
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Monitor the World

Meaningful Metrics for Kubernetes
Applications and Clusters

Nick Turner, Amazon EKS

November 21, 2018

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

About Me

• SDE at Amazon EKS

• Twitter: @Nck_T

• Github: nckturner

• I enjoy spending time outdoors.

https://twitter.com/Nck_T
https://github.com/nckturner

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Agenda

• Monitoring Overview

• Tools Overview

• Metrics Sources

• Key Metrics

• Correcting Problems

• The Control Plane

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Monitoring Microservices

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Why do we monitor?

• To detect problems so that we can fix them

• To prevent outages

• Because we are nosy

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The Difficulties of Monitoring

• Microservices are hard to monitor
• Wealth of potential metrics to monitor, selecting actionable

metrics is difficult

• Debugging can be more difficult: “We replaced our monolith with
micro services so that every outage could be more like a murder
mystery.” – Honest Status Update (@honest_update)

• Containers are hard to monitor
• Containers are generally more transient

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

A Method to the Madness

USE – Brendan Gregg

• For every resource, check:

• Utilization

• Saturation

• Errors

RED – Tom Wilkie

• For every service, monitor request:

• Rate

• Errors

• Duration

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tools Overview

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tools

Monitoring

• Prometheus

• Cloudwatch

• Metrics Server

• Node Exporter

• Node Problem
Detector

• Kube State Metrics

• cAdvisor

• Kibana

Logging

• fluentd

• ELK

• Cloudwatch Logs

Alerting

• AlertManager

• Cloudwatch Alarms

And many more!

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Prometheus

• Comprehensive Open Source
Monitoring Framework

• Rich querying language

• Pull based Model

• Multi-dimensional data model (each
metric value has a name and key-
value dimensions)

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Amazon Cloudwatch

• Metrics, Logging and Alerting
framework fully managed by Amazon

• Highly Available

• You may want to export Cloudwatch
metrics into Prometheus, or vice
versa

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics Sources

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics Sources

Node B

Pod

Node A

Pod

Node C

Pod

Traffic

Load Balancer

Kubelet

cAdvisor

Node

Problem

Detector

Node

Exporter
Kubelet

cAdvisor

Node

Problem

Detector

Node

Exporter
Kubelet

cAdvisor

Node

Problem

Detector

Node

Exporter

Kube

State

Metrics

Prometheus

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics Sources – Node Exporter

• Exposes node hardware/OS
metrics

• Can be run as a Daemonset

• Requires access to the host
filesystem

• github.com/prometheus/node_exporter

• Rich built in collectors

• cpu

• meminfo

• filesystem

• loadavg

• diskstats

• arp

• boottime

• ipvs

http://github.com/prometheus/node_exporter

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics Sources – Node Problem Detector

• Reports problems up the stack with:
• Events (temporary)

• NodeConditions (permanent)

• Can be run as a Daemonset
• github.com/kubernetes/node-problem-detector

https://github.com/kubernetes/node-problem-detector

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics Sources – cAdvisor

• Collects and exports container-level metrics

• Includes:
• Resource isolation parameters

• Historical resource usage

• Can be run as a daemonset, also linked inside Kubelet
• github.com/google/cadvisor

https://github.com/google/cadvisor

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics Sources – Kube State Metrics

• Generates metrics based on Kubernetes objects that are
present in the cluster

• Be cautious of memory usage for large deployments

• For example, generated deployment metrics include:
• kube_deployment_status_replicas

• kube_deployment_status_replicas_available

• kube_deployment_status_replicas_unavailable

• kube_deployment_status_replicas_updated
• github.com/kubernetes/kube-state-metrics

https://github.com/kubernetes/kube-state-metrics

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics Sources – Metrics Server

• Gets data from kubelet

• Stores only current values of core metrics (pods and nodes) –
does not give you historical metrics

• Used by the Horizontal Pod Autoscaler to make decisions

• Run as an aggregated API server
• /apis/metrics.k8s.io/v1beta1/nodes

• /apis/metrics.k8s.io/v1beta1/pods

• github.com/kubernetes-incubator/metrics-server

https://github.com/kubernetes-incubator/metrics-server

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics Sources – Instrumented Application

• Expose a metrics endpoint from your application, i.e. http://localhost:9090/metrics

• Configure Prometheus to scrape the endpoint

• 4 metric types:

• Counter

• Gauge

• Histogram

• Summary

• Client libraries available in:

• Official:

• Go, Java or Scala, Python, Ruby

• Unofficial third-party client libraries:

• Bash, C++, Common Lisp, Elixir, Erlang, Haskell, Lua for Nginx, Lua for Tarantool, .NET / C#,
Node.js, Perl, PHP, Rust

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Instrumenting Applications with Prometheus

func main() {

http.Handle("/store", promhttp.InstrumentHandlerCounter(

promauto.NewCounterVec(

prometheus.CounterOpts{

Name: ”store_requests",

Help: "User store requests",

},

[]string{"code"},

),

http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

// handle request

}),

))

http.Handle("/metrics", promhttp.Handler())

http.ListenAndServe(":9000", nil)

}

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Metrics Sources – Cloudwatch Exporter

• Prometheus exporter for cloudwatch

• Export cloudwatch metrics to prometheus

• All metrics exported as gauges
• github.com/prometheus/cloudwatch_exporter

https://github.com/prometheus/cloudwatch_exporter

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Key Metrics

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Key Metrics - Resources

What are resources in a Kubernetes Cluster?

