
© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Chris Munns
Principal Developer Advocate
AWS Serverless

Optimizing Your Serverless
Applications

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

About me:

Chris Munns - munns@amazon.com, @chrismunns

• Principal Developer Advocate - Serverless

• New Yorker

• Previously:

• AWS Business Development Manager – DevOps, July ’15 - Feb ‘17

• AWS Solutions Architect Nov, 2011- Dec 2014

• Formerly on operations teams @Etsy and @Meetup

• Little time at a hedge fund, Xerox and a few other startups

• Rochester Institute of Technology: Applied Networking and Systems
Administration ’05

• Internet infrastructure geek

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

https://secure.flickr.com/photos/mgifford/4525333972

Why are we

here today?

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Today’s focus:

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda function

Your
function

Language
runtime

Execution
Environment

Compute
substrate

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda function

Your
function

Language
runtime

Execution
Environment

Compute
substrate

Places where

you can

impact

performance

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda function

Your
function

Language
runtime

Execution
Environment

Compute
substrate

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Serverless applications

AWS
Lambda

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Serverless applications

Function

Node.js

Python

Java

C#

Go

Ruby

Runtime API

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda function

Handler() function

Function to be executed
upon invocation

Event object

Data sent during Lambda
function Invocation

Context object

Methods available to
interact with runtime
information (request ID,
log group, more)

import json

def lambda_handler(event, context):
TODO implement
return {

'statusCode': 200,
'body': json.dumps('Hello World!')

}

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Serverless applications

Event source Function

Node.js

Python

Java

C#

Go

Ruby

Runtime API

Changes in

data state

Requests to

endpoints

Changes in

Resource state

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda functionImport sdk
Import http-lib
Import ham-sandwich

Pre-handler-secret-getter()
Pre-handler-db-connect()

Function myhandler(event, context) {
<Event handling logic> {

result = SubfunctionA()
}else {

result = SubfunctionB()

return result;
}

Function Pre-handler-secret-getter() {
}

Function Pre-handler-db-connect(){
}

Function subFunctionA(thing){
logic here
}

Function subFunctionB(thing){
logic here
}

Your handler

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda functionImport sdk
Import http-lib
Import ham-sandwich

Pre-handler-secret-getter()
Pre-handler-db-connect()

Function myhandler(event, context) {
<Event handling logic> {

result = SubfunctionA()
}else {

result = SubfunctionB()

return result;
}

Function Pre-handler-secret-getter() {
}

Function Pre-handler-db-connect(){
}

Function subFunctionA(thing){
logic here
}

Function subFunctionB(thing){
logic here
}

Dependencies, configuration information, common helper functions

Your handler

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Pre-handler code, dependencies, variables

• Import only what you need
• Where possible trim down SDKs and other

libraries to the specific bits required

• Pre-handler code is great for establishing
connections, but be prepared to then handle
reconnections in further executions

• REMEMBER – execution environments are
reused

• Lazily load variables in the global scope

• Don’t load it if you don’t need it – cold starts
are affected

• Clear out used variables so you don’t run into
left-over state

Import sdk
Import http-lib
Import ham-sandwich

Pre-handler-secret-getter()
Pre-handler-db-connect()

Function myhandler(event,
context) {
....

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda functionImport sdk
Import http-lib
Import ham-sandwich

Pre-handler-secret-getter()
Pre-handler-db-connect()

Function myhandler(event, context) {
<Event handling logic> {

result = SubfunctionA()
}else {

result = SubfunctionB()

return result;
}

Function Pre-handler-secret-getter() {
}

Function Pre-handler-db-connect(){
}

Function subFunctionA(thing){
logic here
}

Function subFunctionB(thing){
logic here
}

Dependencies, configuration information, common helper functions

Common helper functions

Your handler

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Lambda Environment Variables

• Key-value pairs that you can dynamically pass to your
function

• Available via standard environment variable APIs such as
process.env for Node.js or os.environ for Python

• Can optionally be encrypted via AWS Key Management
Service (KMS)

