Simplifying your AWS IAM
policy using federated
identity attributes

Yuri Duchovny Eran Medan
Solutions Architect, AWS Sr. Experiences Consultant, AWS

January 27th, 2020

adws

Presenter
Presentation Notes
Today we’ll talk about how you can simplify your AWS IAM access control policies, using a new IAM feature called session tagging.
As you may already know, you can tag AWS resources, and even tag AWS IAM users and roles.
And today we’ll talk about a new feature, that allows to tag IAM sessions when a user logs in using a federated identity with either SAML or OIDC.
We’ll show how you can pass attributes from your corporate directory to the IAM session, and how to use these attributes as IAM policy condition keys, to create a reusable, easy to scale, least privilege policies, giving developers freedom to build while keeping the right guardrails.

“Every program and every user of the system should
operate using the least set of privileges necessary to
complete the job.”

Saltzer, Jerome H. & Schroeder, Michael D. "The Protection of Information in
Computer Systems." Proceedings of the IEEE 63, 9

September 1975

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. aWS

Presenter
Presentation Notes
The least privilege principle has been around before the internet was created and before computers were commonplace, but this is an ever lasting journey

Access control confidence

What your builders want.. What security needs...
Speed of innovation Prevent dangerous actions

Business agility Accountable security posture
Builders freedom Least privilege

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. aWS
\\-';7

Presenter
Presentation Notes
On one hand, we have builders who want to build without having to wait for anyone to give them permissions.
On the other hand we want to make sure they can do so with confidence. That they can’t do anything dangerous, and only have access to their own resources.
Often, when you’re in the journey to the access control confidence, it may become hard to manage a large number of IAM policies, and we’re going to demo today how to address this challenge.

But first let’s go over two common permission models, Role Based and Attribute based access control.

Role-based access control '
and
Attribute-based access control

adWws

Role-based access control (RBAC)

() van Y
o v o0
(EA x ——
o v AR
A X Ood
v
Eminin
v
= % |[£:H]
Workforce users Permissions Resources
aws

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. 5

Presenter
Presentation Notes
Yuri:
Role based access control has been around for a long time, and this is what most of the industry has operated on for years.
Job roles were assigned to identities (like users and applications) in order to grant access to resources.
Eran: so what is the challenge with this approach?
Yuri: Nothing inherently wrong with it but imagine you have thousands of users, hundreds of projects and thousands of resources. it’s may be hard to scale. You continuously need to:
Create you identities in your identity provider.
Then map identities to roles
Each role has policy that allows access to a specific set of resources. Resources are changing, users are moving teams or projects and the more fine grained permission you want to have, the more roles and policies you need to create and maintain

Eran: so this is where ABAC comes to the rescue?
Yuri: As always the answer is “it depends”, but for many use cases, ABAC can simplify the permission model and make it much easier to scale.

_

[g

()

[g
[

XL

—

Workforce users

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Permissions

A scalable permissions model based on attributes

Resources
aws

U

Presenter
Presentation Notes
Yuri: You have attributes on your identities and attributes on your resources. Then the permission just ensures those match.
Attributes are handled in AWS using tags. You can tag resources, you can tag IAM users and roles, and now you can also carry attributes over from your identity provider through the SAML assertion and use them to check permissions.

Eran: so how is that making it easier to scale?

Yuri: If for example I want to move someone from one project to another, all I have to do is change their attribute in the corporate directory, without any changes in AWS.

Eran: this sounds like a great benefit to the security teams, what are the benefits to let’s say, developers?

Examples of attribute-based permissions

Grant developers read and write access to their project resources

Require developers to assign their project to new resources

Grant developers read access to resources that are common to their
team

Manage only the resources that you own

aws

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Presenter
Presentation Notes

Yuri: this allows developers to have freedom within guardrails. For example, they can create and access resources in their project, without having to submit a ticket to an administrator.
Eran: this sounds great, so how do we get there?

