
© 2021, Amazon Web Services, Inc. or its Affiliates.

Nathan Peck, Senior Developer Advocate

Heeki Park, Principal Solutions Architect

Breaking Down the Monolith
Using Containers and Serverless

© 2021, Amazon Web Services, Inc. or its Affiliates.

Why containers?

© 2021, Amazon Web Services, Inc. or its Affiliates.

Code
Code packages Operating

system packagesRuntime

Applications aren’t just code, they have dependencies

© 2021, Amazon Web Services, Inc. or its Affiliates.

Code
Code packages Operating

system packages

Container image

Runtime

Containers turn applications into one deployable artifact

© 2021, Amazon Web Services, Inc. or its Affiliates.

Build

Gather the app and

its dependencies.

Create an immutable

container image.

Push

Store the container

image in a registry so it

can be downloaded to

compute

Run

Download image to

compute, unpack it,

and run it in an

isolated environment

© 2021, Amazon Web Services, Inc. or its Affiliates.

Code

Code packages

Operating

system packages

Code

Operating

system packages

Service A Service B

Python: 3.9.6

PyPi packages

Node: 16.6.2

Breaking a monolith is scary because more services mean

more dependencies

© 2021, Amazon Web Services, Inc. or its Affiliates.

Code

Code packages

Operating

system packages

Team A

Service A

Container A

Node: 16.6.2

Containers make dependencies a decentralized job

© 2021, Amazon Web Services, Inc. or its Affiliates.

Team B
Container B

Code

Operating

system packages

Service B

Python: 3.9.6

PyPi packages

Containers make dependencies a decentralized job

© 2021, Amazon Web Services, Inc. or its Affiliates.

Container BContainer A

AWS Fargate

Container DContainer C Different containers can be

handled the same way

using the same tooling

Infrastructure is now agnostic to container contents

© 2021, Amazon Web Services, Inc. or its Affiliates.

Why Serverless?

© 2021, Amazon Web Services, Inc. or its Affiliates.

Event Lambda Other dependent

services

Serverless can help simplify the execution module

© 2021, Amazon Web Services, Inc. or its Affiliates.

Code Code packages

Zip file

Applications can be packaged as a zip artifact

© 2021, Amazon Web Services, Inc. or its Affiliates.

Container image

Code Code packages

Applications can also be packaged as a container artifact

© 2021, Amazon Web Services, Inc. or its Affiliates.

Lets functions easily share code: Upload layer
once, reference within any function

Promote separation of responsibilities, lets
developers iterate faster on writing business logic

Built in support for secure sharing by ecosystem

Package dependencies separately as Lambda Layers

© 2021, Amazon Web Services, Inc. or its Affiliates.

Build Artifacts AWS CloudFormationSource Code Templates +

Staged Artifacts
Cloud Resources

package deploy provision

sam init // create new project

sam build // build artifacts

sam deploy // deploy resources

sam package // generate templates and stage artifacts

build

Deploy the code as resources

© 2021, Amazon Web Services, Inc. or its Affiliates.

Run the code as a zip artifact

Execution Environment

Lambda Function Code

Lambda Layers

(attached with packaged

dependencies)R
u

n
ti

m
e

 A
P

I

L
a

n
g

u
a

g
e

 R
u

n
ti

m
e

© 2021, Amazon Web Services, Inc. or its Affiliates.

Run the code as a container image

Execution Environment

Container Image

Language Runtime

Lambda Function Code

Packaged Dependencies

R
u

n
ti

m
e

 A
P

I

© 2021, Amazon Web Services, Inc. or its Affiliates.

Popular Decoupling

Patterns with

Containers

© 2021, Amazon Web Services, Inc. or its Affiliates.

Amazon

CloudFront

Users

mycompany.com/blog/*

mycompany.com

mycompany.com/api/*

AWS Fargate

Amazon Simple

Storage Service

Decouple traffic: One domain, multiple services

© 2021, Amazon Web Services, Inc. or its Affiliates.

Amazon

CloudFront

Users

mycompany.com/blog/*

mycompany.com

mycompany.com/api/*

AWS Fargate

Amazon Simple

Storage Service

Application Load

Balancer

AWS Fargate

mycompany.com/api/users/*

mycompany.com/api/order/*

Decouple API into microservices

© 2021, Amazon Web Services, Inc. or its Affiliates.

Application Load

Balancer

Listener Target GroupListener Rule

Listen for traffic on

port 80 and 443

Check to see if traffic

matches a rule

If it does, then send it

to a target from this

group

Amazon Elastic

Container Service

The list of targets is

managed by Elastic

Container Service

© 2021, Amazon Web Services, Inc. or its Affiliates.

Listener Rule

Match on host

Hostname == mycompany.com

Hostname == api.mycompany.com

Match on path

Path == /api/users

Path == /api/orders

Match on header

Version == 1.0.0

User-Agent == mobile

Match on query string

?utm_source==bot

Up to 100 rules

© 2021, Amazon Web Services, Inc. or its Affiliates.

Application Load

Balancer

Users AWS Fargate Amazon Simple

Queue Service

AWS Fargate

Job producer Worker

Decouple background workers

© 2021, Amazon Web Services, Inc. or its Affiliates.

User Service

Friend service

Message service

User signed up

User deleted account

Email ServiceEmail Queue

Friend request

Mobile Push NotificationPush Notification Queue

DM was sent

Producer QueueTopic ConsumerSubscription

Recommendation

Service
Recommendation Queue

Use Topics and Queues for more complicated business logic

© 2021, Amazon Web Services, Inc. or its Affiliates.

