

Monitoring and Observability for Modernized Applications

Viji Sarathy, Specialist Solutions Architect, Containers Adam Wagner, Specialist Solutions Architect, Serverless

Agenda

Observability Best Practices

What is Observability?

A <u>measure</u> of how well we can understand a system from the work it does

"90% of the methods in this service complete in under 200 milliseconds

"This API is handling 203HTTP requests per second"

"CPU utilization for this service is at 85%"

Observability matters because ...

What is Instrumentation?

"Calls to this database took, on average, took 50 milliseconds"

Instrumentation: measuring events in software using code (a type of white-box monitoring)

Good data can help with the <u>technical</u> shift to new systems

Technical

- Improved debugging and troubleshooting
- Designs validated with data
- Reduced defects; more issues caught proactively
- Improved feature velocity

Good data can help with the <u>cultural</u> shift to new systems

Cultural

- Builds transparency across teams
- Shared understanding of complex components
- Decisions not (entirely) driven or explained by gut feelings or guessing
- Freedom to experiment
- Blameless culture
- Context not control

How do we make microservices and serverless functions **observable**?

#1: Observable systems should emit events: Metrics, logs, and traces

Logs

"The database won't start after the update"

"Our application is 35% slower than last week after this configuration change"

"What are the dependencies for this service?"

#2: All components should be instrumented

AWS Observability tools

Why: Useful for uncovering emergent and unpredictable behavior

X-Ray traces

CloudWatch Logs

CloudWatch metrics

trends, mathematical modeling, and prediction What: Representation of a series of related distributed events that encode the end-toend request flow through a distributed system

Why: Provides visibility into both the path traversed by a request as well as the structure of a request

AWS Observability tools

Infrastructure monitoring

Application monitoring

apps

aws modern apps

AWS X-Ray

Analyze and debug production, distributed applications

16

How does AWS X-Ray help?

- Analyze and debug performance of your distributed applications.
- View latency distribution and pinpoint performance bottlenecks.
- Identify specific user impact across your applications.
- Works across different AWS and non-AWS services.
- Ready to use in production with low latency in real-time.

Enables you to get started quickly without having to manually instrument your application code to log metadata about requests

AWS X-Ray concepts

18

Visualize service graph

Visualize service graph

Identify performance bottlenecks

X-Ray SDK

Available for Java, .NET, .NET Core, Ruby, Python, Go, and Node.js Adds filters to automatically capture metadata for calls to

- AWS services using the AWS SDK
- Non-AWS services over HTTP and HTTPS (third-party APIs)
- Databases (MySQL, PostgreSQL, and Amazon DynamoDB)
- Queues (Amazon SQS)

AWS X-Ray for Lambda

- X-Ray agent is natively built into Lambda
- Identify initialization and cold starts in Lambda
- Pinpoint issues in downstream services called from your Lambda function
- Happens with low latency in real time; can see traces in seconds

AWS X-Ray for Amazon ECS/EKS

- Microservices instrumented with X-Ray SDK send segment data to X-Ray agent in the cluster
- X-Ray agent buffers segments in a queue and uploads them to X-Ray in batches
- X-Ray groups segments that have a common request into traces which are used to generate a service graph that provides a visual representation of your application

Publish trace data

CloudWatch metrics for Lambda

- Runtime metrics for Lambda functions are available in CloudWatch across three different categories
- Invocation Metrics

- Invocations
- Errors
- DeadLetterErrors
- Throttles

CloudWatch metrics for Lambda

- Runtime metrics for Lambda functions are available in CloudWatch across three different categories
- Invocation Metrics
- Performance Metrics

- Duration
- IteratorAge

CloudWatch metrics for Lambda

- Runtime metrics for Lambda functions are available in CloudWatch across three different categories
- Invocation Metrics
- Performance Metrics
- Concurrency Metrics

- ConcurrentExecutions
- ProvisionedConcurrentExecutions

CloudWatch metrics for Serverless

API Gateway	DynamoDB	SQS
Count	Read Throttle Events	Approximate Age Of Oldest Message
Cache Hit Cache Miss	Write Throttle Events	Approximate Number Of Messages Visible
Latency Integration Latency	System Errors	Number Of Messages Sent
4XX Errors 5XX Errors		Number Of Messages Received