Yuri: so, before we jump into the how to and demos, I’d like to provide a quick overview of terminology to anyone relatively new to AWS and IAM. We’ll keep it brief, so even if you are already familiar with IAM and SAML please bear with us

AWS IAM and federated users

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SAML 2.0 - based federated users

Your Organization (Identity Provider)

W
e L2 Portal/ldentity provider
(IdP)
IdP returns SAML
3 assertion
——
LDAP identity
store
User browses
to IdP
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (D] B S .

NS

—

[V anagemen

5 sent o AWS

Client is SE0 18 2 e

@ AWS (Service Prowder]

e B

AWS S80 endpoint

=

AWS Management Console

/

AssumeRoleWithSAML

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Pin

|dentity.

S

ForgeRock’

(§ IBM Security

onelogin

Presenter
Presentation Notes
Yuri:
AWS supports several identity methods. First, you can create individual IAM users, assign them to groups and attach permission policies.
Second, you can create roles, that can be assumed by users, services or resources such as ec2 or lambda.
Roles can also be assumed by users from an external identity provider using federation, using SAML or OIDC.
These users don’t have an IAM user in AWS, and they have what is called a Session instead. The session operates within the policies attached to the assumed role.
The Identity provider passes the role name in the SAML response as an attribute that AWS recognizes.

Eran: So the IdP needs to be aware of the roles in AWS in order for administrators to associate them with users.

Yuri: correct

|AM policies enable granular access controls

{ rincipal: The entity that is allowed or denied access
"Statement":[{

"Effect":"effect",
"Principal":"principal”,

ction":"action",

"Principal”:"AWS":"arn:aws:iam::123456789012:user/username”

ction: Type of access that is allowed or denied

"Resource":"arn", "Action":"secretsmanager.GetSecretValue”
"Condition":{
"condition”{ esource: The Amazon resource(s) the action will act on
"key":"value" } "Resource":"arn:aws:secretsmanager:xx-xxxx-xx:xxx.secret:xxx"
}
} ondition: The conditions that are valid under the access defined
)] "StringEqua": {"secretsmanager:Resource Tag/Project": "Project1"}

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. aWS

Presenter
Presentation Notes
Yuri:

Another topic I’d like to refresh is IAM policy syntax. I’m sure it looks very familiar to many of you but just as a recap.
IAM policies operate in what we call the PARC model.

Principal: is who is doing the action. This can be a user, a role, a service and so on.
Action: is what the principal is allowed or denied to do
Resource: is where or on what resource the action can operate
Condition: is when to allow and when to deny based on conditions and context. Conditions are extremely powerful and we’ll use them today to simplify our fine-grained policies.

Eran: So now that we have the building blocks covered, how do we use all that to implement attribute based access control?

N
The road to ABAC J I

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. J >

®)

Control access explicitly

{

}

"Effect": "Allow",

"Action": [
"secretsmanager:GetSecretValue",
"secretsmanager:DescribeSecret”,
"secretsmanager:PutSecretValue",
"secretsmanager:ListSecretVersionlds",
"secretsmanager:UpdateSecret"

] , L 1] L 1]

"Resource": "arn:aws:secretsmanager:<region>:<acc-id>:secret:<secret-id>"

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

aws

Presenter
Presentation Notes
Yuri: Let’s start from the simplest policy and evolve it step by step. We’ll use AWS secrets manager today for most of the examples and demos.

Let’s look at the policy that simply allows read and write actions on the specific secret. Any issues you can spot here?

Eran:
Well, it looks like we are very specific about the resource, if we want to add another secret to that project, we’ll need to update the policy.
This is where I have a feeling we’ll be talking about tags right?

