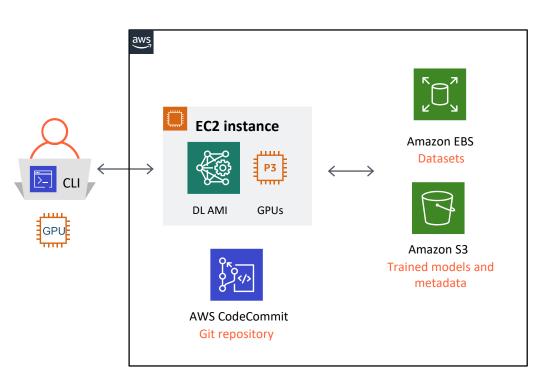
Machine Learning with Containers on Amazon SageMaker

Shashank Prasanna, Sr. Technical Evangelist, AI/ML

26th August 2019



Agenda

- Challenges with machine learning infrastructure
- Containers and machine learning
 - AWS Deep Learning Containers
- Scaling deep learning containers with Amazon SageMaker
- Demos using Deep Learning Containers and Amazon SageMaker
 - 1. Getting started with TensorFlow deep learning container
 - 2. Running hyperparameter search experiments on Amazon SageMaker
 - 3. Running distributed training with TensorFlow and Horovod on Amazon SageMaker
- Summary and Q&A

Machine learning setups on AWS today

- ✓ Compute (CPUs, GPUs)
- √ Storage
- ✓ Source control
- ✓ ML Frameworks

Challenges with existing machine learning setups

Software Performance Collaborative optimizations development management Infrastructure Scalability . . . management

Machine learning stack is complex

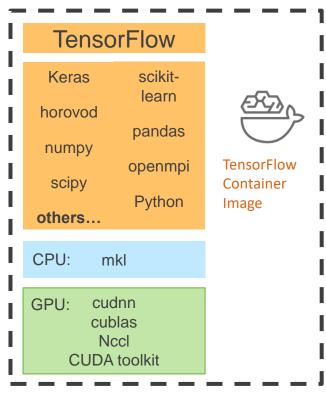
- "My code requires building several dependencies from source"
- "My code isn't taking advantage the GPU/GPUs"
 - "is cudnn, nccl installed, is it the right version?"
- "My code is running slow on CPUs"
 - "oh wait, is it taking advantage of AVX instruction set ?!?"
- "I updated my drivers and training is now slower/errors out"
- "My production cluster runs a different version of framework/linux distro"

TensorFlow

Keras scikitlearn
horovod pandas
numpy openmpi
scipy Python
others...

CPU: mkl

GPU: cudnn cublas Nccl CUDA toolkit


> NVIDIA drivers Host OS

Makes portability, collaboration, scaling workloads really really hard!

Using containers for Machine Learning workloads

Container runtime

NVIDIA drivers

Host OS

Infrastructure

ML environments that are:

- Lightweight
- Portable
- Scalable
- Consistent

Packages:

- Training code
- Dependencies
- Configurations

AWS Deep Learning Containers

- Prepackaged Docker container images fully configured and validated
- Optimized for performance with latest NVIDIA driver,
 CUDA libraries, and Intel libraries
- Consistent and reproducible deployment and lightweight
- Optimized for distributed machine learning
- Runs on Amazon EKS, Amazon ECS and Amazon SageMaker

Training (4)

GPU with py36 GPU with py27 CPU with py36 CPU with py27

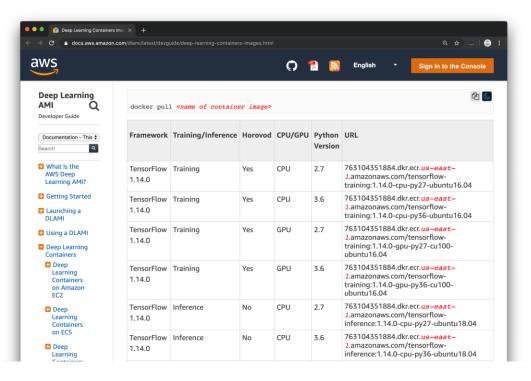
Inference (4)