• Allows you to specify in IAM what roles have access to the
keys to decrypt the information

• Useful for creating environments per stage (i.e. dev,
testing, production)

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Systems Manager – Parameter Store

Centralized store to manage your
configuration data

• supports hierarchies

• plain-text or encrypted with KMS

• Can send notifications of changes to
Amazon SNS/ AWS Lambda

• Can be secured with IAM

• Calls recorded in CloudTrail

• Can be tagged

• Integrated with AWS Secrets Manager

• Available via API/SDK

Useful for: centralized
environment variables, secrets
control, feature flags

from __future__ import print_function

import json

import boto3

ssm = boto3.client('ssm', 'us-east-1')

def get_parameters():

response = ssm.get_parameters(

Names=['LambdaSecureString'],WithDec
ryption=True

)

for parameter in response['Parameters']:

return parameter['Value']

def lambda_handler(event, context):

value = get_parameters()

print("value1 = " + value)

return value # Echo back the first key
value

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Serverless applications

Event source Services

Changes in

data state

Requests to

endpoints

Changes in

Resource state

Function

Node.js

Python

Java

C#

Go

Ruby

Runtime API

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda functionImport sdk
Import http-lib
Import ham-sandwich

Pre-handler-secret-getter()
Pre-handler-db-connect()

Function myhandler(event, context) {
<Event handling logic> {

result = SubfunctionA()
}else {

result = SubfunctionB()

return result;
}

Function Pre-handler-secret-getter() {
}

Function Pre-handler-db-connect(){
}

Function subFunctionA(thing){
logic here
}

Function subFunctionB(thing){
logic here
}

Dependencies, configuration information, common helper functions

Common helper functions

Business logic sub-functions

Your handler

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a serverless application
Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

/orders

/forums

/search

/lists

/user

/...

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

Amazon API

Gateway

AWS Secrets

Manager / AWS

Parameter Store

Amazon

DynamoDB

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Secrets

Manager / AWS

Parameter Store

Amazon

DynamoDB

Anatomy of a serverless application
Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

/orders

/forums

/search

/lists

/user

/...

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Pre-handler-secret-getter() {

}

Function Pre-handler-db-connect(){

}

Function subFunctionA(thing){

logic here

}

Function subFunctionA(thing){

logic here

}

Dependencies, configuration

information, common helper

functions

Common helper functions

Business logic sub-functions

There could be a lot of

duplicated code here!Amazon API

Gateway

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Secrets

Manager / AWS

Parameter Store

Amazon

DynamoDB

Anatomy of a serverless application

/orders

/forums

/search

/lists

/user

/...

Amazon API

Gateway

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function

Import sdk

Import http-lib

Import ham-sandwich

Pre-handler-secret-getter()

Pre-handler-db-connect()

Function myhandler(event, context) {

<Event handling logic> {

result = SubfunctionA()

}else {

result = SubfunctionB()

return result;

}

Function

Dependencies, configuration

information, common helper functions

Common helper functions

Business logic sub-functions

We want something

more like this:

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda Layers

Lets functions easily share code: Upload layer once,
reference within any function

Layer can be anything: dependencies, training data,
configuration files, etc

Promote separation of responsibilities, lets developers
iterate faster on writing business logic

Built in support for secure sharing by ecosystem

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Using Lambda Layers

• Put common components in a ZIP file and upload
it as a Lambda Layer

• Layers are immutable and can be versioned to
manage updates

• When a version is deleted or permissions to use it
are revoked, functions that used it previously will
continue to work, but you won’t be able to create
new ones

• You can reference up to five layers, one of which
can optionally be a custom runtime

Lambda
Layers

arn:aws:lambda:region:accountId:layer:shared-lib :1

Lambda
Layers

arn:aws:lambda:region:accountId:layer:shared-lib:2

Lambda
Layers

arn:aws:lambda:region:accountId:layer:shared-lib:3

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How Lambda Layers Work

Order is important because each layer is a ZIP file, and they are all extracted
in the same path