Yuri: exactly

~
Alice
-
Bob ?
s
Carol

Workforce users

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserve

ResourceTag/tag-key: tag-value

Project1 Role and Policy

e

v

v
X

Project2 Role and Policy

D

v

v
X

Project3 Role and Policy

®
422

v

L |

X
Permissions

AWS IAM roles & policies

P £

Resources

aws
~—

Presenter
Presentation Notes

Yuri: Let’s use the resource tag condition key to address that. Resource tags is not a new feature, and we always had tags on resources. And we could write permissions with a condition that matches the ResourceTag to some “hard coded” value.
This means, that each project needs a new policy, and this is hard to scale when there are a lot of projects

®)

Access control using

{

}

"Effect": "Allow",
"Action": [

],

"secretsmanager:GetSecretValue",
"secretsmanager:DescribeSecret”,
"secretsmanager:PutSecretValue",
"secretsmanager:ListSecretVersionlds",
"secretsmanager:UpdateSecret"

"w, nwixn

"Resource": ,
"Condition": {

}

"StringEquals™: {
"secretsmanager:ResourceTag/Project”: "Project1”

}

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

aws

Presenter
Presentation Notes
Eran: this still looks like an improvement over the previous policy. Now if a new resource is created with the right tag, the policy doesn’t need to change. This seems great, what’s the problem doing it like this?

Yuri: well, hardcoded values are not the best. Imagine you need to add a new user to a new project. You now need to create a new role, a new policy, and also map the new user to that new role in the identity provider.

Eran: ok, so I think we had enough slides by now how about we show that in the console before we move on?

Yuri: With pleasure

First let’s take a look at our resources. For simplicity we’ll just look at AWS Secrets manager. As you can see we have 2 secrets, both are tagged with key “Project” one with value project 1 and one with project 2.

Let’s take a look at Alice. We pre-created a role (ASM-Project1, shows role) and a policy (ASM-Project1, shows policy) for her, we also setup federation from the IdP (We are using Okta for the demo but this should be similar in other IdPs)

Now let’s see the steps needed for a new project called Project 2.

First we need to create a new policy (ASM-Project2) which has exactly the same policy as ASM-Project1 but we just change Project1 to Project2 �This is not tedious enough for you Eran?

Eran: ok, you had my interest, now you have my attention… go on

Yuri: now we need to create a new Role (ASM-Project2) and attach ASM-Project2 policy (as well as ASM-Common, which contains some additional read only permissions needed for demo that we separated for readability)

Eran: ok, seems easy for one project but I can see how it may be hard to maintain as the organization grows

Yuri: yes, but we are not done yet. Now we need to go to our IdP, refresh the list of assumable roles… then change the role that all users of Project 2 can assume to that new role.

Eran: ok, I think I agree that this is a bit hard to scale, so if there was only a way to replace the hardcoded value in the policy with some variable?

~
Alice
-
Bob ?
s
Carol

Workforce users

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserve

ResourceTag/tag-key: tag-value

Project1 Role and Policy

e

v

v
X

Project2 Role and Policy

D

v

v
X

Project3 Role and Policy

®
422

v

L |

X
Permissions

AWS IAM roles & policies

P £

Resources

aws
~—

Presenter
Presentation Notes

Yuri: so let’s go back to the diagram, and let’s introduce another condition key that’s called PricipalTag

ResourceTag/tag-key: PrincipalTag/tag-key

Project1 Role -
~
o L = =
Alice o—
Project2 Role
g S 228
Bob ﬁ'ﬂ 5 Policy

Project3 Role

Workforce users Permissions Resources
AWS IAM roles & policies

adws

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. 5

Presenter
Presentation Notes
Yuri: We are moving from policy per project to a single, shared policy. Now that we can tag IAM users and roles, we can have a condition that matches the principal tag to the resource tag.
Eran: what is the principal tag?
Yuri: in this case it’s a tag on IAM user or role.
Eran: sounds fantastic, so what’s the issue?
Yuri: there is no issue, but we need to tag the principal somehow. In our use case the users are not IAM users, but federated user that assume a role. So, we place the tags on the role. The roles for each project will have the same policy, but we still need a role per project, just for the purpose of tagging.

