dWS

Introduction to Optimizing and
Measuring performance.on AWS
Graviton Processors

Arthur Petitpierre

Principal Graviton Specialist SA
Amazon Web Services

Part 1 - Know about the
architecture

aws
~—

Graviton3 CPU enhancements

PtrAuth
AWS Graviton2 AWS Graviton3 RNG Inst
4-8 wide Fetch 8 wide Fetch
4 wide Decode 5-8 wide Decode
8 wide issue 15 wide issue & 2x larger instruction window
— — ||~
a)| (=)
s ISR KR IIER 2]z SIEIEIEIR R LI EIEIRIE X
SN2 2 ’li< i< =lN=l=ll=lla |o SISz =
) g Ll | Rl | Rl | Al | e 21~R
—l |
< < ||<
)

[
|
|
|
[
[

J\ J\
| | |

bfloat16 2x Mem ops ~2x
256b enhanced TLS aws
SVE prefetching ~—

Graviton2/3 - No Simultaneous Multi Threading

C6i

C6i instance

C/g

C7g instance

vCPUT ““‘ | 1
‘ Processor execution resources

vCPU?2

vCPU1 IIII_}IIII Every vCPU is a physical core
No simultaneous multi
vCPU2 — threading (SMT)

Processor execution resources

dWs

Graviton3 - Interconnect & system

© 2023, Amazon Web Services

, Inc. or its Affiliates.

DDR5 |

DDR5 |

| DDR5
| DDR5

HJE'P

DDR5 |

PCle

PCle

| DDR5 |

dWs

Graviton features

Processor Graviton2 Graviton3

M6g/M6gd, C6g/C6gd/C6gn, R6g/R6gd, T4g, X2gd,
Instances G5g, and Im4gn/Is4gen C7g, M7g, R7g. In preview: C7gn
Core Neoverse-N1 Neoverse-V1

cache coherent mesh interconnect
Architecture revision

Additional features
Recommended -mcpu flag

CMN-600

ARMv8.2-a

fp16, rcpc, dotprod, crypto
neoverse-n1

CMN-700

ARMv8.4-a

sve, rng, bf16, int8, crypto
neoverse-512tvb

RNG Instructions =S =S

SIMD instructions 2x Neon 128bit vectors 4x Neon 128bit vectors / 2x SVE 256bit vectors
LSE (atomic mem operations) yes yes

Pointer Authentication no yes

Cores 64 64

L1 cache (per core) 64KB inst / 64KB data 64KB inst / 64KB data

L2 cache (per core) 1MB 1MB

LLC (shared) 32MB 32MB

DRAM 8x DDR4 8x DDR5

DDR Encryption yes yes

aws

N

© 2023, Amazon Web Services, Inc. or its affiliates.

Graviton cache hierarchy and processor features

$ 1scpu
Architecture: aarch64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 1
on-1line CPU(s) 1list: O
vVendor ID: ARM
Model : 1

Thread(s) per core: 1
Core(s) per socket: 1

Socket(s): 1

Stepping: ripl

BOgOMIPS: 2100.00

Flags: fp asimd evtstrm aes pmull shal sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma 1rcpc dcpop sha3 sm3

sm4 asimddp sha512 sve asimdfhm dit uscat ilrcpc flagm ssbs paca pacg dcpodp sve
i8mm svebfl6 i8mm bfl6 dgh rng
Caches (sum of all):

L1d: 64 KiB (1 instance)
L1i: 64 KiB (1 instance)
L2: 1 mMiB (1 instance)
L3: 32 MiB (1 instance)
NUMA :
NUMA node(s): 1
NUMA nodeO CPU(s): 0]
aws

N >) © 2023, Amazon Web Services, Inc. or its affiliates.

Part 2 - Performance be
practices

aws
~—

Graviton2 was announced on ?

December the 39 2019

aws
2

Modernize your software stack

Graviton2 was announced on December the 379, 2019

But:
RHEL 7 June 10t 2014
OpenlJDK 8 March 18t 2014
GCC54 June 3™, 2016
Python 2.7 July 4th, 2010

Sorry, those versions aren’t and can’t be optimized for Graviton processors

aws

N~ © 2023, Amazon Web Services, Inc. or its affiliates. 10

AWS Graviton getting started guide on Github

https://qgithub.com/aws/aws-graviton-getting-started

- This guide has been assembled by our Graviton team and is designed to help
customers transition and optimize their applications.

- It covers various languages and libraries, and includes tips and tricks for each.

- In general, using latest versions of operating systems, compilers, and language
runtimes will provide access to latest Arm64 improvements and optimizations.

aws
2

https://github.com/aws/aws-graviton-getting-started

Java version(s) recommendation for Graviton

Minimum version: 8
Recommended version: at least 11

However: the more recent the better!

And Amazon Corretto is even better ! https://aws.amazon.com/corretto/

https://github.com/aws/aws-graviton-getting-started/blob/main/java.md

aWS7 12

C/C++ on Graviton

CPU Flag GCC version LLVM version
Graviton2 -mcpu=neoverse-n1* GCC-92 Clang/LLVM 10+

Graviton3(E) b GCC 11+ Clang/LLVM 14+

https://github.com/aws/aws-graviton-getting-started/blob/main/c-c%2B%2B.md

© 2023, Amazon Web Services, Inc. or its affiliates. 13

N

Part 3 - Performance
analysis

aws
~—

Micro-benchmarking / Passive benchmarking

Why it won't help you ... At least not initially.