• /opt

• Each layer can potentially overwrite the previous one

This approach can be used to customize the environment
• For example, the first layer can be a custom runtime and the second layer

adds specific versions of the libraries you need

The storage of your Lambda Layers takes part in the AWS Lambda Function
storage per region limit (75GB)

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Concise function logic

• Separate Lambda handler (entry point) from core logic
• Providers cleaner starting point for re-use of code

• Use functions to TRANSFORM, not TRANSPORT
• Use purposeful built services for communication fan-out, message handling, data

replication, writing to data stores/databases

• Read only what you need. For example:

•Message filters in Amazon SNS

•Fine grained rules in Amazon EventBridge

•Query filters in Amazon RDS Aurora

•Use Amazon S3 Select

•Properly indexed databases

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

No orchestration in code
S

T
A

R
T

 J
O

B

J
O

B
 #

X
 S

T
A

R
T

E
D

H
T

T
P

 P
O

S
T

H
T

T
P

 P
O

S
T

A
R

E
 W

E
 T

H
E

R
E

 Y
E

T
?

N
O

P
E

!

W
E

’R
E

 D
O

N
E

!ZzZz

OR

time.sleep(10)

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Step Functions

Serverless workflow management with zero
administration
• Makes it easy to coordinate the components of

distributed applications and microservices using
visual workflows

• Automatically triggers and tracks each step and
retries when there are errors, so your application
executes in order and as expected

• Logs the state of each step, so when things do go
wrong, you can diagnose and debug problems
quickly

Task
Choice

Failure capture

Parallel tasks

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Step Functions: Integrations

Simplify building workloads such as order processing,
report generation, and data analysis

Write and maintain less code; add services in minutes

More service integrations:

AWS Step
Functions

Amazon Simple
Notification

Service

Amazon Simple
Queue Service

Amazon
SageMaker

AWS Glue AWS Batch Amazon Elastic
Container Service

AWS Fargate

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Simpler integration, less code

With serverless polling With direct service integrationStart

End

AWS
Lambda

functions

Start

End

No
Lambda

functions

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Amazon
EventBridge

Serverless event bus for ingesting and processing data
across AWS services and SaaS applications

• Removes friction of writing

“point-to-point integrations”

• 90+ AWS Services as sources

• 17 AWS Services as targets

• Provides simple programming

model

NEW!!!

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Amazon EventBridge

Event source SaaS event bus

Custom event bus

Default event bus

Rules

AWS Lambda

Amazon Kinesis

AWS Step Functions

Additional targets

Event Sources Event Buses Targets

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda
based
service

Amazon Comprehend

Amazon SageMaker

AWS
Lambda

Amazon Kinesis
Data Firehose

Amazon S3 Amazon Athena

AWS Step
Functions
Workflow

Amazon Elastic

Container Service

Task

Amazon Simple

Notification Service

HTTPS server on

premises

Event passing with Amazon EventBridge

Amazon
EventBridge

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Events with Amazon EventBridge

Amazon
EventBridge

Order
service

• Your services can both

produce messages onto

the bus and consume

just the messages they

need from the bus

• Services don’t need to

know about each other,

just about the bus.

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda function

Your
function

Language
runtime

Execution
Environment

Compute
substrate

Recap:
• Minimize dependencies
• Use pre-handler logic sparingly but

strategically
• Share secrets based on application scope:

• Single function: Env-Vars
• Multi Function/shared environment:

Parameter Store
• Think about how re-use impacts variables,

connections, and dependency usage
• Layers save on code duplication and help

enable standardization across functions
• Concise logic.
• Push orchestration up to Step Functions or

messaging services like EventBridge, SNS,
SQS, or Kinesis

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda function

Your
function

Language
runtime

Execution
Environment

Compute
substrate

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The function lifecycle

Bootstrap

the runtime

Start your

code

Full

cold start

Partial

cold start

Warm

start

Download

your code

Start new

Execution

environment

AWS optimization Your optimization

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS X-Ray

Profile and troubleshoot

serverless applications:

• Lambda instruments

incoming requests for all

supported languages and can

capture calls made in code

• API Gateway inserts a tracing

header into HTTP calls as

well as reports data back to

X-Ray itself

var AWSXRay = require(‘aws-xray-sdk-core‘);

var AWS = AWSXRay.captureAWS(require(‘aws-sdk’));

S3Client = AWS.S3();

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

X-Ray Trace Example

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tweak your function’s computer power

Lambda exposes only a memory control, with the % of CPU core
and network capacity allocated to a function proportionally

Is your code CPU, Network or memory-bound? If so, it could be cheaper to
choose more memory.

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Smart resource allocation

Match resource allocation (up to 3 GB!) to logic

Stats for Lambda function that calculates 1000 times all prime numbers <=
1000000

128 MB 11.722965sec $0.024628
256 MB 6.678945sec $0.028035
512 MB 3.194954sec $0.026830
1024 MB 1.465984sec $0.024638

Green==Best Red==Worst

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Smart resource allocation

Match resource allocation (up to 3 GB!) to logic

Stats for Lambda function that calculates 1000 times all prime numbers <=
1000000

128 MB 11.722965sec $0.024628
256 MB 6.678945sec $0.028035
512 MB 3.194954sec $0.026830
1024 MB 1.465984sec $0.024638

Green==Best Red==Worst

+$0.00001-10.256981sec

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Multithreading? Maybe!

• <1.8GB is still single core
• CPU bound workloads won’t see gains – processes share same

resources

• >1.8GB is multi core
• CPU bound workloads will gains, but need to multi thread

• I/O bound workloads WILL likely see gains
• e.g. parallel calculations to return

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda API

1. Lambda directly invoked
via invoke API

SDK clients

API provided by the Lambda service

Used by all other services that invoke
Lambda across all models

Supports sync and async

Can pass any event payload structure
you want

Client included in every SDK
Lambda
function

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda execution model

Synchronous
(push)

Asynchronous
(event)

Stream
(Poll-based)

/order

Amazon API
Gateway

Lambda
function

Amazon
DynamoDB

Amazon
Kinesis

changes

AWS Lambda
service

function

Amazon
SNS

Amazon
S3

reqs

Lambda
function

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

If you don’t need a response, execute async

Use the Lambda APIs to start an asynchronous execution
• Built-in queue (SQS behind the scenes)

• Automatic retries

• Dead letter queue for failed events

client = boto3.client("lambda")

client.invoke_async(
FunctionName="test"

InvokeArgs=json_payload
)

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The microservices “iceberg”

Common question: “Should every

service of mine talk to another using

an API?”

Maybe not!: Most microservices are

internal only for a given product

supporting their customer facing

features. They may only need to

pass messages to each other that

are simple events and not need a full

fledged interactive API.

Public

interface

Internal

services

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Gateways and routers

• Choose suitable entry point for client applications

• Single, custom client: Use the AWS SDK

• In region only public API: Use regional endpoints
on API Gateway

• Calls from private microservices in a VPC: Use
private endpoints on API Gateway

• No need for a custom interface: look at a non API
Gateway source

• Fan-out: SNS or EventBridge

• Discard uninteresting events ASAP

• S3 – Event prefix

• SNS – Message filtering

• EventBridge - Rules

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Focusing below the water line

Public

interface

Internal

services

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Ways to compare

Pricing

Persistence

Retries

DurabilityScale/Concurrency

controls

Consumption

models

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Ways to compare

Pricing

Persistence

Retries

DurabilityScale/Concurrency

controls

Consumption

models

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Concurrency across models

SNS/API

No event store

Queue based

Stream based

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda Per Function Concurrency controls

• Concurrency a shared pool by default

• Separate using per function concurrency settings

• Acts as reservation

• Also acts as max concurrency per function

• Especially critical for downstream resources like databases

• “Kill switch” – set per function concurrency to zero

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda Dead Letter Queues

“By default, a failed Lambda function invoked asynchronously is retried
twice, and then the event is discarded.” –
https://docs.aws.amazon.com/lambda/latest/dg/dlq.html

