
© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Chaos and feature experimentation for
safer, faster deployments with AWS

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Adrian Cockcroft
VP Cloud Architecture Strategy
AWS
@adriancockcroft

Yaniv Bossem
Solutions Architect
AWS
@yanivbossem

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Adrian Cockcroft
VP Cloud Architecture Strategy
AWS
@adriancockcroft

Speed Scale Strategic

Time to
value

Distributed
optimized
capacity

Critical workloads
datacenter

replacement

!

Pathway for innovation

You don’t add innovation to an organization
You get out of its way!

What is the fundamental
metric for innovation?

T I C K E T

Time to value

Do some work
How long?

Value to a
customer

T I C K E T

Time to value

Do some work
Months?

Value to a
customer

T I C K E T

Time to value

Do some work
Days?

Value to a
customer

T I C K E T

Time to value

Do some work
Minutes?

Value to a
customer

There is no economy of scale in software
Smaller changes are better

Lots of small changes

Automated
continuous

delivery pipeline

Tagging
feature flags,

A/B tests

Rapid
cheap
builds

Lots of small changes

SLOW
build

BIG
build

FAST
build

SMALL
build

HOURS to SECONDS

Move from Java Monolith to Go Microservices

Change one
small thing
at a time

tell if it breaks

roll back to
previous version

measure time
to value

Easier to

Easier to

Easier to

De-couple

New code from new feature

Incrementally change
system with many
small safe updates

Turn on features for
testing and when it

works—for everyone

Small
changes

Less risk

Faster problem detection

Faster repair

Less work in progress

Less time merging changes

Happier developers

Faster flow

How do we get there?

Automate collection and
reporting of commit to deploy

Measure time to
value everywhere

How do we get there?

Don’t get bogged down speeding up everything

create a fast path for simple and safe changes

Learn to do small things quickly

How do we get there?

Build and test cost in $ and people à drive to reduce

Number of tickets filed per deploy à drive to one

Number of meetings per deploy à drive to zero

Measure cost per deploy

Hypothesis-
driven
development

Break away
from your old
ways of working

Theoretical
basis for using
consistently
small changes

Get rid of 90%
of your project
managers as
you move to
continuous
improvement

Survey data
showing that
low latency
time-to-value
works

Learn to do simple things
quickly to unblock innovation

Avoid complex
one-size-fits-all processes

Time to value

Minimalist, messy and inconsistent

Provides guard rails for security,
scalability and availability

Designed to evolve rapidly
and explore new technologies

Supports low latency continuous delivery

The best IT architecture
today is:

Time to value

Speed Scale Strategic

!

Time to
value

Distributed
optimized
capacity

Critical workloads
datacenter

replacement

Pathway for innovation

Highly scaled

Distributed for availability

Cost optimized high utilization

Cloud-native architecture

Distributed
optimized capacity

Pay as you go, afterwards

Self service—no waiting

Globally distributed by default

Cross-zone/region availability models

High utilization—turn idle resources off

Immutable code deployments

Cloud-native principles

Speed Scale Strategic

!

Time to
value

Distributed
optimized
capacity

Critical workloads
datacenter

replacement

Pathway for innovation

Chaos engineering definition

Experiment to ensure that the impact
of failures is mitigated

Trends – chaos engineering – 10 years on . . .

2010 – First Netflix blog post about Chaos Monkey

Past Present Future

?

Disaster
recovery

Chaos
engineering

Continuous
resilience

Resilience

We build redundancy into systems so that if
something fails, we can fail over to an alternative

However, our ability to fail over is complex and
hard to test, so often the whole system falls over

How can we do better?

The last strand that breaks is not the cause of a failure!

Build resilient systems like a rope, not a chain, but make sure you know
how much margin you have and how “frayed” your system is

Drift into Failure
Sidney Dekker

Everyone can locally optimize for the right outcome at
every step, and you may still get a catastrophic failure
as a result . . .