Passive benchmarks: collection of benchmark data without analysis.

Active benchmarking: analyzing performance why benchmarks are
running

>) © 2023, Amazon Web Services, Inc. or its affiliates. 15

“How do Graviton instances
compare to x86 based
instances on Java?”

aws
2

“How does a Graviton instance’s request

throughput compare to current
instances on my Java application at a
P99 of 10ms for a mix of 60% GETS and

40% PUTS on Ubuntu 20.04LTS?”

Graviton Performance Runbook

https://github.com/aws/aws-graviton-getting-started/blob/main/perfrunbook/graviton_perfrunbook.md

Written by the AWS Graviton Performance team

Covers tools and best practices when doing performance analysis
on Graviton based instances.

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates. 18

Define Benchmark
Section 2

Verify benchmark load generator
setup and behavior
Section 3

Verify test
environment
Section 3

Verify SUT configuration
and application setup
Section 4

Optimize service
and its dependencies

Benchmark

Section 6 Is performance expected?

CPU frontend or
backend bottleneck

bottleneck

Thread bottleneck Measure system behavior

Code

10 Bottleneck:
high iowait time,
network throttling

with sysstat or htop

on locks/futexes Section 5.a

high user/kernel time high idle time

Create on-cpu profile
Section 5.b

Create off-cpu profile
Section 5.b

No code
bottleneck

Hardware profile
usin% PMU counters
ection 5.c

IO causing
thread sleeps

Benchmark irregularities:
hot connections,
traffic bursts

Step 1 - Define your benchmark

Benchmark definition:
- System under test (SUT)
- How to drive the load
- Load point
- Maximum Throughput
- Throughput at breaking latency

aws

N © 2023, Amazon Web Services, Inc. or its affiliates.

Finding breaking latency Example

20

Step 2 - Configure Load-generator and SUT

Load-generator:
- Ensure that it can drive enough traffic

- Ensure that it's far enough from its own limits

System under test:
- Ensure you are comparing the same setups

- Check and fix errors and limits before testing performance

aws
N

21

Step 3 - Analyzing performance (1)

1. What part of the system is slow or saturated?
For every resource, check utilization, saturation, and errors (USE method):

https://www.brendangregq.com/USEmethod/use-linux.html

Linux Performance Observability Tools

Operating System Hardware Various:
ltrace ss nstat sar /proc
opensnoop dmesg dstat

lsof Applications gethostlatency
fatrace

filelif - - execsnoo
lpzs;af_ k System leranes mpstat P tErbgstaE
System Call Interface profile showboos
pers A\ SystemCallinterface/ // | profile SRCLICD
LTTng - Scheduler "
BCC ld File Systems TCP/UDP softirgs
bpftrace Volume Manager| 1P\ vinal

strace

: A Memo top ato

(‘gf‘ fo; btrffs vmstat
nfs,xfs,zfs) mdflush tiptop | tepdump N tcp]i.:ife slfax]?:eop
cpretrans
iostat
biosnoop I/0 Bridge udpconnect hardirgs
biolatency criticalstat
biotop
blktrace \ 1/O Controller Network Controller Y picstat numastat
nicsta
netstat
aws 3 »
‘ * * * k http: i

SCSl log swapon ethtool snmpget lldptool

https://www.brendangregg.com/USEmethod/use-linux.html

Linux Perf

perf_events is an event-oriented A
observability tool, which can help

you solve advanced performance
and troubleshooting functions.

kprobes

https://perf.wiki.kernel.org/

aws

N © 2023, Amazon Web Services, Inc. or its affiliates.

Linux perf_events Event Sources

Tracepoints syscalls:

ext4d:) sock: sched:
Operating System task:

- signal:
Applications " timer:
workqueue:
System Librarie ™

- System Call Interface “ CPU

File Systems TCP/UDP
Y kmem:
Volume Manager “ Virtual vmscan:
Block Device Interface Ethernet writeback:

Software Events cpu-clock page-faults
cs migrations minor-faults
major-faults

PMCs

cycles

instructions

branch-*
Ll1-*
LLC-*

mem-load
mem-store

23

Step 3 - Analyzing performance (2)

2. What part of the Code is slow ?
- On-cpu profiling / FlameGraph

- Off-cpu Profiling / FlameGraph

https://github.com/aws/aws-graviton-getting-started/blob/main/perfrunbook/debug_code_perf.md

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

24

Step 3 - Analyzing performance (3)

3. What part of the Hardware is slow ?
- Sometimes applications will show as uniformaly slightly slower on
on-cpu profile, with no obvious hot-spot.

- Requires to measure counters in the CPU to understand the
bottlenecks

https://github.com/aws/aws-graviton-getting-started/blob/main/perfrunbook/debug_hw_perf.md

>) © 2023, Amazon Web Services, Inc. or its affiliates. 25

Graviton Performance Runbook and Feedback

https://github.com/aws/aws-graviton-getting-started/blob/main/perfrunbook/graviton_perfrunbook.md

If you have used this guide and still can’t find the root cause of your
issues, what can you do next?

Please contact us at ec2-arm-dev-feedback@amazon.com or talk with your
AWS account team representative to get additional help.

aWS7 26

mailto:ec2-arm-dev-feedback@amazon.com

dWs
N

Thank you!

Arthur Petitpierre
arthurpt@amazon.com

