
© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Testing Resiliency of EC2, RDS, and S3

Rodney Lester

Reliability Lead, AWS Well-Architected

AWS Well-Architected



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Agenda

Deploying the Test Infrastructure

AWS Well-Architected Reliability Pillar

Scenario Walk Through

Lab Time

Component and Availability Zone Failure Simulation

Summary of Tests and Best Practices



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Deploying the Test Infrastructure



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lab prerequisites

• Use your own AWS Account to build out the labs today

• You must have an AWS role with administrative privilege

• It is your responsibility to delete any AWS resources after 

today to prevent ongoing costs!



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Go to the Lab Guide

• Navigate to the lab guide

• http://bit.ly/WAResiliency

• 1. Deploy the Infrastructure

• We can start testing when the web servers are available

• This will take about 20 minutes until you can perform the tests in step 3

• 2. Configure Execution Environment

• After section 1, while your service is deploying, you can start section 2

• If you do not finish this section don’t worry, you will have time later

http://bit.ly/WARel300



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Well-Architected 

Reliability Pillar



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What is it?

“The reliability pillar encompasses the ability of a system to recover from 

infrastructure or service disruptions, dynamically acquire computing 

resources to meet demand, and mitigate disruptions such as 

misconfigurations or transient network issues.” 

– AWS Well Architected Framework Whitepaper

Design Principles
• Test recovery procedures

• Automatically recover from failures

• Scale horizontally to increase aggregate system availability

• Stop guessing capacity

• Manage change using automation



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What is it?

“The reliability pillar encompasses the ability of a system to recover from 

infrastructure or service disruptions, dynamically acquire computing 

resources to meet demand, and mitigate disruptions such as 

misconfigurations or transient network issues.” 

– AWS Well Architected Framework Whitepaper

Design Principles
• Test recovery procedures

• Automatically recover from failures

• Scale horizontally to increase aggregate system availability

• Stop guessing capacity

• Manage change using automation



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Poll

Have you ever experienced an availability loss in your 

system(s) due to infrastructure issues?

a. Yes

b. No

c. Not sure



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Failure management

“Everything fails, all the time.” – Werner Vogel, Amazon CTO

We are going to work on withstanding COMPONENT failures and planning for 

RECOVERY

Mid-2000s: Amazon, Jesse Robbins starts GameDay

• Test, train & prepare Amazon systems, software, & people to respond to disaster

• Increase retail website resiliency by injecting failures into critical systems

2010: Netflix introduced Chaos Engineering – Simian Army

• e.g. Chaos Monkey, Chaos Gorilla and Chaos Kong.



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

“Chaos Engineering is the discipline of 

experimenting on a distributed system

in order to build confidence in the system’s 

capability to withstand turbulent conditions in 

production.”

http://principlesofchaos.org



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Automated recovery

Manual recovery will take much longer

Use AWS services to automate

• Amazon Auto Scaling

• Amazon Relational Database Service (Amazon RDS)

• Amazon Route 53

• Amazon Simple Storage Service (Amazon S3)



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

https://github.com/Netflix/SimianArmy

Set of scheduled agents:

• shuts down services randomly

• slows down performances

• checks conformity 

• breaks an entire region

• Integrates with spinnaker (CI/CD)

Simian Army



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The Chaos Toolkit 

• Simplifying Adoption of Chaos Engineering

• An Open API to Chaos Engineering

• Open source extensions for

• Infrastructure/Platform Fault Injections

• Application Fault Injections

• Observability

• Integrates easily into CI/CD pipelines

https://github.com/chaostoolkit

$ pip install -U chaostoolkit-aws



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Gremlin

https://www.gremlin.com/



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

ToxiProxy

• HTTP API

• Build for Automated testing in mind

• Not for production environment

• Fast

• Toxics for:

• Timeouts, latency, connections and bandwidth limitation, etc..

• CLI

• Stable and well tested (used for 3 years at Shopify)

https://github.com/Shopify/toxiproxy



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

https://atscaleconference.com/videos/resiliency-testing-with-toxiproxy/

Resiliency testing with Toxiproxy



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Kube-monkey

An implementation of Netflix's Chaos Monkey for Kubernetes 

cluster

• It randomly deletes Kubernetes (k8s) pods in the cluster 

encouraging and validating the development of failure-resilient 

services.

https://github.com/asobti/kube-monkey 



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Pumba

Kill Container command

Network Emulation command

https://github.com/alexei-led/pumba/



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. https://blog.thundra.io/chaos-test-your-lambda-functions-with-thundra

AWS Lambda

Thundra



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Poll

What are you doing now for Resilience Testing (Chaos 

Testing)?

a. Using a framework like Gremlin or Chaos Monkey

b. Using our home-grown scripts and programs

c. Other

d. None of the above



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Why are we here?

