

Amazon Sumerian by Tutorials
By Brian Moakley & Gur Raunaq Singh

Copyright ©2019 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express or implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Amazon Sumerian

raywenderlich.com 2

Table of Contents: Overview
About the Cover 13..

What You Need 17..

Book License 19...

Project Files & Forum 20..

Foreword 21..

Introduction 23..

Section I: Creating an Escape Room 26.............................

Chapter 1: Getting Started with Amazon Sumerian 28.................

Chapter 2: Building the Escape Room 39..

Chapter 3: Entities & Materials 60...

Chapter 4: Adding Interactivity with Behaviors 96.........................

Chapter 5: Attributes & Branching Logic 127...................................

Chapter 6: Physics 162...

Chapter 7: Virtual Reality 188...

Chapter 8: Post Effects & Publishing Your Scene 204....................

Section II: Building an Educational Experience 221.....

Chapter 9: Custom Models & Sound 223..

Chapter 10: Lights, Camera, Action 250..

Chapter 11: Introduction to JavaScript 281......................................

Chapter 12: The Sumerian API 304...

Chapter 13: Animation & Particle Systems 330...............................

Amazon Sumerian

raywenderlich.com 3

Chapter 14: Incorporating Web Content 365...................................

Section III: Creating an Augmented Reality
Experience 385...

Chapter 15: Preparing Your Mobile Development
Environment 386...

Chapter 16: Augmented Reality in Sumerian 415...........................

Chapter 17: Fetching Data from DynamoDB 432...........................

Chapter 18: Completing the Augmented Reality App 456..........

Section IV: Creating a Virtual Travel Agent 482............

Chapter 19: Basics of a Sumerian Host 483.......................................

Chapter 20: Speech in Amazon Sumerian 500..................................

Chapter 21: Audio Input & Lex 511...

Chapter 22: Integrating Amazon Lambda with Lex 530................

Conclusion 545..

Amazon Sumerian

raywenderlich.com 4

Table of Contents: Extended
About the Cover 13.

About the Authors 16.

About the Editor 16.

About the Artists 16.

What You Need 17.

Book License 19.

Project Files & Forum 20.

Foreword 21.

Introduction 23.

Section I: Creating an Escape Room 26.

Chapter 1: Getting Started with Amazon Sumerian 28.
Creating an AWS Account 30.

Creating an IAM account 34.

Key points 38.

Where to go from here? 38.

Chapter 2: Building the Escape Room 39.
Launching Sumerian 39.

Using the Sumerian editor 41.

Configuring Firefox 43.

Navigating the Canvas 44.

Creating a secret door 53.

Challenges 55.

Key points 59.

Where to go from here? 59.

Chapter 3: Entities & Materials 60.
Diving deeper into entities 60.

Amazon Sumerian

raywenderlich.com 5

Components 62.

Getting in sync 63.

Parenting entities 70.

Adjusting the Lights 72.

Using materials 75.

Adding models 84.

Challenge 89.

Key points 95.

Where to go from here? 95.

Chapter 4: Adding Interactivity with Behaviors 96.
Setting up the Player Camera 97.

Adding interactivity 101.

Sending messages 105.

Light switch puzzle 115.

Revealing the next clue 118.

Key points 125.

Where to go from here? 126.

Chapter 5: Attributes & Branching Logic 127.
Setting up the puzzle pieces 128.

Building logic with attributes 134.

Building a branching behavior 136.

Using multiple clues 150.

Challenge 157.

Key points 161.

Where to go from here? 161.

Chapter 6: Physics 162.
Setting up the third puzzle 162.

Using Rigid Bodies 165.

Adding colliders 168.

Adding velocity 171.

Amazon Sumerian

raywenderlich.com 6

Listening for collisions 179.

Escaping the escape room 182.

Key points 186.

Where to go from here? 186.

Chapter 7: Virtual Reality 188.
Configuring Sumerian to use VR 189.

Setting up a tethered headset 190.

Setting up an untethered headset 193.

Using the VR Asset Pack 194.

Teleporting and movement 196.

Grabbing entities 198.

