
© 2021, Amazon Web Services, Inc. or its Affiliates.

Kapil Shardha, Principal Solutions Architect

Solving Testing Challenges for

Serverless on AWS

© 2021, Amazon Web Services, Inc. or its Affiliates.

What’s on the agenda!

 A primer on automated testing

 Challenges with testing serverless applications

 Testing strategies for AWS serverless applications

 Minimizing external integration testing

 Optimize testing distributed and event-driven architectures

 Managing cloud environments for developers

© 2021, Amazon Web Services, Inc. or its Affiliates.

A Primer on Automated Testing

© 2021, Amazon Web Services, Inc. or its Affiliates.

Types of automated tests

Micro
Service

Micro
Service

Micro
Service

Micro
Service

User
Interface

Micro
Service

func() func()

func() func()func()

func()

func() func()

E
2

E

U
n

it
In

te
g

ra
ti

o
n

S
e

rv
ic

e

U
n

it

© 2021, Amazon Web Services, Inc. or its Affiliates.

What makes a good automated test?

Running

Creating

Understanding

Maintaining

Fast

Deterministic

Isolated

Easy to diagnose when it fails

Easy for others to understand

Easy to write

Easy to extend

Does not intermittently fail

Does not impede system evolution

Easiest

with

unit tests

© 2021, Amazon Web Services, Inc. or its Affiliates.

The Test Pyramid – because unit tests aren’t enough

We need higher level tests to check the system actually works

(but not too many)

Slower to run

Harder to write

Harder to debug

Broad

scope

Narrow

scope

Faster to run

Easier to write

Easier to debug

Unit

Integration

E2E

Service

Assumption: the developers write the tests

Mike Cohn (2004)

© 2021, Amazon Web Services, Inc. or its Affiliates.

Challenges with Testing Serverless

Applications

© 2021, Amazon Web Services, Inc. or its Affiliates.

Serverless architecture

Distributed

Architecture

Features

Managed

Services

Challenges

Remote deploy, invoke & inspect More testing with external resources

Drift towards more broad-stack

testing of business logic

?

Need to test asynchronous side-effects

© 2021, Amazon Web Services, Inc. or its Affiliates.

Testing Strategies for AWS

Serverless Applications

© 2021, Amazon Web Services, Inc. or its Affiliates.

Development runtime environment

Local deploy, invoke & debug Remote deploy, invoke & inspect

Local runtime environment Remote runtime environment

Serverless ApplicationTraditional Application

© 2021, Amazon Web Services, Inc. or its Affiliates.

Amazon

SQS

AWS

Lambda

Amazon

DynamoDB

Amazon

API Gateway

AWS

Lambda

Example workload

© 2021, Amazon Web Services, Inc. or its Affiliates.

local machine

Unrealistic feedback (incomplete emulation)

Need to duplicate infra config / write glue code

Approach 1: Whole system emulation

Test system-wide changes without deployment

Work offline

Amazon

SQS

AWS

Lambda

Amazon

DynamoDB

Amazon

API Gateway

AWS

Lambda

© 2021, Amazon Web Services, Inc. or its Affiliates.

local machine

Amazon

SQS

AWS

Lambda

Amazon

DynamoDB

Amazon

API Gateway

AWS

Lambda

poll &
forward

Approach 2: Emulate Lambda and synchronous event sources

DynamoDB Streams
synthetic event

$> sam local start-api $> sam local start-lambda

© 2021, Amazon Web Services, Inc. or its Affiliates.

local machine

Emulate Lambda and synchronous event sources

Test many changes without deploying

Support local breakpoint debugging

DIY async/stream event source polling

Still need to verify in the cloud

Amazon

SQS

AWS

Lambda

Amazon

DynamoDB

Amazon

API Gateway

AWS

Lambda

poll &
forward

DynamoDB Streams
synthetic event

© 2021, Amazon Web Services, Inc. or its Affiliates.

local machine

Amazon

SQS

Amazon

DynamoDB

Approach 3: No emulation

handler()handler()

Amazon

SQS

Amazon

DynamoDB

API Gateway
synthetic

event

DynamoDB
Streams

synthetic
event

Reliable feedback (except for permissions)

Narrow-scope testing

Need to deploy function to test with

real event source and permissions

© 2021, Amazon Web Services, Inc. or its Affiliates.

Minimizing External Integration

Testing

© 2021, Amazon Web Services, Inc. or its Affiliates.

AWS Service triggering a Lambda function

Parser

Function

Data File

Bucket

Configure Lambda Event Notification

Results

Table

Notify

Function

Create Event Source Mapping

Correctly parse and

interpret the event

Put Object

Put Item

© 2021, Amazon Web Services, Inc. or its Affiliates.

Lambda function calling an AWS Service

Readings

Table

Parser

Function

AWS AppSyncParser

Function

Synthetic

Event

Synthetic

Event

© 2021, Amazon Web Services, Inc. or its Affiliates.