We need to capture and learn from near misses, test and
measure the safety margins, before things go wrong

Infrastructure

Switching

Application

People

Chaos
engineering

team

To
ol

s

Security
red

team

Tools
Four layers, two
teams, an
attitude
Experiment to
ensure that the
effect of
failures is
mitigated

Chaos architecture

New! AWS Fault Injection Simulator
Run experiments to ensure that both availability and
performance impact of failures are mitigated

“You can’t legislate
against failure; focus on

fast detection and response.”
—Chris Pinkham

Observability Control

Let’s see what we can learn
from experts who have been
working on controlling safety
critical systems for decades

Engineering a Safer World
Systems Thinking Applied to Safety – 2012

Professor Nancy G. Leveson – MIT

STPA – Systems Theoretic Process Analysis

STAMP – Systems Theoretic Accident Model & Processes

http://psas.scripts.mit.edu for handbook and talks

http://psas.scripts.mit.edu/

STPA model
control diagram
Understand hazards that
could disrupt successful
application processing

Observability
and control

Data plane

Throughput

Control plane

Human controller

Model of
automation

Model of
controlled process

DisplaysControls

Control algorithm Model of
controlled process

Web service

SensorsActuators

Control action
generation

Environmental
inputs

Written / trained
procedures

Completed
actions

Customer
requests

Disturbances

Data plane

Throughput

Control plane

Human controller

Model of
automation

Model of
controlled process

DisplaysControls

Control algorithm Model of
controlled process

Web service

SensorsActuators

Control action
generation

Environmental
inputs

Written / trained
procedures

Completed
actions

Customer
requests

Disturbances

What happens if
there is a big
enough disturbance
to break the web
service?

Large-scale failure

Application is “out of control,” many possibilities
Automation has failed

Network partition, no route connecting application to customers

Application crashed or corrupted, not easily restartable

Anything else you didn’t think of

Trigger failover to alternative system

Large-scale failures

Human controllers

Router control plane

Routing service

Control plane A

Web service A

Availability Zone A

Control plane B

Web service B

Availability Zone B

Control plane C

Web service C

Availability Zone C

Symmetry
and assertions
• Services and data

are consistent across
three zones

• Zone failure modes
are independent

• Application should
work normally with
any zone offline

• Routing service
manages failover

Scenario
A W S A V A I L A B I L I T Y Z O N E S

Human controllers

Routing service

Control plane A

Web service A

Availability Zone A

Control plane B

Web service B

Availability Zone B

• Router control plane
detects offline AZ, stops
routing traffic
to it, and retries
requests on the online
AZs

• Automated response;
what could go wrong?

Router control plane

Scenario
A W S A V A I L A B I L I T Y Z O N E S

Human controllers

Router control plane

Routing service

Control plane A

Web service A

Availability Zone A

Control plane B

Web service B

Availability Zone B

• Missing updates
• Zeroed
• Overflowed
• Corrupted
• Out of order
• Updates too rapid
• Updates infrequent
• Updates delayed
• Coordination

problems
• Degradation over time

STPA hazards
S E N S O R M E T R I C S C H E C K L I S T

Routing control
plane doesn’t
clearly inform
humans that
everything is taken
care of, and offline
zone delays and
breaks other
metrics with a flood
of errors

Human controllers

Router control plane

Routing service

Control plane A

Web service A

Availability Zone A

Control plane B

Web service B

Availability Zone B

• Model mismatch
• Missing inputs
• Missing updates
• Updates too rapid
• Updates infrequent
• Updates delayed
• Coordination

problems
• Degradation over time

STPA hazards
M O D E L P R O B L E M S C H E C K L I S T

Confused human
controllers disagree
among themselves
about whether
they need to do
something or not,
with floods of
errors, displays that
lag reality by
several minutes,
and out-of-date
runbooks

Human controllers

Router control plane

Routing service

Control plane A

Web service A

Availability Zone A

Control plane B

Web service B

Availability Zone B

• Not provided
• Unsafe action
• Safe but too early
• Safe but too late
• Wrong sequence
• Stopped too soon
• Applied too long
• Conflicts
• Coordination

problems
• Degradation over time

STPA hazards
H U M A N C O N T R O L A C T I O N C H E C K L I S T

Human controllers
should not need
to do anything!
However, they
are confused and
working separately,
trying to fix different
problems – some of
their tools don’t get
used often, and
are broken or
misconfigured to do
the wrong thing