• Turn this on! (for async use-cases)

• Monitor it via an SQS Queue length metric/alarm

• If you use SNS, send the messages to something durable and/or a
trusted endpoint for processing

• Can send to Lambda functions in other regions

• If and when things go “boom” DLQ can save your invocation event
information

☠️

✉️

Q

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

"Action": "s3:*" makes
puppies cry

Photo by Matthew Henry on Unsplash

https://unsplash.com/photos/2Ts5HnA67k8?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/sad-dog?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda permissions model

Function policies:

• “Actions on bucket X can invoke
Lambda function Z"

• Resource policies allow for cross
account access

• Used for sync and async invocations

Execution role:

• “Lambda function A can read from
DynamoDB table users”

• Define what AWS resources/API
calls can this function access via IAM

• Used in streaming invocations

Event source ServicesFunction

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Meet

AWS

SAM!

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS SAM Template

AWSTemplateFormatVersion: '2010-09-09’

Transform: AWS::Serverless-2016-10-31

Resources:

GetProductsFunction:

Type: AWS::Serverless::Function

Properties:

Handler: index.getProducts

Runtime: nodejs8.10

CodeUri: src/

Policies:

- DynamoDBReadPolicy:

TableName: !Ref ProductTable

Events:

GetResource:

Type: Api

Properties:

Path: /products/{productId}

Method: get

ProductTable:

Type: AWS::Serverless::SimpleTable

Just 20 lines to create:

• Lambda function

• IAM role

• API Gateway

• DynamoDB table

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS SAM Policy Templates

GetProductsFunction:

Type: AWS::Serverless::Function

Properties:

...

...

ProductTable:

Type: AWS::Serverless::SimpleTable

Policies:
- DynamoDBReadPolicy:

TableName: !Ref ProductTable

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SAM Policy Templates

50+ predefined

policies

All found here:

https://bit.ly/2xWycnj

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda function

Your
function

Language
runtime

Execution
Environment

Compute
substrate

Recap:
• More memory == More CPU and I/O

(proportionally)
• Can also be lower cost

• Use AWS X-Ray to profile your workload
• >1.8GB memory get’s you 2 cores, but

you might not use/need it
• Think deeply about your execution model

and invocation source needs
• Not everything needs to be an API

• Thinking async will get you over some of
the biggest scaling challenges

• Understand the various aspects to
queues, topics, streams and event buses
when using them

• Minimize the scope of IAM permissions
• Leverage tooling like SAM

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Anatomy of a Lambda function

Your
function

Language
runtime

Execution
Environment

Compute
substrate

Places where

you can

impact

performance

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

FIN/ACK
Execution Environment Recap:
• More memory == More CPU and I/O

(proportionally)
• Can also be lower cost

• Use AWS X-Ray to profile your workload
• >1.8GB memory get’s you 2 cores, but

you might not use/need it
• Think deeply about your execution model

and invocation source needs
• Not everything needs to be an API

• Thinking async will get you over some of
the biggest scaling challenges

• Understand the various aspects to
queues, topics, streams and event buses
when using them

• Minimize the scope of IAM permissions
• Leverage tooling like SAM

Your Function Recap:
• Minimize dependencies
• Use pre-handler logic sparingly but

strategically
• Share secrets based on application

scope:
• Single function: Env-Vars
• Multi Function/shared environment:

Parameter Store
• Think about how re-use impacts

variables, connections, and dependency
usage

• Layers save on code duplication and
help enable standardization across
functions

• Concise logic.
• Push orchestration up to Step Functions

or messaging services like EventBridge,
SNS, SQS, or Kinesis

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

aws.amazon.com/serverless

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Chris Munns

munns@amazon.com

@chrismunns
https://www.flickr.com/photos/theredproject/3302110152/

© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

?
https://secure.flickr.com/photos/dullhunk/202872717/