Activating the escape room 199.

Challenge 202.

Key points 203.

Where to go from here? 203.

Chapter 8: Post Effects & Publishing Your Scene 204.
Saving snapshots 204.

Adjust scene settings 206.

Configuring the environment settings 209.

Post effects 214.

Document settings 216.

Publishing 217.

Key points 219.

Where to go from here? 220.

Section II: Building an Educational Experience 221. . .

Chapter 9: Custom Models & Sound 223.
Setting up a Sumerian project 223.

Setting up the scene 225.

Tiling textures 228.

Importing and adding models 232.

Amazon Sumerian

raywenderlich.com 7

Texturing your models 237.

Adding sound 242.

Adding the rest of the sounds 246.

Key points 249.

Where to go from here? 249.

Chapter 10: Lights, Camera, Action 250.
Working with cameras 250.

Projecting your frustum 254.

Working with 2D 256.

Setting up cameras 257.

Switching between cameras 263.

Lights! 265.

Lighting callouts 269.

Integrating the lights 271.

ACTION! 274.

Key points 279.

Where to go from here? 280.

Chapter 11: Introduction to JavaScript 281.
Getting started 282.

Java vs. JavaScript 284.

Your first script 285.

JavaScript variables 287.

Arrays 289.

Looping through values 291.

Branching logic 293.

Functions 296.

Hoisting variables 298.

Arrow functions 299.

Objects 301.

Key points 303.

Where to go from here? 303.

Amazon Sumerian

raywenderlich.com 8

Chapter 12: The Sumerian API 304.
Creating custom actions 305.

Working with entity sets 310.

Attributes and values 312.

Signals 317.

Action controllers 319.

Script properties 322.

Sending data 325.

Key points 329.

Where to go from here? 329.

Chapter 13: Animation & Particle Systems 330.
Tweening the night away 330.

Tweening options 333.

Tween rotating 338.

Using animated models 341.

Animating with the timeline component 344.

Using the timeline with behaviors 350.

Timeline events 353.

Sumerian particle systems 354.

Integrating the particles 362.

Key points 363.

Where to go from here? 364.

Chapter 14: Incorporating Web Content 365.
Getting started with the HTML entity 365.

Quick web primer 370.

Embedding video content 371.

Creating a cooking time counter 375.

Key points 383.

Where to go from here? 384.

Amazon Sumerian

raywenderlich.com 9

Section III: Creating an Augmented Reality
Experience 385.

Chapter 15: Preparing Your Mobile Development
Environment 386.

Overview 387.

Creating mobile apps 388.

Importing the augmented reality template 389.

Setting up your computer 390.

Setting up the app on iOS 391.

Setting up your app on Android 402.

Key points 414.

Where to go from here? 414.

Chapter 16: Augmented Reality in Sumerian 415.
Components of the Augmented Reality template 415.

Importing 3D assets 416.

Repositioning the Shoe model 420.

Positioning using image recognition 424.

Adding an anchor image in Android 426.

Adding an anchor image in iOS 428.

Running the app on a device 429.

Key points 431.

Where to go from here? 431.

Chapter 17: Fetching Data from DynamoDB 432.
Introduction to databases 432.

Getting started with Cognito 433.

Setting up DynamoDB and adding data 439.

Fetching data from DynamoDB and displaying it 443.

Connecting Sumerian with DynamoDB 450.

Key points 455.

Where to go from here? 455.

Amazon Sumerian

raywenderlich.com 10

Chapter 18: Completing the Augmented Reality App 456.
Adding more shoes to the project 456.

Adding 2D HTML buttons for new shoes 461.

Adding functionality to the shoe buttons 465.

Changing shoe sizes 471.

Key points 480.

Where to go from here? 481.

Section IV: Creating a Virtual Travel Agent 482.

Chapter 19: Basics of a Sumerian Host 483.
Creating a Cognito ID Pool ID 483.

Getting started with Sumerian Hosts 485.

Key components of Sumerian Hosts 487.

Making your host speak with Amazon Polly 489.

Key points 499.

Where to go from here? 499.

