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Deploying the Test Infrastructure
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Lab prerequisites

• Use your own AWS Account to build out the labs today

• You must have an AWS role with administrative privilege

• It is your responsibility to delete any AWS resources after 

today to prevent ongoing costs!
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Go to the Lab Guide

• Navigate to the lab guide

• http://bit.ly/WAResiliency

• 1. Deploy the Infrastructure

• We can start testing when the web servers are available

• This will take about 20 minutes until you can perform the tests in step 3

• 2. Configure Execution Environment

• After section 1, while your service is deploying, you can start section 2

• If you do not finish this section don’t worry, you will have time later

http://bit.ly/WARel300
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AWS Well-Architected 

Reliability Pillar
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What is it?

“The reliability pillar encompasses the ability of a system to recover from 

infrastructure or service disruptions, dynamically acquire computing 

resources to meet demand, and mitigate disruptions such as 

misconfigurations or transient network issues.” 

– AWS Well Architected Framework Whitepaper

Design Principles
• Test recovery procedures

• Automatically recover from failures

• Scale horizontally to increase aggregate system availability

• Stop guessing capacity

• Manage change using automation
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Poll

Have you ever experienced an availability loss in your 

system(s) due to infrastructure issues?

a. Yes

b. No

c. Not sure
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Failure management

“Everything fails, all the time.” – Werner Vogel, Amazon CTO

We are going to work on withstanding COMPONENT failures and planning for 

RECOVERY

Mid-2000s: Amazon, Jesse Robbins starts GameDay

• Test, train & prepare Amazon systems, software, & people to respond to disaster

• Increase retail website resiliency by injecting failures into critical systems

2010: Netflix introduced Chaos Engineering – Simian Army

• e.g. Chaos Monkey, Chaos Gorilla and Chaos Kong.
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“Chaos Engineering is the discipline of 

experimenting on a distributed system

in order to build confidence in the system’s 

capability to withstand turbulent conditions in 

production.”

http://principlesofchaos.org
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Automated recovery

Manual recovery will take much longer

Use AWS services to automate

• Amazon Auto Scaling

• Amazon Relational Database Service (Amazon RDS)

• Amazon Route 53

• Amazon Simple Storage Service (Amazon S3)
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https://github.com/Netflix/SimianArmy

Set of scheduled agents:

• shuts down services randomly

• slows down performances

• checks conformity 

• breaks an entire region

• Integrates with spinnaker (CI/CD)

Simian Army
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The Chaos Toolkit 

• Simplifying Adoption of Chaos Engineering

• An Open API to Chaos Engineering

• Open source extensions for

• Infrastructure/Platform Fault Injections

• Application Fault Injections

• Observability

• Integrates easily into CI/CD pipelines

https://github.com/chaostoolkit

$ pip install -U chaostoolkit-aws
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Gremlin

https://www.gremlin.com/
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ToxiProxy

• HTTP API

• Build for Automated testing in mind

• Not for production environment

• Fast

• Toxics for:

• Timeouts, latency, connections and bandwidth limitation, etc..

• CLI

• Stable and well tested (used for 3 years at Shopify)

https://github.com/Shopify/toxiproxy



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

https://atscaleconference.com/videos/resiliency-testing-with-toxiproxy/

Resiliency testing with Toxiproxy
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Kube-monkey

An implementation of Netflix's Chaos Monkey for Kubernetes 

cluster

• It randomly deletes Kubernetes (k8s) pods in the cluster 

encouraging and validating the development of failure-resilient 

services.

https://github.com/asobti/kube-monkey 
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Pumba

Kill Container command

Network Emulation command

https://github.com/alexei-led/pumba/
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AWS Lambda

Thundra
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Poll

What are you doing now for Resilience Testing (Chaos 

Testing)?

a. Using a framework like Gremlin or Chaos Monkey

b. Using our home-grown scripts and programs

c. Other

d. None of the above
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Why are we here?

Just use Netflix OSS, Chaos Toolkit, Gremlin, etc?

