
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Karthik Saligrama, SDE , AWS Mobile

April, 2018

Offline GraphQL apps with AWS AppSync

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What are we doing today?

• What is GraphQL

• AWS AppSync

• Offline Application Development

• Demo

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Offline/Real-time use cases

Users expect data immediately

• Banking alerts

• News stories

• Multi-player games

• Chat applications

• Shared whiteboards

• AR/VR experiences

• Document collaboration

Users expect data availability offline

• Financial transactions

• News articles

• Games

• Messaging (pending chat)

• Document collaboration

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What is GraphQL?

• Application Query Language

• Agnostic of underlying Data Store

• != Graph Database

• Optimized for Performance and flexibility

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How does GraphQL work?

{
"id": "1",
"name": "Get Milk",
“priority": "1"

},
{

"id": “2",
"name": “Go to gym",
“priority": “5"

},…

type Query {
getTodos: [Todo]

}

type Todo {
id: ID!
name: String
description: String
priority: Int
duedate: String

}

query {
getTodos {

id
name
priority

}
}

Model data with

application schema

Client requests what it

needs

Only that data is

returned

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What are the GraphQL benefits?

• Rapid prototyping and iteration

• Introspection

• Client Performance First

/posts?include=title,author
posts {

title
author

}

REST/RPC GraphQL

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What are the GraphQL benefits?

• Delegates Power to Clients

/posts

/postsJustTitle

/postsWithTitleAndAuthor

/postsWithTitleAuthorAndContent

/postsWithTitleAuthorContentAndImages

/postsWithTitleAuthorContentImagesAndComments

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What are the GraphQL benefits?

• Delegates Power to Clients

/graphql

posts {
title
author

}

Posts (maxSize: 10) {
title
authorName
content

}

posts {
title
authorName
content

}

Posts (maxSize: 10) {
title
author {

firstName
lastName
imageUrl

}
content

}

Posts (maxSize: 10) {
title
author {

firstName
lastName
imageUrl(size:80)

}
content
comments{

user
text

}
}

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What are the GraphQL benefits?

• Include vs Endpoint & Reduction in call Volumes

/posts?include=title,authors

/posts?include=title,authors,authors.firstname, authors.lastname posts {
title
authors {

firstname
lastname

}
}

{
...
“author”:{

“_links”: {
“self”:https://api.example.com/api/author/foo

}
}
...

}

REST/RPC GraphQL

Hypermedia

https://api.example.com/api/author/foo

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

What is AWS AppSync?

AWS AppSync is a managed service for

application data using GraphQL with real-time

capabilities and an offline programming model.

Real-time

Collaboration

Offline Programming

Model with Sync

Flexible Database

Options

Fine-grained

Access Control

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

How does AWS AppSync work?

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

GraphQL data f low in AWS AppSync

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Mocking VTL
{

"arguments": {},
"source": {},
"identity": {

"sub": "uuid",
"issuer": "https://cognito-

idp.{region}.amazonaws.com/{userPoolId}",
"username": "nadia",
"claims": {},
"sourceIp": [

"x.x.x.x"
],
"defaultAuthStrategy": "ALLOW"

}
}

{
"version" : "2018-05-29",
"operation" : "PutItem",
"key" : {

"sub":
$util.dynamodb.toDynamoDBJson($ctx.identity.sub),

},
"attributeValues" :{

"username": { "S" :
"${ctx.identity.username}" },

"lastLoginTime": { "S" :
"$util.time.nowEpochMilliSeconds()" }

}
}

{
"version" : "2018-05-29",
"operation" : "PutItem",
"key" : {

"sub":
$util.dynamodb.toDynamoDBJson($ctx.
identity.sub),

},
"attributeValues" :{

"username": { "S" :
"${context.identity.username}" },

"lastLoginTime": { "S" :
"$util.time.nowEpochMilliSeconds()"
}

}
}

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Debug Resolver F low

-Amazon CloudWatch logs

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Demo

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Mix/Match datasources on GraphQL fields

searchPosts

addPost

listPosts

type Query {
listPosts: [Post]
searchPosts: [Post]

}

type Mutation {
addPost: Post

}

type Post {
id: ID!
content: String
description: String
ups: Int
downs: Int

}

Amazon ElasticSearch

Amazon DynamoDB

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Offline Application Considerations