Ports & adapters architecture (aka “Hexagonal”)

Adapter

Implements Port interface

for a specific external system

Maps between external and

domain concepts

“Anti-corruption layer”

(Domain Driven Design)

Domain Core

Agnostic to how

it interacts with

the world

Port

Code interface that hides

external concerns

Defines domain’s interactions

with the outside world

Provides entry & exit points

you call or mock in tests

© 2021, Amazon Web Services, Inc. or its Affiliates.

Optimize Testing Distributed and

Event-Driven Architectures

© 2021, Amazon Web Services, Inc. or its Affiliates.

Business logic locality

Function 1

Function 3

Function 2

Business Workflow

Drift towards more broad-stack

testing of business logic

POST / HTTP/1.1
StartExecution

Distributed logic

Serverless Application

AWS Step Functions State Machine

Input validation

+

Data transformation

+

Business rules

© 2021, Amazon Web Services, Inc. or its Affiliates.

Keep broad-stack testing to a minimum

Use smaller, more focused tests wherever possible

We still need E2E tests to ensure everything works together in the cloud

Minimize:

• Number of broad-stack tests

• What they check

• How often you’re waiting on their feedback

Slower to run

Harder to write

Harder to debug

Broad

scope

Narrow

scope

Faster to run

Easier to write

Easier to debug

Unit

Integration

E2E

Service

© 2021, Amazon Web Services, Inc. or its Affiliates.

Keep broad-stack testing to a minimum

1 x E2E test per user

journey or business process

1 x broad-stack test per

event pathway or data flow

Balance adding new tests vs

extending existing ones

Only run after all other tests

pass

test()

assert()

act()

assert()

Amazon

SNS

Amazon

API Gateway

AWS

Lambda

Amazon

SQS

Amazon

SQS

test()

assert()

© 2021, Amazon Web Services, Inc. or its Affiliates.

Managing Cloud Environments for

Developers

© 2021, Amazon Web Services, Inc. or its Affiliates.

Anti-patterns

Only test Serverless applications

against local cloud emulations

Sharing a single environment

across all developers

Restricting AWS account access

to a few employees

Sharing an AWS account across

Development & Production

© 2021, Amazon Web Services, Inc. or its Affiliates.

AWS account per environment

Staging Account

Staging Stack

Production Account

Production Stack

Test Account

Test Stack

Development Account

Development Stack(s)

Infrastructure

Template

Template Parameters

environment: dev
backups: false
logLevel: debug

Template Parameters

environment: test
backups: false
logLevel: warn

Template Parameters

environment: staging
backups: false
logLevel: warn

Template Parameters

environment: prod
backups: true
logLevel: info

© 2021, Amazon Web Services, Inc. or its Affiliates.

Amazon

Route 53

Amazon

API Gateway

AWS

Lambda

Amazon

DynamoDB

Amazon

Route 53

Amazon

API Gateway

AWS

Lambda

Amazon

DynamoDB

Amazon

Route 53

Amazon

API Gateway

AWS

Lambda

Amazon

DynamoDB

Amazon

Route 53

Amazon

API Gateway

AWS

Lambda

Amazon

DynamoDB

Alice’s Stack

Parameter

Store
Stack

Bob’s Stack

Parameter

Store
Stack

Pramod’s Stack

Parameter

Store
Stack

Environment per developer

Development

Account

Prefixed or

auto-generated

resource names

avoid conflicts

Jane’s Stack

Parameter

Store
Stack

Tests retrieve URLs &

resource ARNs from

environment config

© 2021, Amazon Web Services, Inc. or its Affiliates.

Amazon

Route 53

Amazon

API Gateway

AWS

Lambda

Amazon

DynamoDB

Amazon

Route 53

Amazon

API Gateway

AWS

Lambda

Amazon

DynamoDB

Amazon

Route 53

Amazon

API Gateway

AWS

Lambda

Amazon

DynamoDB

Amazon

Route 53

Amazon

API Gateway

AWS

Lambda

Amazon

DynamoDB

Alice’s Stack

Parameter

Store
Stack

Bob’s Stack

Parameter

Store
Stack

Pramod’s Stack

Parameter

Store
Stack

AWS account per developer

Jane’s Stack

Parameter

Store
Stack

Alice’s

Account
Jane’s

Account

Pramod’s

Account
Bob’s

Account

Delegated DNS zone

e.g. jane.domain.com

© 2021, Amazon Web Services, Inc. or its Affiliates.

Key takeaways

Use infrastructure-as-code for parity across environments

1 x cloud environment per developer

Automate cloud environment creation and synchronization

Prefer short-lived stacks to avoid configuration drift

Lean on AWS services for account provisioning, access management, auditing,

and guardrails

AWS

CloudFormation

