

Deep Dive on Amazon EFS

09/25/2018

Darryl S. Osborne

Solutions Architect – Amazon File Services

Your journey to Amazon Elastic File System, in four phases

Phase 1:

Choose the right storage solution

What do you think about when choosing a storage solution?

Features and performance

Economics

File

Block

Object

File

Data stored as files in a directory hierarchy

Shared over a network

Block

Data stored as blocks on a disk or disks

Locally attached

Object

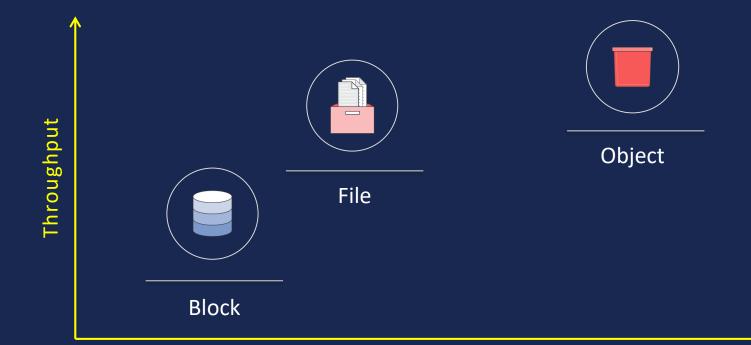
Data is stored as an object that's identified by a key in a flat space

Simple API to get and put data based on key

Why is file storage so popular?

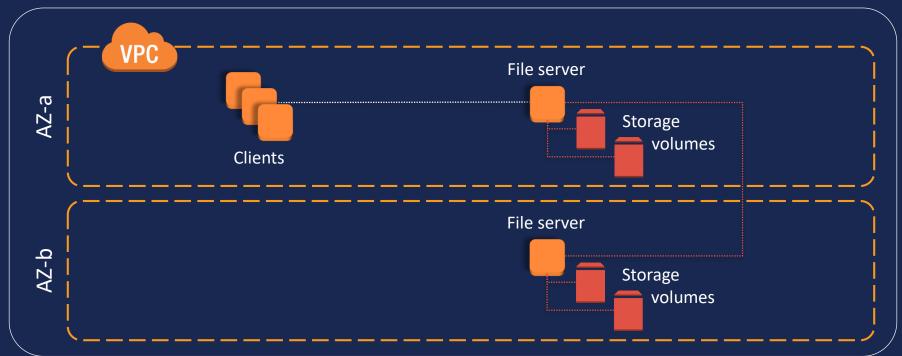
Works natively with operating systems

Provides shared access while providing consistency guarantees and locking functionality



Provides hierarchical namespace

How does performance compare



Latency

Before Amazon EFS... DIY file storage costs

Amazon EFS

A fully managed file service

Simple

Highly available and durable

Highly available and durable

Performance modes

Performance modes

General Purpose (default)
Recommended for the
majority of workloads

Performance modes

What it is for

Latency-sensitive applications and general-purpose workloads Large-scale and data-heavy applications

Advantages

Virtually unlimited al scale out throughput, OP

operations

Trade-offs

General Purpose (default)

Recommended formattee 7k ops/sec majority of workloads

Slightly higher Retempiersended for scale out workloads

Max I/O

When to use

Best choice for most workloads Consider for large scale-out workloads

Bursting Throughput (default) Recommended for the majority of workloads

Bursting Throughput (default) Recommended for the majority of workloads

Provisioned Throughput Recommended for higher throughput to storage ratio workloads

What it is for

Varying throughput workloads

Higher-consistent throughput workloads

Advantages

Auto-scaling throughput

User-defined throughput

Trade-offs

Bursting Throughput
(default) (default)

Recommended for the storage ratio majority of workloads

Provisioned Throughput
Separate throughput charge ratio
throughput to storage ratio
workloads

When to use

Best choice for most workloads

Ingest or higher throughput to storage ratio

Independent
throughput
Provision throughput
independent of
data stored

Independent
throughput
Provision throughput
independent of
data stored

Increase As often as you need

Independent
throughput
Provision throughput
independent of
data stored

Increase As often as you need

Switch or decrease Once every 24+ hours

Control
network traffic
using Amazon VPC
security
groups and
network ACLs

Control
network traffic
using Amazon VPC
security
groups and
network ACLs

Control file and directory access using POSIX permissions

Control network traffic using Amazon VPC security groups and network ACLs

Control file and directory access

Control administrative using POSIX permissions access (API access) using AWS IAM (action-level and resource-level permissions)

Control network traffic using Amazon VPC security groups and network ACLs

Control file and directory access using POSIX permissions access (API access)

Control administrative using AWS IAM (action-level and resource-level permissions)

Encrypt data at rest in transit

Control network traffic using Amazon VPC security groups and network ACLs

Control file and directory access using POSIX permissions access (API access)

Control administrative using AWS IAM (action-level and resource-level permissions)

Encrypt data at rest in transit

Achieve Compliance HIPAA-eligible BAA **PCI DSS**

Where is Amazon EFS available today?

