
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Chris Munns – Senior Developer Advocate – AWS
Serverless

August 2018

Serverless Streams,

Topics, Queues, & APIs!

How to Pick the Right Serverless Application Pattern

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

About me:

Chris Munns - munns@amazon.com, @chrismunns

• Senior Developer Advocate - Serverless

• New Yorker

• Previously:

• AWS Business Development Manager – DevOps, July ’15 - Feb ‘17

• AWS Solutions Architect Nov, 2011- Dec 2014

• Formerly on operations teams @Etsy and @Meetup

• Little time at a hedge fund, Xerox and a few other startups

• Rochester Institute of Technology: Applied Networking and Systems

Administration ’05

• Internet infrastructure geek

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

https://secure.flickr.com/photos/mgifford/4525333972

Why are we

here today?

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

No servers to provision

or manage

Scales with usage

Never pay for idle Availability and fault

tolerance built in

Serverless means…

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SERVICES (ANYTHING)

Changes in

data state

Requests to

endpoints

Changes in

resource state

EVENT SOURCE FUNCTION

Node.js

Python

Java

C#

Go

Serverless applications

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SERVICES (ANYTHING)

Serverless applications

FUNCTIONEVENT SOURCE

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Common Lambda use cases

Web

Applications

• Static

websites

• Complex web

apps

• Packages for

Flask and

Express

Data

Processing

• Real time

• MapReduce

• Batch

Chatbots

• Powering

chatbot logic

Backends

• Apps &

services

• Mobile

• IoT

</></>

Amazon

Alexa

• Powering

voice-enabled

apps

• Alexa Skills

Kit

IT

Automation

• Policy engines

• Extending

AWS services

• Infrastructure

management

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Common Lambda use cases

Web

Applications

• Static

websites

• Complex web

apps

• Packages for

Flask and

Express

Chatbots

• Powering

chatbot logic

Amazon

Alexa

• Powering

voice-enabled

apps

• Alexa Skills

Kit

Backends

• Apps &

services

• Mobile

• IoT

</></>

Data

Processing

• Real time

• MapReduce

• Batch

IT

Automation

• Policy engines

• Extending

AWS services

• Infrastructure

management

Microservices at Amazon

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Basic Serverless API based Microservice

Internet /

other

services in

network

AWS

Databases/

Data stores
API Gateway AWS Lambda

functions

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Common question: “Should every

service of mine talk to another using

an API?”

Maybe not!: Most microservices are

internal only for a given product

supporting their customer facing

features. They may only need to

pass messages to each other that

are simple events and not need a full

fledged interactive API.

Public

interface

Internal

services

The microservices “iceberg”

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Public

interface

Focusing below the water line

Internal

services

Lambda execution model

Synchronous

(push)

Asynchronous

(event)

Poll-based

Amazon

API Gateway

AWS Lambda

function

Amazon

DynamoDBAmazon

SNS

/order

AWS Lambda

function

Amazon

S3

reqs

Amazon

Kinesis

changes

AWS Lambda

service

function

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

1. Lambda directly invoked

via invoke API

SDK clients

Lambda

function

Lambda API

API provided by the Lambda service

Used by all other services that invoke

Lambda across all models

Supports sync and async

Can pass any event payload structure

you want

Client included in every SDK

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda

function

2. Lambda invoked

SNS

Topic

1. Data published to a topic

Data

Amazon SNS + Lambda

Simple, flexible, fully managed

publish/subscribe messaging and mobile

push notification service for high

throughput, highly reliable message

delivery

Messages are published to a Topic

Topics can have multiple subscribers

(fanout)

Messages can be filtered and only sent to

certain subscribers

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

1. Message inserted

into to a queue

message

Amazon

SQS

Lambda

function

3. Function

removes

message from

queue

2. Lambda polls

queue and

invokes function

Amazon SQS + Lambda

Simple, flexible, fully managed message

queuing service for reliably and

continuously exchanging any volume of

messages from anywhere

Processed in batches

At least once delivery

Visibility timeout allows for handling of

failures during processing

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda

function

2. Lambda polls

stream

Amazon

Kinesis

Stream

1. Data published to a

stream

3. Kinesis returns

stream data

Data

Amazon Kinesis Streams + Lambda

Fully managed, highly scalable service for

collecting and processing real-time data

streams for analytics and machine

learning

Stream consists of shards with a fixed

amount of capacity and throughput

Lambda receives batches and potentially

batches of batches

Can have different applications consuming

the same stream

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Ways to compare

Pricing

Persistence

Retries

DurabilityScale/Concurrency

controls

Consumption

models

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Scaling/Concurrency Controls

Service Scaling controls

Lambda API Concurrency is point in time, not TPS, can go to 0 up through
maximum for account per region and is shared for all functions in a
functions in a region. By default no per function concurrency
throttle is set.