®)

Access control using and

{
"Effect": "Allow",

"Action": [
"secretsmanager:GetSecretValue",
"secretsmanager:DescribeSecret”,
"secretsmanager:PutSecretValue",
"secretsmanager:ListSecretVersionlds",
"secretsmanager:UpdateSecret"

1,

"Resource": "*",

"Condition": {

"StringEquals": {
"secretsmanager:ResourceTag/Project": "${aws:PrincipalTag/Project}"
}
¥
¥

aws

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Presenter
Presentation Notes
Yuri: and this is how the policy looks like. We simply replaced the hardcoded value with the PrincipalTag variable or condition key

Eran: this sounds great. It looks like this covers reading and writing secrets, but if a new secret needs to be created, Alice will need to submit a ticket, and wait till someone with permissions will create a secret, and tag it with Project1.

Yuri: Right, but this is where RequestTag becomes useful

TagKeys:

[N

9

Alice m
)

= o

RalA

Carol =

Workforce users

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserve

Project1 Role

= o

Project2 Role

New Resource
Tag Enforced

RequestTag/tag-key: PrincipalTag/tag-key

® e

XL

Shared
- —=<

Project3 Role

&

Permissions
AWS IAM roles & policies

s4cdhd
of 2

Resources

adws

V

Presenter
Presentation Notes
In order to allow users to create and tag new resources, we need to enforce that these tags are in accordance to their permissions guardrails and naming conventions.
To do so, we’ll use two IAM Global condition keys: Request tag and TagKeys.

®)

Enforcing tag value on create using

{

}

]

}

Effect": "Allow",
Action": [
"secretsmanager:GetSecretValue",

"secretsmanager:CreateSecret”,
"secretsmanager:TagResource"
Resource": "*",
Condition": {
"StringEquals": {

"secretsmanager:ResourceTag/Project": "${aws:PrincipalTag/Project}"
2
"StringEqualsIfExists": {

"aws:RequestTag/Project”: "${aws:PrincipalTag/Project}"

}

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

aws

Presenter
Presentation Notes
Yuri: And this is how the policy looks like. First we add the relevant actions to create and tag a resource. Then we add a condition that matches the RequestTag. The request tag is the tag that comes as part of the action that creates or tags the resource. For example CreateSecret and TagResource pass a set of tags as part of their parameters.

Note that you can match more than one tag in the condition key, such as department, cost center, and they will be evaluated using a logical AND.

Eran: and what is this IfExists in the string equals?

Yuri: this is because request tag condition key is only applicable to some actions in our list, if it’s not applicable it evaluates as true
Eran: are there any other interesting condition keys we can use to further improve the policy?

Yuri: I hoped you would ask…

)
Enforcing allowed tag keys using

"Effect": "Allow",
"Action": [
"secretsmanager:GetSecretValue",

"secretsmanager:CreateSecret",
"secretsmanager:TagResource"

]

Resource": "*",
"Condition": {
"StringEquals": {
"secretsmanager:ResourceTag/Project": "${aws:PrincipalTag/Project}"
)
"StringEqualsIfExists": {
"aws:RequestTag/Project": "${aws:PrincipalTag/Project}"

%

ForAllValues:StringEquals™: {
"aws:TagKeys": [
"Project”,
"Name"
]
}
}
}

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. aWS

Presenter
Presentation Notes
We will use two more condition keys:
TagKeys, that defines what tag keys are allowed in the request.
ForAllValues that returns true if every key value in the request matches at least one value in this list.
As result with this condition, when a resource been created, it can only be tagged using these tag keys.
It also enforces case sensitivity, so the tag key will always be the same for consistency.

Eran: can we also enforce naming conventions on the resource name itself?