More coming soon!

- US West (Oregon)
- US West (N. California)
- US East (N. Virginia)
- US East (Ohio)
- EU (Ireland)
- **EU** (Frankfurt)
- Asia Pacific (Sydney)
- Asia Pacific (Seoul)
- Asia Pacific (Tokyo)
- Asia Pacific (Singapore)

Amazon EFS economics

No minimum commitments or upfront fees

No need to provision storage in advance

No other fees or charges

Bursting Throughput mode pricing

Single pricing dimension

Storage price
Pay only for the amount of storage you use per month
Includes 50 KiB/s throughput per GiB of storage
\$0.30/GiB-month*

Provisioned Throughput mode pricing

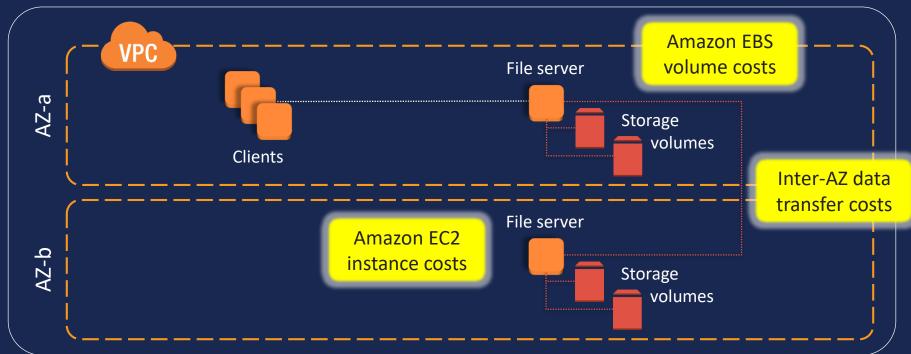
Two pricing dimensions

Storage price
Pay only for the amount of storage you use per month
Includes 50 KiB/s throughput per GiB of storage
\$0.30/GiB-month*

Provisioned Throughput mode pricing

Two pricing dimensions

Storage price
Pay only for the amount of storage you use per month
Includes 50 KiB/s throughput per GiB of storage
\$0.30/GiB-month*



Throughput price
Pay only for the amount of
throughput you provision per month **Above** 50 KiB/s throughput
per GiB of storage
\$6.00/MiBps-month*

Before Amazon EFS... DIY file storage costs

TCO example

For storing 500 GB, Amazon EFS is 70% less than DIY

Amazon EFS cost: (500 GB * \$0.30/GB-month*) = \$150 per month

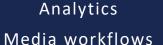
For DIY, you might provision 600 GB of Amazon EBS (i.e., ~85% utilization):

Storage (2x 600 GB EBS gp2 volumes): \$120 per month

Compute (2x m4.xlarge instances): \$290 per month

Inter-AZ data transfer costs (est.): \$130 per month

Total \$540 per month



^{*} US N. Virginia pricing

Designed for a wide spectrum of needs

Enterprise apps and messaging

Content management

Database backups

Container storage

Dev tooling

Home directories

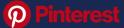
Scale-out jobs

Metadata-intensive jobs

High throughput and parallel I/O

Low latency and serial I/O

Amazon EFS customers and partners



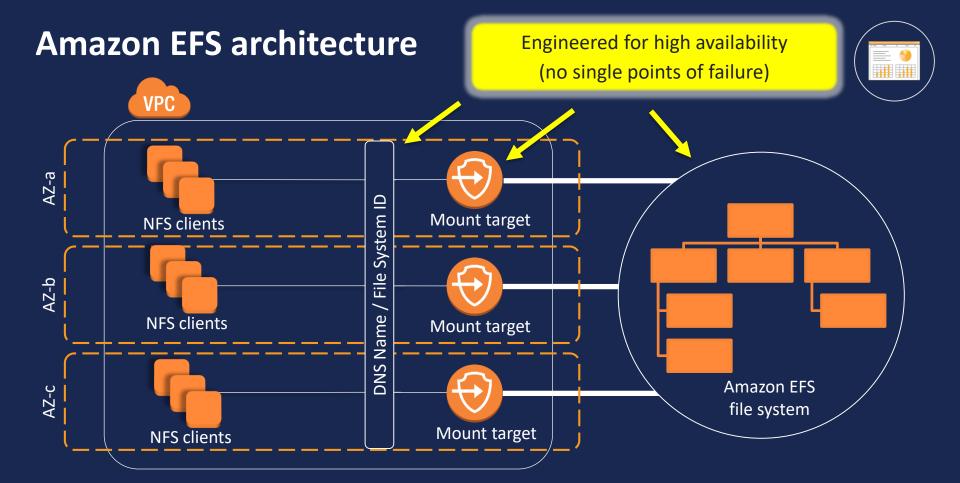
New York University

Seeking Alpha a Refe

Phase 2:

Test and optimize

What do you think about?