CloudWatch Container Insights

Built-in dashboards to see performance metrics for cluster resources at different levels Out of the box dashboards for popular workloads such as AppMesh, Java/JMX, NGINX, HAProxy etc

Collect Prometheus metrics from workloads

modern apps

CloudWatch Container Insights

- Collect, aggregate and summarize metrics and logs from containerized applications
- Collect collect instance-level metrics such as CPU, memory, disk and network usage
- Operational data collected as performance log events with EMF from which metrics are extracted

Send Container Insight metrics as performance log events

CloudWatch Container Insights for Prometheus

- Collect, aggregate and summarize metrics and logs from containerized applications
- Collect collect instance-level metrics such as CPU, memory, disk and network usage
- Operational data collected as performance log events with EMF from which metrics are extracted

Send Container Insight metrics as performance log events

CloudWatch logs for Amazon ECS

 Microservices running on Amazon ECS can send application logs directly to CloudWatch Logs using awslogs driver

CloudWatch logs for Amazon ECS

- Microservices running on Amazon ECS can send application logs directly to CloudWatch Logs using awslogs driver
- FireLens for ECS enables applications to send logs to many other destinations by using the awsfirelens driver; works with both FluentD and FluentBit
- Both methods work on EC2 and Fargate

CloudWatch logs for Amazon EKS

 Audit and diagnostic logs from Amazon EKS Control Plane can be sent to CloudWatch

CloudWatch logs for Amazon EKS

- Audit and diagnostic logs from Amazon EKS Control Plane can be sent to CloudWatch
- Use FluentBit to send application logs to destination of your choosing
- FluentBit-based logging is also supported in EKS on Fargate

Amazon EKS

CloudWatch Lambda insights

- Get deeper insights into Lambda function executions using system-level metrics.
- Easily enabled on a per-function basis.
- Review KPIs using CloudWatch dashboard; either multi-function overview, or focus on a single function.
- Metrics are sent to CloudWatch as a single performance log event with EMF for every execution

Lambda extensions

Receive and control Lambda lifecycle events

- Delivered via Lambda Layers
- Register via Extensions API for lifecycle events:
 - Init
 - Invoke
 - shutdown

Primary use cases:

- Monitoring
- Configuration
- Security

Lambda logs API

- Send log streams to preferred destinations directly from Lambda execution environment
- Build your own
- Partner integrations:
 - Datadog
 - Lumigo
 - New Relic
 - Coralogix
 - Honeycomb
 - Sumo Logic
- Optionally disable logging to CloudWatch Logs via IAM permissions

Amazon Managed Service for Prometheus (AMP)

- Serverless Prometheus-compatible service for metrics to securely monitor container environments at scale
- Fully managed, secure, and highly available using multi-AZ deployments
- Use the same open source Prometheus data model and query language
- Improved scalability, availability, and security without managing the underlying infrastructure

Amazon Managed Service for Grafana (AMG)

- Scalable, secure and highly available fully-managed Grafana service
- Analyze, monitor, and alarm across multiple data sources; native AWS as well as 3rd party
- Native integration with multiple AWS Services for enterprise-ready security
- Easily upgrade to Grafana Enterprise from AWS marketplace

Observability with AMP & AMG

AWS Distro for Open Telemetry (ADOT)

• OpenTelemetry provides open source APIs, libraries, and agents to collect distributed traces and metrics for application monitoring.

- AWS Distro for OpenTelemetry
 - Secure, production-ready AWS-supported distribution of OpenTelemetry project
 - Instrument your applications just once to send correlated metrics and traces to multiple monitoring solutions
 - Use auto-instrumentation agents to collect traces without changing your code

Observability with ADOT (a.k.a OTel)

apps

CloudWatch Container Insights with ADOT

CloudWatch Container Insights for Prometheus with ADOT

AMP with **ADOT**

Monitoring options

Monitoring options