®)

Enforcing naming convention

}

"Effect": "Allow",
"Action":
"secretsmanager:GetSecretValue",

"secretsmanager:CreateSecret",
"secretsmanager:TagResource"

]

Resource": "*",
"Condition": {
"StringEquals": {

}

"secretsmanager:ResourceTag/Project": "${aws:Principal Tag/Project}"

tringEqualslfExists": {
"aws:RequestTag/Project": "${aws:Principal Tag/Project}"

}

ForAllValues:StringEquals": {
"aws:TagKeys": [
"Project",
"Name"
]

}7
"StringLikelfExists": {

"secretsmanager:Name": "${aws:PrincipalTag/Project}-*",

"aws:RequestTag/Name": "${aws:PrincipalTag/Project}-*"
}
}

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

aws

Presenter
Presentation Notes
Yuri: We definitely can. In this example we’re using PrincipalTag and RequestTag condition keys to enforce the format of the secrets manager resource name and it’s name tag to start with the Project name.

Eran: sounds fantastic, so we covered a lot of conditions and it looks like our policy is ready to test, should we jump to the console and apply our changes?

Yuri: First we go to the console as an admin and create a new policy, (ASM-ABAC).
Then we’ll go to the roles we created earlier (ASM-Project1 and ASM-Project2) and for each of them we’ll remove the hardcoded ASM-Project1 / ASM-Project2 policies and attach the more generic ASM-ABAC policy. Then for each one we’ll add a tag (Project=Project1 for Role ASM-Project1 and Project=Project2 for Role ASM-Project2)

In Okta we already have Alice and Bob assigned to ASM-Project1 and ASM-Project2 roles, so we can demonstrate that the behavior stayed the same.

Eran: we now can also create new resources right?

Yuri: correct, let’s sign in as Alice, and try to create a resource tagged as Project2, (we fail), now let’s change it to Project1 (success). Now let’s try to change the tag of Project1-Secret1 to Project2 to demonstrate attempt to escalate privileges (fail)

Eran: seems like we have everything working great now, are there any issues?

Yuri: this can work, but you still need to maintain multiple Roles just for the sake of tagging. This is where session tags become useful.

N g
Session tags for ABAC J I

o

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Session tags for ABAC]

|ldentity provider is the source of truth

Pass in user attributes as tags specific to each
federated AWS session

Permissions automatically apply

Access adjusts as user attributes change or new
users are added to your directory

Track user activity

AWS logs attributes in AWS CloudTrail, enabling
you to track the user identity for a role session

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserve d.

Ping

|dentity.

%

ForgeRock’

r§ IBM Security

onelogin

Presenter
Presentation Notes
Yuri: Session tags allow the identity provider to stay the source of truth, and to enjoy the scalability benefits of ABAC.
With session tags we configure the IdP to add specific user attributes to the SAML assertion. IAM takes these attributes from the assertion and tags the user’s session with them. So these attributes become the principal tags for that session.

ResourceTag/tag-key == PrincipalTag/tag-key

Project1 Role -
~
o L = =
Alice o—
Project2 Role
g S 228
Bob ﬁ'ﬂ 5 Policy

Project3 Role

Workforce users Permissions Resources
AWS IAM roles & policies

adws

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. 5

Presenter
Presentation Notes
Yuri: As you recall in the previous slide, we had a tagged role per project, I’m just showing it again for continuity

Employee Attributes passed as Session Tags (0]

Shared Role and Policy

. e A 15
SNEP i

_ N—
Workforce users Permissions Resources
| - AWS IAM roles & policies WS

N1

Presenter
Presentation Notes
Yuri: And the session tags allow to simplify the model, so a single role and policy can be used for more than one project.
The tags are assigned to the session when it’s created and the value of the tags is controlled entirely in the corporate directory.

Eran: so what do we need to do to enable this?

‘rust policy to require specific session tags

{
"Effect": "Allow",

"Principal": {
"Federated": "arn:aws:iam::xxxxx:saml-provider/Okta"
1
"Action": [
"sts:AssumeRoleWithSAML",
"sts:TagSession"
],
"Condition": {
"StringEquals": {
"SAML:aud": "https://signin.aws.amazon.com/saml"
h
"StringLike": {
"aws:RequestTag/Project™: "*"
}
}
}

aws

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Presenter
Presentation Notes
Yuri: We need to add the tag session action to the trust policy of the role that will be assumed.
This will allow the IdP to tag user’s session.
And we also can add a condition that ensures that the IdP is passing tags we want to use for permissions control. If it doesn’t – assume role will fail.