GPU with py36 GPU with py27 CPU with py36 CPU with py27

TensorFlow (8)

MXNet (8)

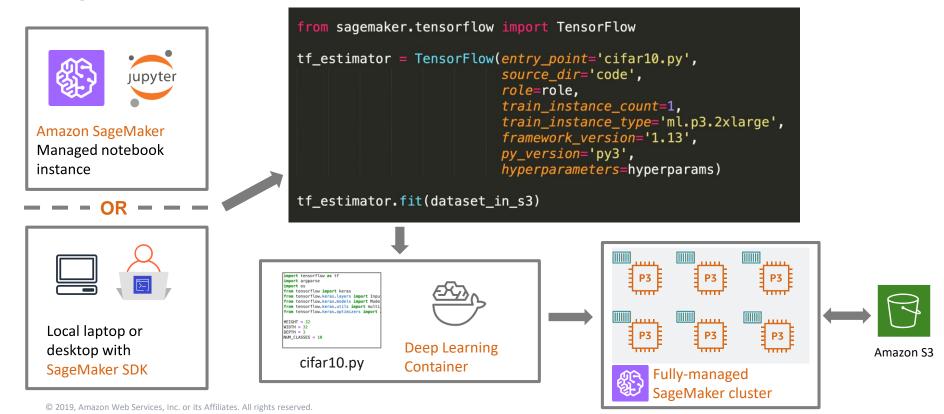
(PyTorch coming soon)


Amazon FKS

Amazon ECS

AWS Deep Learning Containers

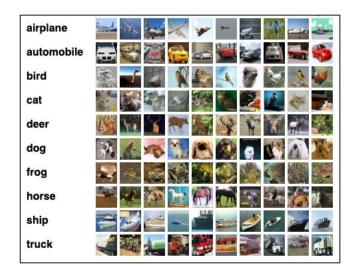
docker pull <container image>


Bring your own training script (BYOTS)

16 Images in ECR repositories in 15 AWS regions

https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-images.html

Using deep learning containers at scale on Amazon SageMaker

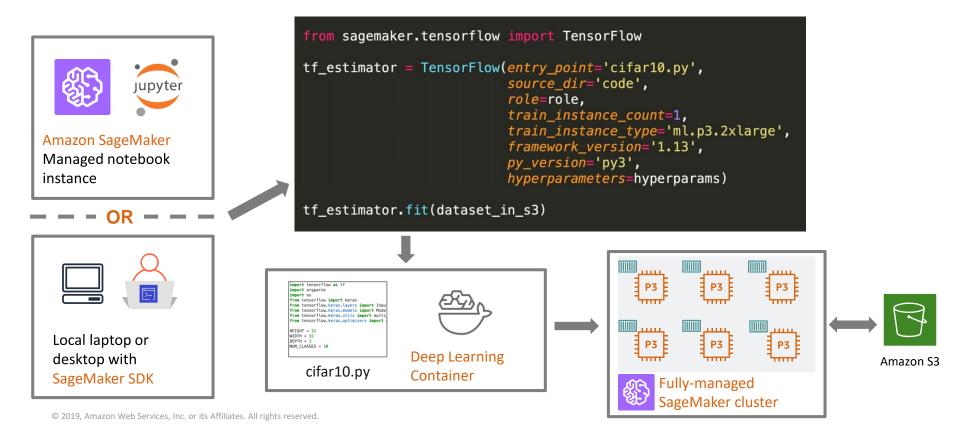

DEMO: Getting started with TensorFlow deep learning

container

Dataset: CIFAR10

Problem: Image classification

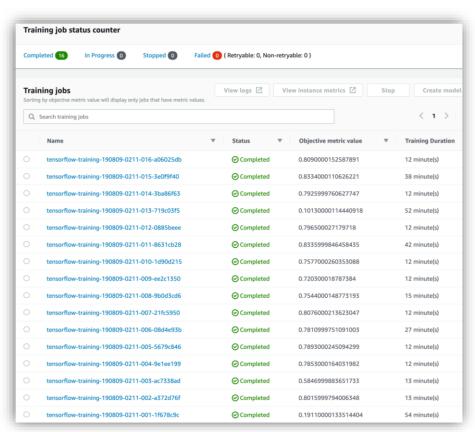
Framework: TensorFlow and Keras



Approach:

- Updating training script for Amazon SageMaker
- Test training on DL container locally
- Run training on GPU instance on SageMaker cluster

RECAP: Deep learning containers on SageMaker



DEMO: Hyperparameter optimization

Approach:

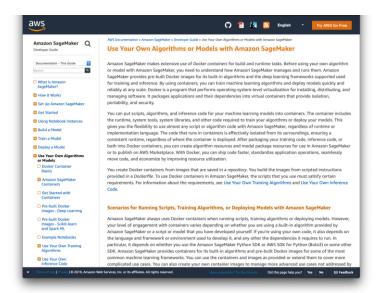
- Specify hyperparameters
- Choose hyperparameter search strategy (Bayesian, random, custom)
- Launch a tuning job

Learning rate	Between 0.0001 and 0.1 on log scale
Batch size	32, 128, 512, 1024
Momentum	Between 0.9 and 0.99
Optimizer	SGD, Adam

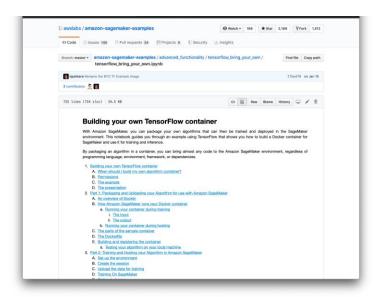
DEMO: Distributed training

Approach:

- Update training script with horovod api
- Specify number instances and number of GPUs per instance
- Launch a distributed training job


```
from sagemaker.tensorflow import TensorFlow
hvd_instance_type = 'ml.p3.8xlarge'
hvd_instance_count = 2
hvd_processes_per_host = 4
```

8 GPU distributed training


- 2 x p3.8xlarge
- 4 GPUs/p3.8xlarge

Can I bring my own container?

docs.aws.amazon.com/sagemaker/latest/dg/
your-algorithms.html

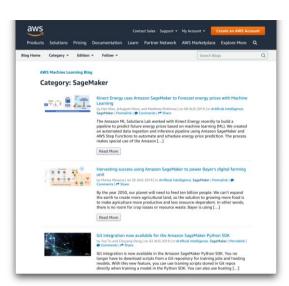
github.com/awslabs/amazon-sagemakerexamples/blob/master/advanced_functionality/ tensorflow_bring_your_own/

AWS DL Containers and Amazon SageMaker

Software management	•	AWS Deep Learning Containers are lightweight, portable and fully configured and validated with latest deep learning frameworks
Performance optimizations	•	DL containers include frameworks optimized by experts to deliver the best training and inference performance on CPUs and GPUs.
Collaborative development	٠	With DL containers, Amazon ECR collaborative development across different environments is easy.
Infrastructure management	•	Amazon SageMaker simplifies infrastructure management, and container orchestration for single and distributed training
Scalability	٠	Amazon SageMaker lets you easily scale-out in bursts for large- scale training experiments or for long-running distributed training


Resources

Documentation


docs.aws.amazon.com/sagemaker/ latest/dg/whatis.html

Examples on GitHub

github.com/awslabs/ amazon-sagemaker-examples

AWS ML Blog

aws.amazon.com/blogs/machinelearning/category/artificial-intelligence/ sagemaker/

Thank you!

Shashank Prasanna,
Sr. Technical Evangelist, AI/ML

Questions? Happy to help:

Twitter: @shshnkp

LinkedIn: linkedin.com/in/shashankprasanna