• Chaos Monkey part of Spinnaker CI/CD?

• Share SSH keys to inject failure?

• Install external agent?

• Pay a license?

• In production?

• Can I do AZ failure?

Hard to understand how to start.

Can I do this?
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Yes, you can do this!

You can write code to perform these scenarios in any 

language

Bash shell, Python, Java, PowerShell, C#

You can write your own AZ Failure simulation

You can simulate your own regional failure
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Using AWS 

System 

Manager (SSM)

…to inject 

Chaos into 

Amazon EC2

https://medium.com/@adhorn/injecting-chaos-to-amazon-ec2-using-amazon-system-manager-ca95ee7878f5

AWS Systems 

Manager
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SSM documents

https://github.com/adhorn/chaos-ssm-documents
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Scenario Walkthrough
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Scenario architecture for testing

US-East-2 (Ohio)

Virtual Private Cloud

Availability Zone Availability Zone Availability Zone

IGW Routed Subnet IGW Routed Subnet IGW Routed Subnet

Private subnet Private subnet Private subnet

Application Load Balancer (ALB)

Auto Scaling 

App Tier

InstanceInstanceInstance

MySQL RDS 

Multi-AZ (P)

MySQL RDS 

Multi-AZ (S)

NAT 

gateway

NAT 

gateway

NAT 

gateway

S3 Bucket
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Lab Time:
Component and Availability Zone Failure Simulation
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Step 3. “Test Resiliency Using Failure Injection”

1. Deploy the Infrastructure

• When state machine has completed “WaitForWebApp” state…

• Then you can start testing!

2. Configure Execution Environment

3. Test Resiliency Using Failure Injection

• Python 

• Java

• Bash

• PowerShell

• C#

Decide which language you are comfortable using

Ask for help if you need it

http://bit.ly/WARel300
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Summary of Tests
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Simulated failures

US-East-2 (Ohio)

Virtual Private Cloud

Availability Zone Availability Zone Availability Zone

IGW Routed Subnet IGW Routed Subnet IGW Routed Subnet

Private subnet Private subnet Private subnet

Application Load Balancer (ALB)

Auto Scaling 

App Tier

InstanceInstanceInstance

MySQL 

RDS Multi-

AZ (P)

MySQL 

RDS Multi-

AZ (S)

NAT 

gateway

NAT 

gateway

NAT 

gateway

S3 Bucket
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Poll

Are you confident that your system(s) meet your resiliency 

requirements?

a. Yes

b. No

c. Not sure
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Best Practices
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What did you learn?

No fear – You can write these tests

The simulation may not be obvious

• Think about the effects before implementation

• Revise based on results

• Writing this code is not difficult

On very large implementations, you’ll need to use orchestration to have 

things happen almost simultaneously

AWS Step Functions

Lambda function

Lambda function

Lambda function
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AWS Region and availability zones

Region

Availability zone a Availability zone b Availability zone c

data center

data center

data center

High speed private fiber links

data center

data center

data center

data center

data center

data center
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Stateless Services

Auto Scaling group

Auto Scaling group

Availability zone 1

AWS Region

Service A

Availability zone 2

Service BService B

Service A

Elastic Load 

Balancing 

(ELB)

Amazon 

ElastiCache
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Things to watch out for

You will find problems and resolve them, but real failure might not look like 

the simulation
• Expect this to be an ongoing effort

• Add these tests to your pipeline/acceptance testing

Some failure modes are destructive
• Automated deployment will help bring the environment back

Failover is easier than failback
• Transactions will be in flight

• Flapping can be worse than an outage

Game day exercises are essential
• Practice, practice, practice
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This code is available for download

Lab guide has download link

• https://bit.ly/2VKf3jJ

It is licensed under the Apache License, Version 2.0 or MIT 

No Attribution License

• https://aws.amazon.com/apache2.0

http://bit.ly/WARel300
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Thank you!

https://aws.amazon.com/architecture/well-

architected/