Human controllers

Instead of failing
over, system
falls over

Most likely result
In-rush of extra
traffic from failed
zone, and extra work
from a cross zone
request retry storm
causes zones A and B
to struggle and
triggers a complete
failure of the
application –
meanwhile, the
routing service also
has a retry storm
and is impacted

Failing over without
falling over

How to fail over without falling over

Alert correlation
Floods of alerts need to be reduced to actionable insights (new: Amazon DevOps Guru)

Observability system needs to cope with floods without failing

Run regular chaos engineering experiments (new: AWS Fault Injection Simulator)

Retry storms – prevent work amplification
Reduce retries to zero except at subsystem entry and exit points

Reduce timeouts to drop orphaned requests

Route calls within the same zone

Symmetries
High level of automation, consistent configuration as code

Consistent instance types, services, versions, zones, and Regions
Patterns and guard rails for resilience

Principles
If it can be the same, make it look and act identically

If it’s different, make that clearly visible
Test your assumptions continuously

What about multi-Region?

Get AZ failover solid
before attempting

multi-Region

Use STPA to
analyze multi-Region-

specific hazards

Follow
Well-Architected
guide patterns

Speed Scale Strategic

!

Time to
value

Distributed
optimized
capacity

Critical workloads
datacenter

replacement

Best wishes for safer, faster deployments

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Yaniv Bossem
Solutions Architect
AWS
@yanivbossem

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

“We needed to build systems
that embrace failure as a
natural occurrence.”

Werner Vogels
CTO
AWS

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Well-Architected Framework

Security Cost
optimization

Operational
excellence

Performance
efficiencyReliability

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Testing resiliency

Design principles for reliability

• Automatically recover from failure

• Test recovery procedures

Resiliency
“The ability of a system to recover from infrastructure
or service disruptions…”

http://bit.ly/reliability-pillar

http://bit.ly/reliability-pillar

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Fault isolation to protect your workload

https://bit.ly/use-fault-isolation

https://bit.ly/use-fault-isolation

AWS Regions and Availability Zones
AWS Regions are physical locations around the world where we cluster data
centers

Data center Data center

Data center

Each Availability Zone is one or
more discrete data centers

Data centers, each with redundant
power, networking, and connectivity,

housed in separate facilities

Transit

Transit

Availability
Zone

Availability
Zone

Availability
Zone

Availability
Zone

Each AWS Region has
multiple Availability Zones

A Region is a physical
location in the world

Region and number of
Availability Zones

24 AWS Regions worldwide

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Chaos engineering: A scientific method

STEADYSTATE

HYPOTHESIS

RUN EXPERIMENT

VERIFY

IMPROVE

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Chaos experiment

Inject events that simulate
Hardware failures, like servers dying
Software failures, like malformed responses
Nonfailure events, like spikes in traffic or scaling events
Any event capable of disrupting steady state

HYPOTHESIS

RUN
EXPERIMENT

VERIFY

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tools for the job

Plenty of open-source and commercial tools
Just use these?
Yes! Absolutely. Please do.

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Marketplace: Destination for third-party solutions to use with AWS

Ideas

Ideas

Ideas Plan Build ReleaseTest Operate
Ideas

Secure

Continuous delivery

Security & compliance

Continuous integration

Testing & quality management

Monitoring & observability

Incident management

Collaboration & communication

Microservices and everything-as-code

DevOps Core practices

Sample AWS Marketplace solution providers

1,600+ vendors | 8,000+ products

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Marketplace: Destination for third-party solutions to use with AWS

Ideas

Ideas

Ideas Plan Build ReleaseTest Operate
Ideas

Secure

Continuous delivery

Security & compliance

Continuous integration

Testing & quality management

Monitoring & observability

Incident management

Collaboration & communication

Microservices and everything-as-code

DevOps Core practices

Sample AWS Marketplace solution providers

1,600+ vendors | 8,000+ products

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Gremlin: Chaos Engineering Platform
Attacks
Use Gremlin's comprehensive set of 12
Chaos Engineering experiments to find
weaknesses in your systems and reduce
incidents.

Guidance
Reduce your time to resolution by testing
your monitoring and alerting, and preparing
your teams with real-world failure
scenarios.