Chapter 20: Speech in Amazon Sumerian 500.
Amazon Lex 500.

Creating a Lex bot 501.

Creating an intent 502.

Creating a sample intent 504.

Key points 509.

Where to go from here? 510.

Chapter 21: Audio Input & Lex 511.
Recording audio input 511.

Setting up the Dialogue component 514.

Completing the Lex bot 522.

Integrating your bot into your Sumerian scene 527.

Key points 529.

Where to go from here? 529.

Amazon Sumerian

raywenderlich.com 11

Chapter 22: Integrating Amazon Lambda with Lex 530.
Setting up a DynamoDB table 532.

Setting up AWS Lambda 534.

Testing your Lambda function 541.

Finishing touches 543.

Key points 544.

Where to go from here? 544.

Conclusion 545.

Amazon Sumerian

raywenderlich.com 12

AAbout the Cover

For some time, there was a viral video circulating on the internet of a woman
hatching a chameleon in the palm of her hand. In the video, the egg is impossibly
small and smooth, slowly splitting as the hatchling does its best to push out his head.
It takes longer than you might think; the hatchling takes breaks and rests in between
working to be born. At one point, the woman helps the hatchling by gently peeling
the shell and cooing words of encouragement. And after some time, there he is: a
chameleon. He is the color of the shallow part of the sea, his eyes working separately
to see the world, and his body already swaying in the chameleon's side-to-side
rhythm. But if you watch closely, you can see the most amazing part: His blue-green
skin begins to speckle, lighten and become peach and fleshy. The hatchling is barely
two minutes old and his body already knows to try to blend in with the hand that
holds him.

Like this chameleon, Amazon's Sumerian is new, vibrant, smart, beautiful and ready
to take on the world.

Though they are nearly silent, relatively small — ranging from just 15 mm to 21
inches — and try their best to blend in, no other creature shows us more blatantly
how creative the act of adaption can be. And nature has given them an impressive set
of tools: zygodactylous feet, rapidly extrudable tongues, prehensile tails,
independently mobile eyes and stereoscopic vision. They are fast, focused, nimble,
fierce, deliberate and wild.

Their changing skin is, of course, their most notable feature, making and unmaking
combinations with a diverse palette of pink, blue, red, orange, green, black, brown,
light blue, yellow, turquoise and purple. They adapt for protection, in response to
temperature, and to show their mood and intention. Their exterior is multi-
dimensional, with two layers within their skin. Of most importance is the top layer,

raywenderlich.com 13

which contains a lattice that expands and contracts, with growing and shrinking
spaces changing how wavelengths of light are reflected and absorbed. The
chameleon himself is always the same; the chameleon we see seems endlessly new.

Amazon Sumerian seeks to equip you with the same intuitive and immersive tools
that will help you, too, create realistic, multi-dimensional and visually stimulating
experiences. But there is one point in which Amazon Sumerian and chameleons
differ greatly: with Amazon Sumerian, you will not blend in. The multitude of
experiences to be made with these tools is endless — and waiting in your hands to be
born.

Amazon Sumerian About the Cover

raywenderlich.com 14

Dedication
"To my mom and dad, for giving me the tools, patience and

love to make my way through this uncertain world."

— Brian Moakley

"For my Mom, thanks for all the french fries. For my Dad,
thanks for all the scooter rides. And for my friends, thanks for

all the good times."

— Gur Raunaq Singh

Amazon Sumerian About the Cover

raywenderlich.com 15

About the Authors
Brian Moakley is an author of this book. He is a writer and video
instructor at Razeware. Brian was also an author and final pass
editor of Unity Games by Tutorials and he has produced many
videos and articles on wide variety of subjects at
raywenderlich.com. Off work, Brian enjoys spending time with his
wife and two kids.

Gur Raunaq Singh is an author of this book. Raunaq is a Software
Engineer from New Delhi, India. Having worked as a Unity
developer in the past, he has worked on a number of award winning
Augmented Reality applications. He is currently exploring the
world of Computer Vision and Machine Learning. You can find him
on Twitter: @raunaqness

About the Editor
Tammy Coron is the technical editor of this book. She is an
independent creative professional and the host of Roundabout:
Creative Chaos. She’s also a Development Editor at The Pragmatic
Bookshelf, a Sr. Editor at Razeware, and a content contributor at
Creative Bloq, Lynda.com, iMore, and raywenderlich.com.

