
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

B R U S S E L S | M A R C H 2 8 , 2 0 2 3

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building next-gen applications
using event-driven architectures

Michael Hume

B T T 2 0 4

Senior Solutions Architect
AWS

Kevin Azijn
Senior Solutions Architect
AWS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Enterprise Integration Patterns

• Even-driven Architecture (EDA)

• Handling event duplication using idempotency

• Design considerations, an example: Storage First Pattern

Agenda

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Enterprise Integration Patterns

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Coupling – Integration’s magic word

Coupling is a measure of independent variability
between connected systems

Decoupling has a cost, both at design and runtime

Coupling isn’t binary

Coupling isn’t one-dimensional

A B

Source: EnterpriseIntegrationPatterns.com

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The many facets of coupling

Technology dependency: Java vs. C++

Location dependency: IP addresses, DNS

Data format dependency: Binary, XML, JSON, ProtoBuf, Avro

Data type dependency: int16, int32, string, UTF-8, null, empty

Semantic dependency: Name, middle name, ZIP

Temporal dependency: sync, async

Interaction style dependency: messaging, RPC, query-style (GraphQL)

Conversation dependency: pagination, caching, retries

Source: EnterpriseIntegrationPatterns.com

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Synchronous
request-response model

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Synchronous request-response model

Advantages
• Low latency

• Simple

• Fail fast

Sender Receiver

Request

Response

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Synchronous request-response model

Advantages
• Low latency

• Simple

• Fail fast

Sender Receiver Disadvantages
• Receiver failure

Request

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Synchronous request-response model

Advantages
• Low latency

• Simple

• Fail fast

Sender

Sender

Sender

Sender

Sender

Request

Request

Request

Request

Request

Disadvantages
• Receiver failure

• Receiver throttled

Receiver

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous point-to-point
model (queue)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous point-to-point model (queue)

Sender Receiver

M1 M2 M1 M2

Advantages
• Decreases temporal coupling

• Resilient to receiver failure

• Receiver controls consumption rate

Queue

Ack Ack

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous point-to-point model (queue)

Sender Receiver

M2 Advantages
• …

• Dead-letter queue (DLQ) for errors
Dead-letter

queue

Queue

Ack Ack

M1 M2 M1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous point-to-point model (queue)

Sender

Receiver

Receiver

M1

M2

Ack

Ack

Advantages
• …

• Only one receiver can consume
each message

Ack

M1 M2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous point-to-point model (queue)

Sender

Receiver

Receiver

M1

M2

Ack

Ack

Advantages
• …

• Only one receiver can consume
each message

Disadvantages
• Response correlation

• Backlog recovery time

• Fairness in multi-tenant systems

Ack

M1 M2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous point-to-point model (queue)

Sender

Receiver

M1

Receiver

M2

M1

Ack

M2

Amazon Simple Queue
Service (Amazon SQS)
• Fully managed message queue

• Scales almost infinitely
• Simple, easy-to-use API

• DLQ support

• Standard and FIFO options

Amazon
SQS

Ack

Ack

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous point-to-point model (queue)

Sender

Receiver

M1

Receiver

M2

M1

Ack

M2

Amazon MQ
• Active MQ and RabbitMQ broker

engine options

• Manages the provisioning, setup,
and maintenance of message
brokers

• Connects to current applications
with industry-standard APIs and
protocols

Ack

Ack

Amazon
MQ

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous point-to-point
model (router)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous point-to-point model (router)

Sender

ReceiverBlue
channel

Receiver

M2

Green
channel

Blue Blue

Green Green

M1 M1

M2

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous point-to-point model (router)

Sender

Receiver

M1 M1

Blue
channel

Disadvantages
• Increases location coupling
• Sender maintains routing logic

Receiver

M2 M2

Green
channel

Blue Blue

Simple
color
logic

Green Green

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous point-to-point model (router)

Sender

Receiver

Disadvantages
• Increases location coupling
• Sender maintains routing logic

• Sender complexity increases
with time

Complex
color
logic

Receiver

Receiver

Receiver

Receiver

M1 M2

M1 M3

M1 M2 M3

M2 M3

M1

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous message-router
model (bus)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous message-router (bus)

Sender

Receiver

M1

Advantages
• Reduces location coupling

• Efficient for senders and receivers

Receiver

M2

Blue

Green
Bus

M1 M2

Ack

Blue Green

Blue?

Green?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Asynchronous message-router (bus)

Sender

Receiver

M1

Receiver

M2

Blue

Green
Bus

M1 M2

Ack

Blue Green

Blue?

Green?