• Disk

• CPU

• Memory

• Network Interfaces

• Load balancers

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Key Metrics - CPU

Category Metric

Utilization CPU Used Time

Saturation CPU load, throttled time / total time

• Useful both cluster wide and aggregated across pods by

application and containers by image

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

CPU Query Examples

container_cpu_usage_seconds_total is a counter (always increasing), so we need to take a rate

Container cpu utilization per minute for myapp

rate(container_cpu_usage_seconds_total{container_name=”myapp"}[1m])

Container cpu utilization by container

sum(rate(container_cpu_usage_seconds_total[1m])) by (container_name)

CPU utilization by pod

sum(rate(container_cpu_usage_seconds_total[1m])) by (pod_name)

CPU utilization at the cluster level

id is a label for systemd slice (systemd’s hierarchical cgroups)

sum(rate(container_cpu_usage_seconds_total{id="/"}[1m])) / sum (machine_cpu_cores) * 100

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Key Metrics - Memory

Category Metric

Utilization Memory Utilization (Memory Available / Memory Total)

Saturation Swapping or Paging

• Useful both cluster wide and aggregated across pods by

application and containers by image

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Memory Query Examples

Cluster utilization:

sum(node_memory_MemAvailable) / sum(node_memory_MemTotal) * 100

Node utilization:

sum(node_memory_MemAvailable) by (instance) / sum(node_memory_MemTotal) by (instance) * 100

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Key Metrics - Disk

Category Metric

Utilization Disk I/O time

Utilization Disk Capacity Used / Disk Capacity Available

Saturation Wait Queue Length

• Useful per node, cluster wide, and aggregated across pods by

application

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Disk Query Examples

node disk utilization measured by io time per 1 minute:

avg(irate(node_disk_io_time_ms{device=~"(sd|xvd|nvme).+"}[1m]) / 1e3)

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

??

((max by (namespace, pod, device) ((node_filesystem_size{fstype=~"ext[234]|btrfs|xfs|zfs"}

- node_filesystem_avail{fstype=~"ext[234]|btrfs|xfs|zfs"})

/ node_filesystem_size{fstype=~"ext[234]|btrfs|xfs|zfs"}))

> 0.85) and (predict_linear(node:node_filesystem_avail:[6h], 3600 * 24) < 0)

Alert in 24 hours if disk will be full

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Key Metrics – Network Interfaces

Category Metric

Utilization Throughput / Instance Type Bandwidth

• Useful per node, cluster wide, and aggregated across pods by

application

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Key Metrics – Load Balancers

Category Metric

Utilization Requests Per Second

Saturation Surge Queue Length

• Useful per Load Balancer (or aggregated by application if

there are multiple per)

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Key Metrics – Applications

Category Metric

Rate Requests per second

Errors Status Code

Duration Request Duration

• Aggregated across pods by application

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Key Metrics – Applications

Category Metric

Saturation Pods available / Pods Total

Errors Pod restarts

• Aggregated across pods by application

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Correcting Problems

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Correcting Problems

• Autoscale nodes with the cluster autoscaler

• Autoscale your service the HPA (Horizontal Pod Autoscaler)

• Detect an unhealthy node and terminate it
• Node problem detector

• Canary daemonset

• Rollback a deployment

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The Control Plane

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The Control Plane

• Apiserver

• Etcd

• Controller Manager

• Scheduler

• Other components

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The Control Plane

• Mostly the same:
• healthz

• RED, USE

• Running Pods / Desired

• Pod Restarts

• Scheduling – watch pod state changes (time in pending)

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The Control Plane - Etcd

• Disk sync duration

• Leader Elections

• Quorum

• Corruption
• (use --experimental-corrupt-check-time and --experimental-initial-corrupt-check)

• Disk Capacity
• Occasional compaction might be necessary

• Latency (or just measure the API server)

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Demo

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

References

Wilkie, T. (2017, Dec 15). The RED Method: How To Instrument Your Services [B]. [Video File].
Retrieved from https://www.youtube.com/watch?v=TJLpYXbnfQ4

Gregg, B. (n.d.). The USE Method.

[Blog post]. Retrieved from http://www.brendangregg.com/usemethod.html

Cotton, B. (2018, May 4). Reveal Your Deepest Kubernetes Metrics. [Blog post]. Retrieved from
https://www.youtube.com/watch?v=1oJXMdVi0mM&t=521s

https://www.youtube.com/watch?v=TJLpYXbnfQ4
http://www.brendangregg.com/usemethod.html
https://www.youtube.com/watch?v=1oJXMdVi0mM&t=521s

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Thank you!