Eran: so, IdP pass the tags to AWS as that part of the SAML response?

Example SAML assertion to pass in new attributes

<Attribute Name="https://aws.amazon.com/SAML/Attributes/ ">
<AttributeValue>Project1<AttributeValue>
</Attribute>

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. aWS

Presenter
Presentation Notes
Yuri: exactly, the IdP needs to simply pass an attribute in this format in order to tag the session

Session attributes in AWS CloudTrail

"requestParameters':

{

"SAMLAssertionID": ”xxxxx_TbuwCxxxxxx",

"roleSessionName": "username",

"principalTags": {

"project": "Projectl”

b -

"durationSeconds": 3600,

"roleArn": "arn:aws:iam: :XXXXXX:role/ASM-ABAC",

"principalArn": "arn:aws:iam: :xxxxxx:saml-provider/okta"
[

S

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Presenter
Presentation Notes
Yuri: and you can see these SAML attributes in CloudTrail for logging and reporting.

Demo

I already pre-created ASM-ABAC role. We’ll use the existing ASM-ABAC policy as the policy doesn’t need to change.
We’ll modify the trust policy and add the TagSession and condition we saw before
Then we’ll assign this role to both Alice and Bob’s profiles. We now have 1 policy and 1 role used to control permissions on two different projects. If we want to switch Bob from Project 2 to project 1 we just change his attribute in the IdP

Eran: so let’s say Alice wants to try to escalate her privileges. As a developer many times we use CLI and start from one role and assume another, what if try to tag the session to another project during the assume role operation, is there anything preventing me from changing my original project tag?

Role Chaining

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

adws

U

Presenter
Presentation Notes
Yuri: yes, you’re referring to role chaining. When the role that user assumed has permissions to assume another role and so on.
Eran: yes. How can we enforce that Alice, who's session is tagged with project 1, will stay tagged with project1, when she assumes role2 from role1?

Role Chaining with Transitive Session Tags

Project = Project = Department = Department=101
Project 101 Project=Project

Py o o o0

&) DD a3

User Role1 Session’ Role2 Session2
AssumeRoleWithSAML AssumeRole
© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. aWS

Presenter
Presentation Notes
Yuri: Lets’ first clarify the scenario we’re talking about. Alice has a project attribute in the corporate directory with value project1. She assumes role1. The project attribute is carried over by SAML, and she gets a session tagged with project=Project1. Now, role 1 has permissions to assume role 2, and role 2 has a trust policy to allow it to be assumed and tagged by role 1.
If we define the Project tag as transitive, and we’ll show you how to set it up shortly, IAM will tag all subsequent sessions in the chain with the original tag value.
Eran: Even if the user doesn’t assign any value to this tag.
Yuri: Correct.
Eran: Can the user add additional tags to the new session?
Yuri: yes, if the user adds a new tag, the new session will be tagged with it, as long as it's not a transitive tag key.
Eran: So if the user tries to elevate privileges, and change the tag value for a tag key that was set as transitive?

Role Chaining with Transitive Session Tags

Project=

Project= :
Project Project] Project2

o
e A S % L x

User Role1 Session Role2

Project=

AssumeRoleWithSAML AssumeRole

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. aWS
) —— |

Presenter
Presentation Notes
Yuri: If the user tries to change the value of a transitive tag, the assume role operation will fail.

Eran: Awesome, which this is what we want to achieve, giving the user freedom but keep some reasonable guardrails.
How do we implement this?

Example SAML assertion to pass in new attributes

<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:Project">
<AttributeValue>Project1<AttributeValue>
</Attribute>

<Attribute Name="https://aws.amazon.com/SAML/Attributes/Transitive TagKeys">
<AttributeValue>PFroject<Attribute Value>
</Attribute>

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved. aW§
e)

Presenter
Presentation Notes
Yuri: The SAML assertion should simply have an additional attribute called TransitiveTagKeys with the names of the tags you would like to enforce.
Eran: and you have more than one transitive tag keys.