SNS Service automatically scales, use Lambda Per Function Concurrency
Concurrency setting to control downstream consumption.

SQS Service automatically scales, use Lambda trigger Batch size setting
setting and Per Function Concurrency setting to control downstream
downstream consumption.

Kinesis Streams Shards in a stream: One shard provides ingest capacity of 1MB/sec
1MB/sec or 1000 records/sec, up to 2MB/sec of data output.

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Lambda Per Function Concurrency controls

• Concurrency a shared pool by default

• Separate using per function concurrency settings

• Acts as reservation

• Also acts as max concurrency per function

• Especially critical for data sources like RDS

• “Kill switch” – set per function concurrency to zero

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Concurrency across models

SNS/API
No event store

Queue based

Stream based

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Concurrency vs. Latency

Streams

• Maximum theoretical throughput:

shards * 2 MB / (s)

• Effective theoretical throughput:

(# shards * batch size (MB)) /

(function duration (s) * retries until expiry)

• If put / ingestion rate is greater than

the theoretical throughput, consider

increasing number of shards while

optimizing function duration to

increase throughput

Everything else

• Maximum Processing rate :

Maximum concurrency / average

duration (events per second)

• Effective Processing rate :

Effective concurrency / average

duration (events per second)

• Use concurrency metric and duration

metric to estimate processing time

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Durability

Service Durability of requests “in flight”

Lambda API Lambda API is built to be highly available but offers no durability of requests, client

would need to handle failures/retries.

SNS *SNS provides durable storage of all messages that it receives. Upon receiving a

publish request, SNS stores multiple copies (to disk) of the message across multiple

Availability Zones before acknowledging receipt of the request to the sender.

SQS *Amazon SQS stores all message queues and messages within a single, highly-

available AWS region with multiple redundant Availability Zones (AZs), so that no

single computer, network, or AZ failure can make messages inaccessible.

Kinesis Streams *Amazon Kinesis Data Streams synchronously replicates data across three

availability zones, providing high availability and data durability

*Taken from relevant service FAQs

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Durability

Service Durability of requests “in flight”

Lambda API Lambda API is built to be highly available but offers no durability of requests, client

would need to handle failures/retries.

SNS *SNS provides durable storage of all messages that it receives. Upon receiving a

publish request, SNS stores multiple copies (to disk) of the message across multiple

Availability Zones before acknowledging receipt of the request to the sender.

SQS *Amazon SQS stores all message queues and messages within a single, highly-

available AWS region with multiple redundant Availability Zones (AZs), so that no

single computer, network, or AZ failure can make messages inaccessible.

Kinesis Streams *Amazon Kinesis Data Streams synchronously replicates data across three

availability zones, providing high availability and data durability

*Taken from relevant service FAQs

Short version: Data is replicated across multiple

Availability Zones for all 3 of these services.

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Persistence

Service Persistence of requests “in flight”

Lambda API No formal persistence model

SNS No formal persistence model beyond delivery retry logic that extends up

through potentially 13 hours

SQS By default messages are stored for 4 days. This can be modified to as little as

60 seconds up to 14 days by configuring a queue’s MessageRetentionPeriod

attribute

Kinesis Streams By default data is stored for 24 hours. You can increase this up to 168 hours (7

days). Extended data retention costs $0.02 per Shard Hour above 24 hours

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Consumption
Service Invocation model Guidance

Lambda API Can be sync or async from client to a single
single invocation

For complicated Lambda to Lambda
workflows use AWS Step Functions

SNS Async to Lambda. SNS can ”fanout” to
multiple subscribing Lambda functions the
same message

Use Message Filtering to control which
messages go to which subscribers. Use
Message delivery status to track failures

SQS Lambda service polls messages from queue
and invokes Lambda on your behalf. Scales
polling based on inflight messages.