Safety
Continuous Status Checks let you
safely monitor your systems during
an attack or Scenario, and halt an
experiment if your systems enter an
undesirable state.

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Cloud

Amazon Route 53

JP Morgan Chase increases core resiliency
with Chaos Engineering using Gremlin

Sufficient failover capacity

RTO/RPO achieved

Automated resiliency

Service degradation
detection

Region

Amazon EMR

Amazon RDS

Availability
Zone

Availability
Zone

Amazon RDS

Region

Amazon EMR

Amazon RDS

Availability
Zone

Availability
Zone

Amazon RDS

Amazon EKS Amazon EKSAmazon EKS Amazon EKS

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Example : CPU increase experiment

https://gremlin.awsworkshop.io/

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Our architecture for the example

Amazon EC2
Auto Scaling

Public subnet

Availability Zone 1

Bastion Host

NAT gateway

Private subnet

Kubernetes nodes

Public subnet

Availability Zone 2

Bastion Host

NAT gateway

Private subnet

Kubernetes nodes

Public subnet

Availability Zone 3

Bastion Host

Private subnet

Kubernetes nodes

VPC

NAT gateway

Amazon EC2
Auto Scaling

AWS Cloud

Amazon EKS

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Hypothesis

Load will be adequately served by remaining two EC2 instances
Elastic Load Balancing will detect unhealthy instance
and reroute requests
Autoscaling will create more instances

Hypothesis 1
If our EC2 instances CPU increases, then availability will not be impacted

Hypothesis 2
If an entire Availability Zone dies, then availability will not be impacted

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Hypothesis

Load will be adequately served by remaining two EC2 instances
Elastic Load Balancing will detect unhealthy instance
and reroute requests
Autoscaling will create more instances

Hypothesis 1
If our EC2 instances CPU increases, then availability will not be impacted

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

One minute later…

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Chaos engineering: A scientific method

STEADYSTATE

HYPOTHESIS

RUN EXPERIMENT

VERIFY

IMPROVE

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Action items

• Setup auto scaling
• Setting up alarms
• Setting auto scaling up setup
• Setting auto scaling down setup

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Setup Auto
scaling

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

CloudWatch
alarms

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Scale up

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Scale down

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Validate

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

https://www.gremlin.com/state-of-chaos-engineering

When things do break, the most common
causes were bad code pushes and

dependency issues

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Things break! But we can minimize the
impact and blast radius

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Feature flags

• Allows A/B testing, beta groups etc

• Kill Switches and circuit breakers

• Config changes are versioned as
code and deployed as code

• Throttle requests

Leading-edge feature
management tools:

Available in

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Monitor while you rollout

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Marketplace can help you get started
Find

A breadth
of DevOps solutions:

Buy

Free trial

Pay-as-you-go

Hourly | Monthly | Annual
| Multi-Year

Bring Your Own License (BYOL)

Seller Private Offers

Channel Partner Private Offers

Through flexible
pricing options:

Deploy

AWS Control Tower

AWS Service Catalog

AWS CloudFormation
(Infrastructure as Code)

Software as a Service (SaaS)

Amazon Machine Image (AMI)

Amazon Elastic Container Service
(ECS)

Amazon Elastic Kubernetes Service
(EKS)

With multiple
deployment options:

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Why AWS Marketplace?

IT decision-makers (ITDMS) cut their
time in half using AWS Marketplace
compared to other sources.

ITDMS feel 2.4x better about
purchasing using AWS Marketplace
compared to other sources.

Find, buy, and deploy solutions quicker Make more satisfying purchases

*Amazon Web Services (AWS) Marketplace surveyed 500 IT decision-makers (ITDMs)
and influencers across the U.S. to understand software usage, purchasing,
consumption models, and compared savings.

© 2021, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Webinar summary

Easily experiment with software using AWS Marketplace

Validate your system’s resiliency using Chaos engineering

Create a path to innovation for your organization

Safely rollout code and test in production with feature management

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Adrian Cockcroft
VP Cloud Architecture Strategy
AWS
@adriancockcroft

Yaniv Bossem
Solutions Architect
AWS
@yanivbossem

Thank you!