About the Artists
Jake Nolt is the internal designer of this book. He is a 3D designer
working for a decade in video game and application development.
He is also an assistant professor of animation and the proprietor of
a small indie game studio. When not developing or teaching, Jake
enjoys spending time with family, gaming, and being outdoors.

Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray's wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com.

Amazon Sumerian About the Cover

raywenderlich.com 16

WWhat You Need

To follow along with this book, you'll need:

• Firefox 61 or newer

• Chrome 69 or newer

You will need the following hardware requirements for either of those browsers:

• A PC running Windows 7 or higher. A Pentium 4 processor that SSE2 capable. 512
MB of RAM (2 GB for 64-bit).

• A Mac running macOS 10.10 or higher. An Intel x86 processor. 512 MB of RAM.

If you plan on doing virtual reality work, your system requirements may increase. See
your VR headset’s requirements for more information.

Sumerian supports the following VR headsets:

• HTC Vive

• Vive Pro

• Oculus Rift

• Oculus Rift S

• Oculus Go

• Oculus Quest

• Samsung Gear VR

raywenderlich.com 17

• Lenovo Mirage Solo

• Google Daydream

If you plan to follow along with the augmented reality projects, you will need either
an Android or iOS device.

• If using an iOS device, make sure to use a device that supports ARKit.

• If using an Android device, make sure to use a device that supports ARCore.

Android augmented reality apps require Android Studio 3.5. This application has the
following requirements:

• 8 GB of RAM

• 4 GB of available disk space minimum

• 1280 x 800 minimum screen resolution

• Intel i5 or higher (U series or higher) recommended

iOS augmented reality requires that you have a Mac and Xcode 11. Xcode 11 has the
following requirements:

• macOS running 10.14.4 or higher

Note: Being browser-based, Sumerian may work on other platforms not listed
here. These are unsupported platforms that may or may not have issues.

Amazon Sumerian What You Need

raywenderlich.com 18

LBook License

By purchasing Amazon Sumerian by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in Amazon Sumerian by
Tutorials in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in Amazon Sumerian by Tutorials in as many apps as you want, but must include
this attribution line somewhere inside your app: "Artwork/images/designs: from
Amazon Sumerian by Tutorials, available at www.raywenderlich.com".

• The source code included in Amazon Sumerian by Tutorials is for your personal use
only. You are NOT allowed to distribute or sell the source code in Amazon Sumerian
by Tutorials without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

raywenderlich.com 19

BProject Files & Forum

The resource files for each chapter can be found here:

• https://store.raywenderlich.com/products/amazon-sumerian-by-tutorials-project-
files

Forums
We’ve also set up an official forum for the book at https://forums.raywenderlich.com.
This is a great place to ask questions about the book or to submit any errors you may
find.

raywenderlich.com 20

FForeword

AWS has millions of active customers every month. Our customers are being pulled
into immersive mediums for just about everything – training, simulations, IoT digital
twins, and product configurations – you name it. Yet, many of our developers don’t
have a gaming or 3D background, nor have the time to deal with app stores or the
time-intensive processes blocking their content from reaching end users. Quick!
Secure! That’s what they want, that’s what they need – to deliver the best
experiences to their end-users across the globe.

We placed a bet. Gambling? No. Transformation of the web? Yes. When we heard
about WebXR, we got excited about a future where AR/VR would transform the way
our customers engage with their customers, and how developers would make that a
reality. We live in a 3D world, why weren’t we developing a 3D world?