User Service
user signed up

user deleted account

Email ServiceEmail Queue

Subscription

User Team

Email Team

User team is responsible

for web API and their

own topics

Email team is responsible

for their worker service,

queue, and the

subscriptions to topics they

are interested in.

© 2021, Amazon Web Services, Inc. or its Affiliates.

Every day at

5:00
AWS FargateAmazon

EventBridge

Decouple scheduled tasks from the monolith

© 2021, Amazon Web Services, Inc. or its Affiliates.

Popular Decoupling

Patterns with

Serverless

© 2021, Amazon Web Services, Inc. or its Affiliates.

Lambda can be invoked via three different methods

Lambda

Function

All methods deliver an event payload

Amazon

SNS

Amazon

S3

reqs

Lambda

Function

Asynchronous

/order

Amazon

API Gateway

Lambda

Function

Synchronous

Amazon

DynamoDB

Amazon

Kinesis

Changes

AWS Lambda

Service

Poll-Based

© 2021, Amazon Web Services, Inc. or its Affiliates.

API-Driven Use Cases
Also event driven, synchronously processed

© 2021, Amazon Web Services, Inc. or its Affiliates.

RESTful Microservices

1. API Gateway “translates”

incoming HTTP request to

event payload

2. Lambda reads / writes data

from data store

1

Highly-scalable microservices

AWS Cloud

Amazon

API Gateway

AWS

Lambda

Amazon

DynamoDB

2

© 2021, Amazon Web Services, Inc. or its Affiliates.

RESTful Microservices with enhanced observability

1. Enable access logs and tracing 2. Instrument code and create metrics

asynchronously with CloudWatch

Embedded Metric Format

1

Enable access logs, structured logging, and instrument code

AWS Cloud

Amazon

API Gateway

AWS

Lambda

Amazon

DynamoDB

2

AWS X-Ray Amazon

CloudWatch

© 2021, Amazon Web Services, Inc. or its Affiliates.

Event-Driven Use Cases

Full day content

Streams, Topics, and Queues

© 2021, Amazon Web Services, Inc. or its Affiliates.

Event-driven architectures drive reliability and scalability

Improve responsiveness
and reduce dependencies

Abstract producers and
consumers from each other

Buffer messages until services
are available to process

Event Routers Asynchronous Events Event Stores

© 2021, Amazon Web Services, Inc. or its Affiliates.

Processing file uploads

1. Object uploaded to Amazon

S3 Bucket

2. Asynchronous invoke of

Lambda function, event

payload includes:

• Bucket name

• Object key

1

2

Resize photo, extract text, translate, etc.

© 2021, Amazon Web Services, Inc. or its Affiliates.

Processing file uploads, quickly add new functionality

3. Analyze photo with Amazon

Rekognition

4. Store image details and

results of analysis

1

2

Add image analysis and metadata storage

Amazon

Rekognition

Amazon

DynamoDB

3

4

© 2021, Amazon Web Services, Inc. or its Affiliates.

Streaming data ingestion and storage

1. Lambda service polls Kinesis

Data Stream for messages

2. Function is synchronously

invoked with batches of

messages

1 2

Consume, process, and store data

Amazon

Redshift

Amazon S3

3

3. Function processes and/or

pushes data to downstream

data stores

Amazon

Kinesis

AWS Lambda

© 2021, Amazon Web Services, Inc. or its Affiliates.

Fan out

1. “Storage first”: integrate API

Gateway directly to

EventBridge

2. Enforce authorization

3. Use routing for efficient

processing

Push updates to multiple subscribers

Amazon API

Gateway
Amazon

EventBridge

Custom

authorizer

ConsumerAmazon SQS

ConsumerAmazon SQS

ConsumerAmazon SQS

Multiple consumers w/ DLQ

Status=Created

Status=Processed

Status=Refunded

1

2

3

DLQ

© 2021, Amazon Web Services, Inc. or its Affiliates.

Practical Decoupling

Tips

© 2021, Amazon Web Services, Inc. or its Affiliates.

Functioning monolith

Practical decoupling: from monolith to micro

© 2021, Amazon Web Services, Inc. or its Affiliates.

Boom!

Semi-functioning

microservice

Broken

implementation

Buggy service

This part works

great!

Kind of works?

Trying to break things up too fast is a recipe for disaster

© 2021, Amazon Web Services, Inc. or its Affiliates.

Functioning monolith

Well functioning

service

Efficient

microservice

Decouple gradually, leave the central monolith for a while

© 2021, Amazon Web Services, Inc. or its Affiliates.

Core API

Password

storage and

hashing

Password

database

Main database

Some practical places to start: User signup

© 2021, Amazon Web Services, Inc. or its Affiliates.

Core API

Password storage

and hashing

Password

database

Main database

Emailer

Service

Queue

Worker

service

Some practical places to start: User signup

© 2021, Amazon Web Services, Inc. or its Affiliates.

• Social media application

• Contact list upload, and server side contact matching (Big payloads)

• Friend recommendations (Heavy queries, lots of data)

• Store

• Product recommendation (Training models)

• Payment processing (Need to keep payment details safe)

• Media

• Upload processing, media transcoding (Heavy CPU, bandwidth)

• Server side image resizing (Heavy CPU, bandwidth)

Look for transactions that have longer than average response

time, or different resource needs:

© 2021, Amazon Web Services, Inc. or its Affiliates.

Core API

Microservice Database

Worker
Queue

Scheduled cron job

Decouple workloads responsibly - it is okay to have a central

monolith

