

Distributed Training using PyTorch with Kubeflow on AWS and Amazon SageMaker

Kanwaljit Khurmi Sr. AI/ML Solutions Architect AWS

Amit Kalawat **Principal Solutions Architect** AWS

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved

Workshop Steps

- Step 0: Provision AWS account and run automated Terraform script to create AWS EKS cluster and 1. Kubeflow on AWS
- Discuss why distributed machine learning training 2.
- Discuss AWS AI/ML stack for building scalable machine learning platforms 3.
- Discuss AWS Kubeflow Distribution and Kubeflow Pipelines 4.
- Step 1: Create our first Kubeflow Pipeline running XGBoost training 5.
- Discuss Kubeflow on AWS integration with Amazon SageMaker 6.
- Step 2: Demo to create pipeline for running distributed training on Amazon SageMaker 7.
- Wrap up with QnA 8.

Step 0 - Provision AWS account and log on to **AWS Cloud9 to run Terraform script**

Let's launch the workshop and walk through the steps to set up Kubeflow on AWS

Enter to begin the lab: https://bit.ly/dtw-eks-kubeflow

Refer to workshop instructions : https://bit.ly/dtw-kubeflow-instructions

Kubeflow on AWS – Deployment Automation Options

Kustomize

A standalone tool to customize Kubernetes objects through a kustomization file

Helm

The package manager for Kubernetes. Find share and use software built for Kubernetes

as code, software tool

Terraform

An open-source, infrastructure

Why distributed training

Why scale ? Scaling DL to get faster results

Scaling-up

GPU instance size

GPU memory

CPU cores

System memory

. . .

Scaling-out

10s, 100s and 1000s GPU-accelerated instances

Training faster with distributing training

Effectively training on a large batch \rightarrow speeding up training

ML services for scaling ML environments

Manage edge devices

Image registry Container image repository

Amazon Elastic **Container Registry** (Amazon ECR)

Why machine learning with containers

Tenso	TensorFlow		Pack	a
Keras	scikit- learn	_	•	Tr D
Horovod	nandac	<u> </u>	•	C
NumPy	Onon			
SciPy	MPI	container		
others	Python	intage	ML e	n Li
CPU: ml	CPU: mkl		•	Po So
GPU: cuDNN cuBLAS NCCL CUDA toolkit		scripts	•	Co
Container	r runtime			
NVIDIA	NVIDIA drivers			
Host	: OS			
Infrastr	ructure			

ges raining code ependencies onfigurations

ghtweight ortable calable onsistent

AWS Deep learning containers

* Different inference & training containers

Kubernetes for machine learning

Kubernetes for ML

- Not data scientist friendly
- No ML experiment and workflow management
- Operational overheads in managing worker nodes

Introducing Kubeflow

Kubeflow is the machine learning (ML) toolkit for Kubernetes

Serving

Leverage AWS innovations through Kubeflow on AWS

Managed service

	e ¦
! [

Kubeflow Pipelines

- A user interface (UI) for managing and tracking experiments, jobs, and runs
- An engine for scheduling multi-step ulletML workflows
- A software development kit (SDK) for \bullet defining and manipulating pipelines and components

Pipeline component

Container registry

Creating a pipeline (2)

Pipeline decorator

@dsl.pipeline(**Pipeline function** name='Sample Trainer', description=" def sample_train_pipeline(...): create_cluster_op = CreateClusterOp('create-cluster', ...) analyze_op = AnalyzeOp('analyze', ...) transform_op = TransformOp('transform', ...) train_op = TrainerOp('train', ...) predict_op = PredictOp('predict', ...) confusion_matrix_op = ConfusionMatrixOp('confusion-matrix', ...) roc_op = RocOp('roc', ...) kfp.compiler.Compiler().compile(sample_train_pipeline , 'my-pipeline.zip')

Pipeline component

Compile pipeline

Amazon Sage Maker components for Kubeflow Pipelines

Supported components

- Model training
- Hyperparameter tuning
- Processing
- Model deployment
- **Batch transform**
- Amazon SageMaker **Ground Truth**

Check on Amazon EKS and Kubeflow on AWS deployment status

Step 1.0: Demo to create pipeline for running distributed training on Amazon SageMaker

Step 1.1: Demo to invoke Amazon SageMaker endpoint

Step 2 : Create our first Kubeflow Pipeline running XGBoost training

Takeaways

Kubeflow provides end-to-end ML capabilities on Kubernetes ullet

 Kubeflow on AWS makes it easy to deploy Kubeflow and provides easy integration with highly optimized, cloud-native, enterprise-ready AWS services.

Using Kubeflow and PyTorch, we demonstrated a Kubeflow ulletpipeline for distributed model training which runs fully managed infrastructure.

References

- AWS: https://aws.amazon.com ullet
- EKS: https://aws.amazon.com/eks ullet
- Kubeflow: https://kubeflow.org \bullet
- Blog (Kubeflow on AWS): https://go.aws/3p7CGCo ullet
- Manifests (Kubeflow on AWS): ightarrowhttps://awslabs.github.io/kubeflow-manifests/
- aws-do-kubeflow project: https://bit.ly/aws-do-kubeflow \bullet
- PyTorch: <u>https://pytorch.org/</u> ullet
- Distributed Training Workshop with PyTorch and Kubeflow: \bullet https://bit.ly/dtw-kubeflow

Credits

Arindam Paul Shashank Murthy Tatsuo Azeyanagi Suraj Kota Sree Arasanagatta

Thank you!

Kanwaljit Khurmi Sr. AI/ML Solutions Architect AWS https://www.linkedin.com/in/kanwaljitkhurmi/

Amit Kalawat

Principal Solutions Architect AWS https://www.linkedin.com/in/amitkalawat/