Just use Netflix OSS, Chaos Toolkit, Gremlin, etc?

• Chaos Monkey part of Spinnaker CI/CD?

• Share SSH keys to inject failure?

• Install external agent?

• Pay a license?

• In production?

• Can I do AZ failure?

Hard to understand how to start.

Can I do this?



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Yes, you can do this!

You can write code to perform these scenarios in any 

language

Bash shell, Python, Java, PowerShell, C#

You can write your own AZ Failure simulation

You can simulate your own regional failure



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Using AWS 

System 

Manager (SSM)

…to inject 

Chaos into 

Amazon EC2

https://medium.com/@adhorn/injecting-chaos-to-amazon-ec2-using-amazon-system-manager-ca95ee7878f5

AWS Systems 

Manager



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SSM documents

https://github.com/adhorn/chaos-ssm-documents



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Scenario Walkthrough



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Scenario architecture for testing

US-East-2 (Ohio)

Virtual Private Cloud

Availability Zone Availability Zone Availability Zone

IGW Routed Subnet IGW Routed Subnet IGW Routed Subnet

Private subnet Private subnet Private subnet

Application Load Balancer (ALB)

Auto Scaling 

App Tier

InstanceInstanceInstance

MySQL RDS 

Multi-AZ (P)

MySQL RDS 

Multi-AZ (S)

NAT 

gateway

NAT 

gateway

NAT 

gateway

S3 Bucket



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lab Time:
Component and Availability Zone Failure Simulation



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Step 3. “Test Resiliency Using Failure Injection”

1. Deploy the Infrastructure

• When state machine has completed “WaitForWebApp” state…

• Then you can start testing!

2. Configure Execution Environment

3. Test Resiliency Using Failure Injection

• Python 

• Java

• Bash

• PowerShell

• C#

Decide which language you are comfortable using

Ask for help if you need it

http://bit.ly/WARel300



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Summary of Tests



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Simulated failures

US-East-2 (Ohio)

Virtual Private Cloud

Availability Zone Availability Zone Availability Zone

IGW Routed Subnet IGW Routed Subnet IGW Routed Subnet

Private subnet Private subnet Private subnet

Application Load Balancer (ALB)

Auto Scaling 

App Tier

InstanceInstanceInstance

MySQL 

RDS Multi-

AZ (P)

MySQL 

RDS Multi-

AZ (S)

NAT 

gateway

NAT 

gateway

NAT 

gateway

S3 Bucket



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Poll

Are you confident that your system(s) meet your resiliency 

requirements?

a. Yes

b. No

c. Not sure



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Best Practices



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What did you learn?

No fear – You can write these tests

The simulation may not be obvious

• Think about the effects before implementation

• Revise based on results

• Writing this code is not difficult

On very large implementations, you’ll need to use orchestration to have 

things happen almost simultaneously

AWS Step Functions

Lambda function

Lambda function

Lambda function



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Region and availability zones

Region

Availability zone a Availability zone b Availability zone c

data center

data center

data center

High speed private fiber links

data center

data center

data center

data center

data center

data center



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Stateless Services

Auto Scaling group

Auto Scaling group

Availability zone 1

AWS Region

Service A

Availability zone 2

Service BService B

Service A

Elastic Load 

Balancing 

(ELB)

Amazon 

ElastiCache



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Things to watch out for

You will find problems and resolve them, but real failure might not look like 

the simulation
• Expect this to be an ongoing effort

• Add these tests to your pipeline/acceptance testing

Some failure modes are destructive
• Automated deployment will help bring the environment back

Failover is easier than failback
• Transactions will be in flight

• Flapping can be worse than an outage

Game day exercises are essential
• Practice, practice, practice



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

This code is available for download

Lab guide has download link

• https://bit.ly/2VKf3jJ

It is licensed under the Apache License, Version 2.0 or MIT 

No Attribution License

• https://aws.amazon.com/apache2.0

http://bit.ly/WARel300



© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Thank you!

https://aws.amazon.com/architecture/well-

architected/