• Local Storage (R/W)

• Order of Operations

• Network State Management

• UI Updates

• Conflict Resolution

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Mobile SDK + AWS AppSync

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Mobile SDK + AWS AppSync

iOS

let appSyncConfig = try AWSAppSyncClientConfiguration(

url: AppSyncEndpointURL,

serviceRegion: .USWest2,

userPoolsAuthProvider: self,

s3ObjectManager: AWSS3TransferUtility.default())

let appSyncClient = try AWSAppSyncClient(appSyncConfig: appSyncConfig)

Android (Kotlin)

val appsyncClient = AWSAppSyncClient.builder()

.context(this.applicationContext)

.cognitoUserPoolsAuthProvider(this)

.region(Regions.US_WEST_2)

.serverUrl(Constants. APPSYNC_API_URL)

.build()

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

AWS Mobile SDK + AWS AppSync

iOS

let trackSignInMutation = TrackSignInMutation()

self.appSyncClient?.perform(mutation: trackSignInMutation){ (result, error) in

if let error = error as? AWSAppSyncClientError {

print("Error occurred: \(error.localizedDescription)")

return

}

...//do more logic

}

Android (Kotlin)
var trackSignIn = TrackSignInMutation()

appsyncClient!!.mutate(signup).enqueue(object : GraphQLCall.Callback<TrackSignInMutation.Data>() {

override fun onFailure(e: ApolloException) {

Log.e(TAG, "Failed signup mutation", e)

}

override fun onResponse(response: Response<SignUpMutation.Data>) {

Log.i(TAG, response.data().toString())

//more business logic

}

})

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Offl ine mutat ions

Jane

Version : 2 Updated Document

Jane

Version : 2 Updated Document

Version : 3 Updated Document

Version : 1 New Document

T
im

e

John

John

Jane goes offline

Jane comes back online

Version : 4 Updated Document

John

Jane

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Conflict Resolution and synchronization

Conflict resolution in the cloud

1. Server wins

2. Silent reject

3. Custom logic (AWS Lambda)

- Optimistic version check

- Extend with your own checks

Optional

• Client callback for Conflict Resolution is still

available as a fallback

{
"version" : "2017-02-28",
"operation" : "PutItem",
"key" : {

"id" : { "S" : "1" }
},
"condition" : {

"expression" : "attribute_not_exists(id)"
}

}

Example: Check that an ID doesn’t already exist:

"condition" : {
"expression" : "someExpression"
"conditionalCheckFailedHandler" : {

"strategy" : "Custom",
"lambdaArn" : "arn:..."

}
}

Run Lambda if version wrong:

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Images and rich content

type S3Object {

bucket: String!
key: String!
region: String!

}

input S3ObjectInput {

bucket: String!
key: String!
region: String!
localUri: String!

}

type Profile {
name: String!
profilePic: S3Object!

}

type Mutation {
updatePhoto(name: String!,

profilePicInput: S3ObjectInput!): Profile
}

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

GraphQL Subscr ipt ions
Near Realtime updates of data

Event based mode, triggered by Mutations

- Scalable model, designed as a platform for common use-cases

Can be used with ANY data source in AppSync

- Lambda, DynamoDB, Elasticsearch

mutation addPost(id:123
title:”New post!”
author:”Nadia”){
id
title
author

}

data: [{
id:123,
title:”New Post!”
author:”Nadia”

}]

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

type Subscription {

addedPost: Post

@aws_subscribe(mutations: ["addPost"])

deletedPost: Post

@aws_subscribe(mutations: ["deletePost"])

}

type Mutation {

addPost(id: ID! author: String! title:

String content: String): Post!

deletePost(id: ID!): Post!

}

subscription NewPostSub {

addedPost {

__typename

version

title

content

author

url

}

}

Schema direct ives

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Demo

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Best pract ices

• Mutations offline – what UIs actually need to be optimistic?

• Use Subscriptions appropriately

• Large payloads/paginated data: Queries

• Frequent updating deltas: Subscriptions

• Be kind to your customer’s battery & CPU!

• Don’t overcomplicate Conflict Resolution

• Data model appropriately, many app actions simply append to a list

• For custom cases, use a AWS Lambda and keep client logic light (race

conditions)

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

https://aws.amazon.com/appsy

nc/