Can call message delete from within your code
code or let the service handle it via successful
successful Lambda function execution

Kinesis

Streams

Lambda service polls messages from streams
streams and invokes Lambda on your behalf.
behalf. Can run multiple applications to
consume the same stream for different needs
needs

Use the AWS Kinesis Client Library. Configure
Configure batch size so that your function has
has enough time to complete processing of
records (which might be batches on ingest as
as well)

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Keep orchestration out of code.

AWS Step Functions

“Serverless” workflow management with zero

administration:

Makes it easy to coordinate the components

of distributed applications and microservices

using visual workflows

Automatically triggers and tracks each step,

and retries when there are errors, so your

application executes in order and as

expected

Can handle custom failure messages from

Lambda

Task
Choice

Failure capture

Parallel Tasks

Retry/failure handling

Service Retry/failure capabilities

Lambda API Retry/failure logic is client dependent for synchronous invocations. For
asynchronous invocations are retried twice by the Lambda service.

SNS If Lambda is not available, SNS will retry 2 times at 1 seconds apart, then 10 times
times exponentially backing off from 1 seconds to 20 minutes and finally 38 times
times every 20 minutes for a total 50 attempts over more than 13 hours before the
before the message is discarded from SNS.

SQS Messages remain in the queue until deleted. They are prevented by being accessed
accessed by other consumers during a period of time known as the “visibility
timeout”. Successful Lambda invocations will cause deletions of messages
automatically. If an invocation fails or doesn’t delete a message during the visibility
visibility timeout window it is made available again for other consumers.

Kinesis Streams When using the Kinesis Client Library (KCL) it maintains a checkpoint/cursor of
processed records and will retry records from the same shard in order until the
cursor shows completion.

Lambda Dead Letter Queues

“By default, a failed Lambda function invoked asynchronously

is retried twice, and then the event is discarded. Using Dead

Letter Queues (DLQ), you can indicate to Lambda that

unprocessed events should be sent to an Amazon SQS queue

or Amazon SNS topic instead, where you can take further

action.” –

https://docs.aws.amazon.com/lambda/latest/dg/dlq.html

• Turn this on! (for async use-cases)

• Monitor it via an SQS Queue length metric/alarm

• If you use SNS, send the messages to something durable

and/or a trusted endpoint for processing
• Can send to Lambda functions in other regions

• If and when things go “boom” DLQ can save your

invocation event information

☠️

✉️

Q

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Pricing

Service Model Cost Per Mil Factor Other

Lambda API Per request $0.20*

SNS Per request $0.50* Each 64KB chunk of

delivered data is billed

as 1 request

No charge for

deliveries to Lambda

SQS Per request $0.40* Each 64 KB chunk of

a payload is billed as

1 request

A single request can

have from 1 to 10

messages

Kinesis Streams Per Shard hour & per

request PUT Payload

Units

Shard per Hour =

$0.015

PUT Payload Units

$0.014

Each 25KB chunk of a

payload (PUT Payload

Units) are billed as 1

request

Enhanced Fanout and

Extended Data

Retention (beyond 24

hours) cost extra

* First 1 Million requests are free per month

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Ways to compare

Pricing

Persistence

Retries

DurabilityScale/Concurrency

controls

Consumption

models

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tell me what to do already!

So what invocation resource is the right one for you?
How real time is your “real time” need?

•How synchronous is your synchronous workload? Would polling for updates

after an async invocation work?

Does order matter?

Do multiple services need to feed off of the same data?

What does breaking your Lambda function due to a bad code deploy have

impact on?

Think about the downstream!

•What happens when a downstream service fails?

•Is there the potentially to overwhelm a database or other service?

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tell me what to do already!

So what invocation resource is the right one for you?
• All of these services require little care and feeding in terms of management

• All are HIPAA eligible and PCI compliant

• All support fine grained permissions via AWS IAM

• All have a pay as you go model without commitments

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

FIN, ACK

There are many ways to get data between microservices!

• Kinesis, SNS, SQS, and the Lambda API are just a few of the ways

• You *might* need an API that you create yourself

• Think through the factor comparisons on scale, durability,

persistence, consumption models, retries, and pricing.

• You will probably end up needing more than one and potentially end

up using each of these in some part of your infrastructure

• Evaluate and test using SAM CLI

• Serverless pricing models make testing new ideas low cost and

easy to get started with!

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

aws.amazon.com/serverless

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

aws.amazon.com/messaging

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Chris Munns

munns@amazon.com

@chrismunns
https://www.flickr.com/photos/theredproject/3302110152/

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

?
https://secure.flickr.com/photos/dullhunk/202872717/