Functional testing

Performance testing and optimization

How do I test Amazon EFS?

How to manage file systems

Create a file system

Create and manage mount targets

Tag a file system

Manage a file system

View details on a file system

Delete a file system

Kernel versions

Linux Kernel

use Linux kernel 4.0+*
e.g. Amazon Linux 17.09.1, Ubuntu16.04 or 17.10
* RHEL running Linux kernel 3.10+

[ec2-user@ip-172-31-10-254 ~]\$ [

kernel 3.14

× ec2-user@ip-172-31-3-227:~

[ec2-user@ip-172-31-3-227 ~]\$

kernel 4.14

Mount options

NFS Mount Helper

Use for encrypted* or non-encrypted connections * manual setup & configuration required

EFS Mount Helper

Use for encrypted or non-encrypted connections Automatically uses recommended mount options

Standard NFS mount helper command: mount -t nfs4 -o nfsvers=4.1, rsize=1048576, wsize=1048576, hard, timeo=600, retrans=2 *file-system-id*.efs. *region*. amazonaws.com efs-mount-point

Simple EFS mount helper command:

mount -t efs -o tls file-system-id efs-mount-point

× ec2-user@ip-172-31-7-95:~

[ec2-user@ip-172-31-7-95 ~]\$

NFSv4.0

× ec2-user@ip-172-31-3-227:~ (ssh)

[ec2-user@ip-172-31-3-227 ~]\$ [

NFSv4.1

Functional testing

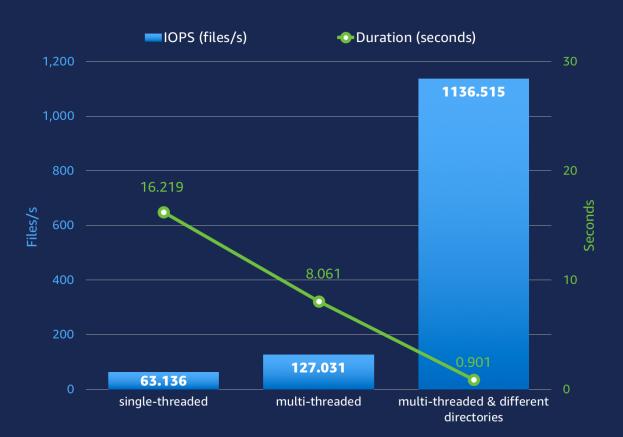
POSIX compliant & compliant with NFS 4.0 & 4.1

But you always need to test your application

How do I test Amazon EFS performance?


Run a few performance tests against the file system

Throughput test results*


Best practices

- Use multiple threads
- Write to multiple directories in parallel
- Use larger IO size (aggregate IO)

IOPS test results*

Best practices

- Use multiple threads
- Write to multiple directories in parallel

What do you think about?

Where it's coming from

How to move it as fast and easily as possible

Where is it coming from?

Corporate data center

Amazon Elastic Block Store

Other cloud file systems

Amazon Simple Storage Service

EFS File Sync

Sync data from existing file systems into Amazon EFS file systems

SimpleSet up and manage easily from the AWS Console

Fast
Up to 5x faster than standard
Linux copy tools

Secure
Encrypted parallel data
transfer to AWS

Use EFS File Sync to copy

File systems from on-premises to EFS

DIY in-cloud file systems to EFS

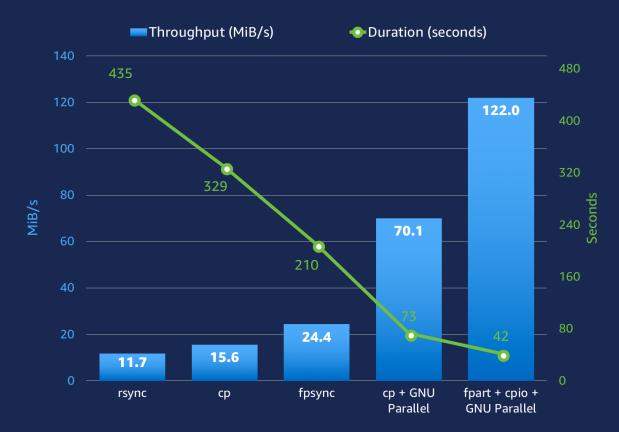
EFS file systems between AWS Regions

How to leverage parallelism to copy data faster?

