. or its Affiliates.

About Virtusa

Virtusa is a Premier Consulting Partner

since 2017. Partnership programs include:

• AWS DB Freedom Partner

• AWS ISV Workload Migration (Pega)

• AWS Well Architected Program

• AWS Public Sector Partner

• AWS Public Sector Solution Provider

• AWS Solution Provider Program

• APN Immersion Days

Current list of competencies:

• AWS Migration

• AWS DevOps

• AWS Life Sciences

• AWS Financial Services

• AWS Data & Analytics

• AWS SaaS

• AWS Digital Workplace

© 2021, Amazon Web Services, Inc. or its Affiliates.

• Our client primarily supports Government-sponsored programs and enrolls people in

programs as per their eligibility

• The current Enrollment Broker applications are running on-premise using a legacy

technology stack

• Any increase in daily enrollments slowed down batch processing, requiring after-office

hours support to monitor and ensure no batch failures

• The customer was interested in modernizing the application on the cloud to reduce

operating costs and increase system performance

• The client partnered with Virtusa to do the first set of migration and validate the

technical approach

Enrollment Broker application needed to be scalable and

flexible, and reduce overall efforts and costs

• Java/iBatis for real-

time processing

• Kettle for batch

processing

• The database is on

Oracle

© 2021, Amazon Web Services, Inc. or its Affiliates.

Migrating the Enrollment Broker application to AWS

• For the pilot, migrated one instance of the Enrollment Broker application to AWS

infrastructure

• Re-architected the database from on-premise Oracle to Aurora PostgreSQL

• Re-hosted application to Amazon EC2s

• Built a regex-based utility to reduce manual efforts in remediating Postgres

compatibility issues for ~650 iBatis mapper and Kettle ETL scripts

• Defined the deployment process for performing repetitive migrations in higher

environments

• Built a framework for schema reconciliation and data validations

• Supported performance testing to compare application performance metrics in Oracle

and new Aurora PostgreSQL

© 2021, Amazon Web Services, Inc. or its Affiliates.

Application migration

1. Application migration required

development primarily for:

• Infrastructure provisioning

• EC2s with autoscaling groups created to

run web, application, and ETL servers

2. Application Configuration

• Java application with iBatis ORM layer

and Kettle ETL jobs remediated to run

against Aurora PostgreSQL database

• Virtusa built a regex-based utility to

reduce manual efforts in remediating

iBatis and ETL code, which can be

leveraged for all further migrations as

part of DC exit

© 2021, Amazon Web Services, Inc. or its Affiliates.

Database migration

AWS SCT and DMS are the primary migration

tools used for database migration.

We formed three teams for executing the

three phases of the DB migration:

1. Schema conversion

• SCT converted 80% of the code objects

automatically

• The remaining 20% of the code having

complex conversion issues was

remediated manually

2. Database migration

• DMS used to migrate the data from

Oracle to Aurora PostgreSQL

3. Schema reconciliation and data validation

post-migration

© 2021, Amazon Web Services, Inc. or its Affiliates.

Demonstrated a successful POC to efficiently modernize

the Enrollment Broker application

• Batch processing performance improved greatly, and the

run time is consistently inline with the support team’s

estimates for any given load volume

• It is estimated that the newly built remediation utility

helped reduce development efforts by 70%, and will be

reused for all future migrations

• Virtusa’s approach led to the client working on a scalable

factory model for migrating rest of the Enrollment Broker

applications

© 2021, Amazon Web Services, Inc. or its Affiliates.

Visit Virtusa Web portal for more details on the case study

• A detailed case study has been shared in Virtusa’s web portal.

Link to the case study will be shared in the audience chat.

• Learn more about Virtusa and our solutions from the

following:

• https://www.virtusa.com/solutions

• https://www.virtusa.com/partners/aws

© 2021, Amazon Web Services, Inc. or its Affiliates.

Thank you!