Demo ec2-role

Employee Attributes passed as Session Tags

Shared Role and Policy

. e A 15
SNEP i

_ N—
Workforce users Permissions Resources
| - AWS IAM roles & policies WS

U

Presenter
Presentation Notes
Eran: is there anything else we’d like to cover today?

Yuri: this is all. I hope our viewers will find this useful and will take this approach to action.

Eran: yes, let’s quickly re-cap.
We talked about the ABAC model and some of it’s benefits, and we can use it to give developers the freedom to build, and administrators the tools to enforce security guardrails in a scalable way.
Especially in cases when you need to manage multiple projects, departments and so on with similar access patterns.
Session tags allow to create “parametrized” shared policies that can be reused with no changes, and user’s assignments can be managed primarily in the corporate directory.
Thanks for tuning in, we hope this was helpful, and since we have some time left, we'll be happy to try and answer some of your questions.

Additional resources

https://aws.amazon.com/blogs/security/rely-employee-attributes-from-corporate-directory-create-fine-grained-
permissions-aws/

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial attribute-based-access-control.html

https://aws.amazon.com/blogs/security/working-backward-from-iam-policies-and-principal-tags-to-
standardized-names-and-tags-for-your-aws-resources/

https://docs.aws.amazon.com/IAM/latest/UserGuide/id session-tags.html#id session-tags role-chaining

https://saml-doc.okta.com/SAML Docs/How-to-Configure-SAML-2.0-for-Amazon-Web-Service

https://www.okta.com/blog/2019/11/okta-and-aws-partner-to-simplify-access-via-session-tags/

https://github.com/oktadeveloper/okta-aws-cli-assume-role

adws

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

https://aws.amazon.com/blogs/security/rely-employee-attributes-from-corporate-directory-create-fine-grained-permissions-aws/
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://aws.amazon.com/blogs/security/working-backward-from-iam-policies-and-principal-tags-to-standardized-names-and-tags-for-your-aws-resources/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_session-tags.html#id_session-tags_role-chaining
https://saml-doc.okta.com/SAML_Docs/How-to-Configure-SAML-2.0-for-Amazon-Web-Service
https://www.okta.com/blog/2019/11/okta-and-aws-partner-to-simplify-access-via-session-tags/
https://github.com/oktadeveloper/okta-aws-cli-assume-role

Thank you!

Yuri Duchovny Eran Medan
Solutions Architect, AWS Sr. Experiences Consultant, AWS
dyuri@amazon.com eranmeda@amazon.com

adws

	Slide Number 1
	Slide Number 3
	Access control confidence
	Role-based access control�and �Attribute-based access control
	Role-based access control (RBAC)
	A scalable permissions model based on attributes
	Examples of attribute-based permissions
	AWS IAM and federated users
	SAML 2.0 – based federated users
	IAM policies enable granular access controls
	The road to ABAC
	Control access explicitly
	ResourceTag/tag-key: tag-value
	Access control using ResourceTag
	ResourceTag/tag-key: tag-value
	ResourceTag/tag-key: PrincipalTag/tag-key
	Access control using ResourceTag and PrincipalTag�
	RequestTag/tag-key: PrincipalTag/tag-key�TagKeys:
	Enforcing tag value on create using aws:RequestTag�
	Enforcing allowed tag keys using aws:TagKeys�
	Enforcing naming convention�
	Session tags for ABAC
	Session tags for ABAC
	ResourceTag/tag-key == PrincipalTag/tag-key
	Employee Attributes passed as Session Tags
	Trust policy to require specific session tags
	Example SAML assertion to pass in new attributes
	Session attributes in AWS CloudTrail
	Role Chaining
	Role Chaining with Transitive Session Tags
	Role Chaining with Transitive Session Tags
	Example SAML assertion to pass in new attributes
	Employee Attributes passed as Session Tags
	Additional resources
	Thank you!