Amazon
EventBridge

Advantages
• Reduces location coupling

• Efficient for senders and receivers

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

EventBridge

EventBridge is a
simple, flexible, fully
managed, pay-as-you-
go event bus service
that makes it easy to
ingest and process
data from AWS
services, your own
applications, and
SaaS applications

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

EventBridge

EventBridge is a
simple, flexible, fully
managed, pay-as-you-
go event bus service
that makes it easy to
ingest and process
data from AWS
services, your own
applications, and
SaaS applications

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

EventBridge

EventBridge is a
simple, flexible, fully
managed, pay-as-you-
go event bus service
that makes it easy to
ingest and process
data from AWS
services, your own
applications, and
SaaS applications

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

EventBridge

EventBridge is a
simple, flexible, fully
managed, pay-as-you-
go event bus service
that makes it easy to
ingest and process
data from AWS
services, your own
applications, and
SaaS applications

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

EventBridge

EventBridge is a
simple, flexible, fully
managed, pay-as-you-
go event bus service
that makes it easy to
ingest and process
data from AWS
services, your own
applications, and SaaS
applications

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Target 20+ AWS services and API destinations

AWS CodeBuild

AWS CodePipeline

Amazon SNS

AWS Step Functions

AWS Batch

Amazon EC2

AWS Lambda

Amazon ECS

Amazon Redshift

Amazon Kinesis
Data Streams

Amazon Kinesis
Data Firehose

AWS Glue

Amazon API Gateway

Amazon SQS Amazon SageMaker

Amazon Inspector

Incident Manager, a capability
of AWS Systems Manager

AWS Systems Manager

API destinations

Amazon CloudWatch

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

EventBridge content-based routing rules

EventBridge example event

"source": " ,

"detail-type":

"detail":

"metadata":

"data":

"order-id":

"created-at":

"price":

"currency": AU

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

EventBridge content-based routing rules

EventBridge example event

"source": " ,

"detail-type":

"detail":

"metadata":

"data":

"order-id":

"created-at":

"price":

"currency": AU

"detail":

"data":

"currency": ["AU", "NZ"]

EventBridge example rule

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

EventBridge content-based routing rules

EventBridge example event

"source": " ,

"detail-type":

"detail":

"metadata":

"data":

"order-id":

"created-at":

"price":

"currency": AU

"detail":

"data":

"currency": ["AU", "NZ"]

EventBridge example rule

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

EventBridge content-based routing rules

EventBridge example event

"source": " ,

"detail-type":

"detail":

"metadata":

"data":

"order-id":

"created-at":

"price":

"currency": AU

"detail":

"data":

"currency": ["AU", "NZ"]

EventBridge example rule

✅ Match!

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event-driven architecture - EDA

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

event
[i-’vent] noun

A signal that a
system’s state has
changed

© 2022, Amazon Web Services, Inc. or its Affiliates.

Properties of events

• Events are signals that a system’s
state has changed

• Events occur in the past
(e.g. OrderCreated)

• Events cannot be changed
(immutable)

• Decrease semantic coupling by
restricting information to key data

"source": "com.orders",

"detail-type":

"detail":

"metadata":

"idempotency-key":

"data":

"order-id"

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sparse events vs. full state descriptions

123
10:47 a.m.

456

123
10:47 a.m. 456.

Open
$237.51

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Considerations with sparse events

123
10:47 a.m.

456
123

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Considerations with full state descriptions

"source": "com.orders",

"detail-type":

"detail":

"metadata":

"idempotency-key":

"data":

"order-id"

"status"

"total"

• Event schemas should be
backwards compatible

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Considerations with full state descriptions

"source": "com.orders",

"detail-type":

"detail":

"metadata":

"idempotency-key":

"data":

"order-id"

"status"

"total"

• Event schemas should be
backwards compatible

• Cost to calculate values can
increase over time

$

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Considerations with full state descriptions

"source": "com.orders",

"detail-type":

"detail":

"metadata":

"idempotency-key":

"data":

"order-id"

"status"

"total"

• Event schemas should be
backwards compatible

• Cost to calculate values can
increase over time

$

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Choreograph events between domains using
subscriptions

Retail Fulfillment

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Choreograph events between domains using
subscriptions

Retail Fulfillment

Notify me when
an order is created

Subscription

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Choreograph events between domains using
subscriptions

Retail Fulfillment

OrderCreated

Notify me when
an order is created

Subscription

Notification

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Orchestrate a business process within a domain,
resulting in a published event

Retail

1
Order up!

AWS Step Functions workflow

Orchestrator

InventoryManager InvoiceManager

2
Create
Order

In
Stock?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What can we do with orchestration?

“I want
try/catch/finally”

“I want to select tasks
based on data”

“I want to retry
failed tasks”

A

B C

A

?

“I want to sequence
tasks”

BA

“I want to run tasks
in parallel”

CBA

“I want
concurrent and iterative

tasks”

BA

C

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Step Functions

A W S S T E P F U N C T I O N S W O R K F L O W S T U D I O

The workflows you build with Step
Functions are called state machines,
and each step of your workflow is
called a state.