rsync cp fpsync	cp + GNU parallel	fpart + cpio + GNU parallel
-----------------	----------------------	--------------------------------

How to leverage parallelism to copy data faster?

rsync	ср	fpsync	cp + GNU parallel	fpart + cpio + GNU parallel
single- threaded	single- threaded	multi- threaded	multi- threaded	multi- threaded
Poor (very chatty)	Fair	Good	Better	Best
				<u> </u>

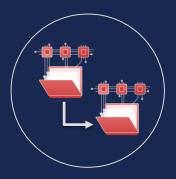


File transfer test results*

Best Practices

- Use a multiple-threaded tool
- Use a less "chatty" tool

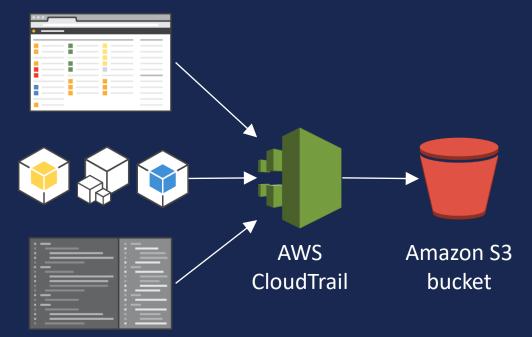
What do you think about? Not much.



View file system metrics

AWS CloudTrail API access logs

Amazon CloudWatch metrics


Perform backups

AWS CloudTrail API access logs

Logs EFS API calls from Console, SDK, CLI

Amazon CloudWatch metrics

DataReadIOBytes

DataWriteIOBytes

MetaDatalOBytes

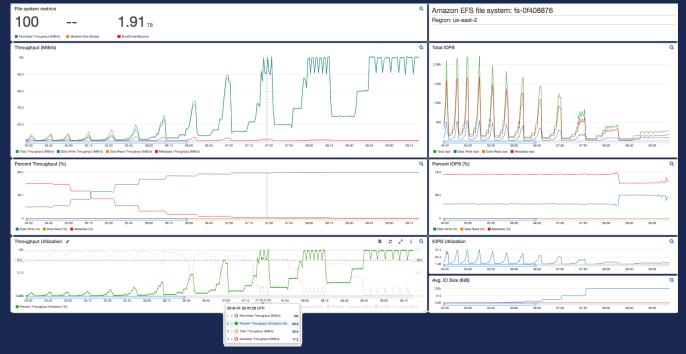
TotallOBytes

BurstCreditBalance

PermittedThroughput

ClientConnections

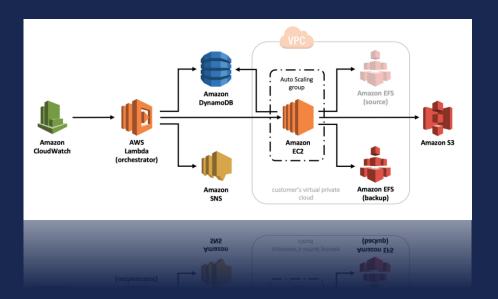
PercentIOLimit*



Amazon CloudWatch

Amazon CloudWatch Dashboard

https://github.com/aws-samples/amazon-efs-tutorial/tree/master/monitoring


Backup solution

EFS to EFS

Automatically backs up EFS

Easy to deploy

Wrapping up

Best practices

Test w/
General Purpose
Performance
Mode

Start w/ Bursting Throughput Mode

Linux kernel 4.0+

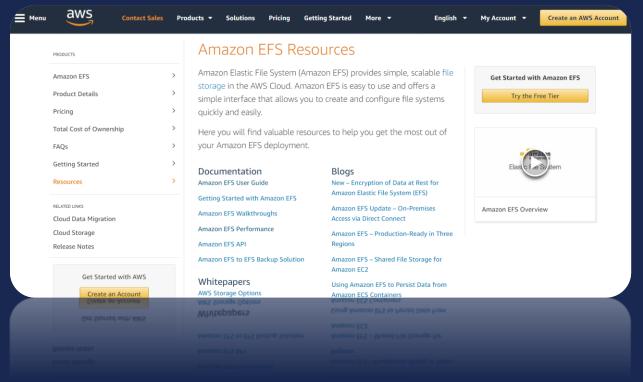
helper (NFSv4.1)

Large IO size (aggregate IO)

Multiple threads

Multiple instances

Multiple directories



Monitor metrics

How to learn more: aws.amazon.com/efs

Feature blogs

Whitepapers

Ref architectures

TCO calculator

10-minute tutorials

Documentation

Amazon EFS tutorials

https://github.com/aws-samples/amazon-efs-tutorial

Thank you

Darryl S. OsborneSolutions Architect – Amazon File Services darrylo@amazon.com

Q & A