
Scaling to Large Clusters
in EKS

Operational experience and challenges

Agenda

● Introduction
● Scaling Challenges

1. Autoscaling
2. Custom Network Interface (CNI)
3. DNS
4. API server
5. Cost Optimization

● Vision
● Conclusion

2

Introduction

3

About Us

4

Marc Brandenburg
Group Head

Platform Backend

Luke (Feixiang Li)
Senior Software Engineer

Platform Infrastructure

About SmartNews

5

Delivering the world’s quality information
to the people who need it.

Global user base with focus

on Japan and the United States

EKS Usage

6

● Started using EKS for smaller services from July 2019

● Most new services after around Mid 2020 run on EKS

● From February 2021 started to deploy stateful services

● Scaled up processing workloads around End of 2021

Cluster Topology

7

Environment

development production staging

production

Cluster Topology

8

Region

tokyo

virginia

oregon

Cluster
production / tokyo

Cluster Topology

9

news

ads

Cluster Scale

10

nodes

time

Scaling Challenges

11

#1 Autoscaling

12

#1 Autoscaling
● Challenges

○ Large number of nodes
○ The load changes significantly during a day

● Solutions
○ Pod Autoscaling: Keda

■ Cron scaler
■ Cloudwatch scaler

○ Node Autoscaling: Cluster Autoscaler

13

https://keda.sh/
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

Logical Nodegroup

EC2 ASG

Node Autoscaling

test-memory-8xlarge

test-memory-8xlarge-c-0 test-memory-8xlarge-b-0 test-memory-8xlarge-b-1

14

Dynamic Priority

ASG1

CA ASG2

ASG3

priorities: |-
1:
- .*
10:
- ASG2
20:
- ASG1

metrics

advisor

- Best instance type
- zone capacity
- etc.

15

#2 Custom Network Interface

16

#2 AWS-CNI
● Challenges

○ Pod failed to start due to IP assignment failure
○ InsufficientFreeAddressesInSubnet: The specified subnet does

not have enough free addresses to satisfy the request.
○ RequestLimitExceeded: Request limit exceeded

● Solutions
○ Understand its source code
○ Use custom network: AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG
○ Use prefix delegation: ENABLE_PREFIX_DELEGATION

17

Insufficient IP

Node IP Pod IP10.0.20.3/22

Before
● aws-cni tries to get IP from the same subnet of the node
● cluster autoscaler doesn’t know that, it will try to add more

nodes if there are available IP when scaling up

Now
● separated node and pod subnets

Node IP10.0.20.3/22 Pod IP10.1.20.3/21

18

Prefix Delegation

func (c *IPAMContext) datastorePrefixTargetState() (short int,
enabled bool) {

…
freePrefixesInStore := c.dataStore.GetFreePrefixes()
toAllocate := max(c.warmPrefixTarget-freePrefixesInStore,

0) log.Debugf("Prefix target is %d, short of %d prefixes, free
%d prefixes", c.warmPrefixTarget, toAllocate, freePrefixesInStore)

return toAllocate, true
 }

aws-cni applies for new IP when warm target isn’t satisfied and releases when
there are too much

If pods are frequently scheduled and deleted on the same node, aws-cni would
make many requests to AWS API to get IP.

By using prefix, it applies for one subnet(/28) instead of one IP

19

#3 DNS

20

#3 DNS

● Challenges
○ High latency
○ AWS API limit

● Solutions
○ NodeLocal DNS cache
○ Increase TTL of external domains

21

Local DNS cache
cluster.local:53 {
 errors
 cache {
 success 9984 60
 denial 9984 5
 }
 reload
 loop
 bind 169.254.20.10 10.100.0.10
 forward . __PILLAR__CLUSTER__DNS__ {
 force_tcp
 }
 prometheus :9253
 health 169.254.20.10:8080
 }
.:53 {
 errors
 cache 300
 reload
 loop
 bind 169.254.20.10 10.100.0.10
 forward . /etc/resolv.conf
 prometheus :9253
}

22

DNS Improvement

Latency Requests

23

#4 API server

24

#4 API server

● Challenges
○ Outages
○ Unable to access EKS API
○ High latency

● Solutions
○ Setup monitoring
○ (WIP) Setup proxy server

25

EKS Monitoring- QPS

26

EKS Monitoring- 5xx

27

EKS Monitoring- latency

28

#5 Cost Optimization

29

#5 Cost Optimization

● Challenges
○ Cost increased significantly in last 6 month

● Solutions
○ Resource quota
○ Spot adoption
○ Resource utilization

30

Resource utilization

Node: 8CPU 32GB

RAM request = 31G

RAM usage = 20G Idle 12G

● Use Kubecost to identify
low efficiency workloads

● CA dynamic priority

CPU request = 4

CPU usage = 2 Idle 6CPU

31

Vision

32

Cluster Operator

Operator

Resources

clusters ASG etc.

AWSTerraform

33

Virtual Cluster

Region 1 Region 2 Region 3

cluster 1 cluster 2 cluster 3 cluster 4 cluster x

Virtual cluster

34

Conclusion

35

Conclusion

● Prepare for a larger scale when providing new features
○ Especially for operators that work with the entire cluster

● Have a deep understanding of crucial components
○ Even on EKS you will run components (CNI, CA, etc) yourself

● Be cost sensitive all the time
○ Hard to manage node utilization and cross-AZ traffic

36