When you execute your state
machine, each move from one state
to the next is called a state transition.

You can reuse components, easily
edit the sequence of steps or swap
out the code called by task states as
your needs change.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Visual Workflows

Visualize

JSON - Amazon States Language

Execute and
Monitor

CDK

Data Science SDK
Python

TypeScript, JavaScript,
Python, Java, C#

Define

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Step Functions integration types

Optimized integrations

Customized to simplify the usage of
17 AWS services

Supported Integration patterns:
• Request Response

• Run a Job (.sync)

• Wait for a Callback (.waitForTaskToken)

AWS SDK integrations

Call 200 AWS services directly (9000+
API actions)

Supported Integration patterns:
• Request Response

• Wait for a Callback (.waitForTaskToken)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Better together: Orchestration + Choreography

API Gateway

AWS Step Functions workflow

API Gateway API Gateway

EventBridge
event bus

SNS
topic

Rule

Mobile client Mobile client

100s – 1,000,000s

Rule

Workflow

EventBridge
event bus

Rule SQS
queue

Lambda
function

Rule
API Gateway Application

load balancer

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Serverlesspresso: Building an event-driven
application from the ground up

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Handling event duplication using
idempotency

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is idempotence, idempotency, idempotent?

“[Mathematical operations] that can be applied multiple times
without changing the result.” – Wikipedia

f(x) = x + 0 = x

f(x) = x * 1 = x

“Did the internet charge my credit card twice?” – Text message (Mom)

“A message that has the same effect whether it is received once or
multiple times.” – “Enterprise Integration Patterns” (Hohpe, Woolf)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Event uniqueness

Idempotency
Operation will return the same
results whether it is called once
or multiple times (EIP).

Idempotency Key
Assigned to the message by the
sender to simplify deduplication
by the receiver.

"source": "com.orders",

"detail-type":

"detail":

"metadata":

"idempotency-key":

"data":

"order-id"

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example: EventBridge idempotency identifier
{
"version": "0",
"id": "61a15356-f8d3-4b6e-7da9-5bfccde8016d",
"detail-type": "OrderCreated",
"source": "com.orders",
"account": "068896461592",
"time": "2022-05-01T22:15:20Z",
"region": "us-east-1",
"detail": {
"metadata": {
"idempotency-key": "AF8074B2-3C23-415B-B465-71A849C63452"

},
"data": {
"order-id": "1073459984"

}
}

!! Event.id is not an idempotency ID !!

Client-provided idempotency ID

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Design considerations – storage
first pattern

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thinking synchronously

API Compute storage

Security &
Routing

Storage

Everything
else

1 2 3

If something is going to
go wrong, this is the
most probable place

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

API Computestorage

1 2 3

Store first

Process after

Thinking asynchronously

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

API Computedatabase

1 2 3

Store first

Greater reliability
Data is stored before my code gets a hold of it

Thinking asynchronously

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

API Computestorage

1 2 3

Store first

Less code
Reduce code through direct service integrations

Thinking asynchronously

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

API Computestorage

1 2 3

Store first

Faster response time
Client receives receives acknowledgement and can poll for further data if needed.

Thinking asynchronously

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Compute
thing 2

Compute
thing 1

Compute
thing 4

Compute
thing 5

API Compute
thing 3storage

1 2 3

Process after

Do More
Asynchronous processing makes it easier to do more in less time

Thinking asynchronously

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Your time is now
Build in-demand cloud skills your way

skillbuilder.aws

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.
66

What is an Event-Driven Architecture?
https://aws.amazon.com/event-driven-architecture/

Choosing between messaging services for serverless applications.
https://aws.amazon.com/blogs/compute/choosing-between-messaging-services-for-serverless-applications/

Building Event Driven Architectures.
https://serverlessland.com/

Get started on serverless training (Free !)
https://aws.amazon.com/training/learn-about/serverless/

Serverlesspresso Workshop
https://workshop.serverlesscoffee.com/

AWS re:Invent 2022 - Keynote with Dr. Werner Vogels (the world is asynchronous)
https://www.youtube.com/watch?v=RfvL_423a-I

Thinking asynchronously
https://www.youtube.com/watch?v=2Dp8KFLK4Vg

https://aws.amazon.com/event-driven-architecture/
https://aws.amazon.com/blogs/compute/choosing-between-messaging-services-for-serverless-applications/
https://serverlessland.com/
https://aws.amazon.com/training/learn-about/serverless/
https://workshop.serverlesscoffee.com/
https://www.youtube.com/watch?v=RfvL_423a-I
https://www.youtube.com/watch?v=2Dp8KFLK4Vg

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

For more serverless learning resources, visit:
https://serverlessland.com

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://serverlessland.com/

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session
survey in the mobile app

Michael Hume
mjhume@amazon.co.uk

Kevin Azijn
kevazijn@amazon.com