We built Amazon Sumerian with this in mind — it’s essentially a full-on game engine
in a browser, accessible, adaptable, and achievable by the masses. Everyone gets to
come to the party, and that’s how we like it. We get a lot of credit for Sumerian being
a nod to earlier civilizations, known for their innovations in language, governance,
architecture… the 360-degree circle! It sounds chest-pounding — Sumerians were
the creators of civilization as modern humans understand it. That’s giving us too
much credit. In all honesty, I’m a huge fan of Snow Crash, this hyper currency
dystopian novel by Neal Stephenson depicting a future where pizza delivery is the
only viable business left, also run by the mafia. It’s where the world’s fastest pizza
delivery driver is also the self-proclaimed world’s greatest sword fighter, and society
escapes into this virtual world called the metaverse. At some point in the novel, a
virus that affects both your physical and virtual person is introduced to the
metaverse using the ancient Sumerian language. Anyway, we didn’t want a name
using acronyms like AR, VR or XR because they’ve almost already become passé.

raywenderlich.com 21

Next, it will be ZX, but don’t ask me what that means, it just sounds futuristic.

Sumerian is a bit early, some say nascent. WebXR is just coming out. Oculus Quest
and VIVE Focus are finally giving customers untethered access to high-quality
content. Firefox Reality is making it possible for customers to ship content using
nothing more than a URL. It’s happening quickly and the passion, the energy, the
determination, is hard to contain. We publish dozens of tutorials and do weekly
Twitch streams. It’s not enough, we’re all thirsting for more. Ray Wenderlich’s team
is helping us get more end to end examples to customers looking to build immersive
experiences in the browser. I’m super excited about this book and looking forward to
feedback. Join the few thousand Sumerian developers on our Slack channel
(slack.sumerian.aws) or hit me up directly on Twitter @kylemroche.

• Kyle and the Sumerian Team

Amazon Sumerian Foreword

raywenderlich.com 22

IIntroduction

In 2017, Amazon introduced Sumerian to the world. It was positioned as a new
graphics engine that allowed users to create unique 3D experiences in a modern web
browser. The news was somewhat surprising because not only a year earlier, Amazon
released a different 3D engine called Lumberyard aimed to make cutting edge 3D
games.

So why use Sumerian when Lumberyard is available? Both are free and only cost
money based on the Amazon Web Service usage rates.

Yet, 3D engines like Lumberyard, Unity and Unreal are designed for professional
game developers. These engines have steep learning curves and require developers to
know a modern programming language like C# or C++. Becoming proficient in a
programming language, the editor and all the game development frameworks takes
years of focused study.

Unlike these other engines, Sumerian provides a gentle on-ramp to 3D development.
Sumerian provides a visual scripting language and then allows users to use web
technologies such as HTML, CSS, and JavaScript to bring their experiences to the
next level.

Creating graphical experiences
In the past twenty years, 3D technology is being used everywhere. People are getting
used to interacting with 3D worlds. As computers have grown in power, the hardware
and tooling have dropped in price, allowing anyone to construct virtual worlds.
People have come to expect 3D interactions.

raywenderlich.com 23

Imagine the following scenario. You are looking to buy a house and find a house for
sale that on the outside, matches what you are looking for. In the listing, you see a
link for a virtual tour. When you click on it, you are brought to a 3D reproduction of
the house. In it, a virtual real estate agent walks you through each room, giving you
information about it. When the tour concludes, the virtual agent asks you if you are
interested in a real-life tour and then takes down your name and phone number. A
day later, you get a call.

Or imagine you need to replace a part in your lawnmower. Inside the part
instructions, you find a link to a 3D instructional video. Navigating to it, you are
presented with a 3D reproduction of the lawnmower with step by step instructions
on how to replace the part.

Sumerian is designed to create these types of experiences and it allows you to even
create them in virtual and augmented reality. Better still, Sumerian is designed in a
way that allows anyone to make these experiences.

Book structure
This book is split into four main sections:

Section 1: Creating an Escape Room
Sumerian comes with lots of different systems. A good way to learn them is to create
an escape room. This provides an easy way to cover a range of diverse components.
This section will not only how to create experiences in Sumerian, but it will also how
to think in Sumerian.

This section also provides extensive coverage of Sumerian's visual scripting
language. At first glance, the visual scripting language may seem overwhelming, but
once you understand the structure and organization behind it, you'll be creating
dynamic scenes with ease. You'll even convert your scenes to virtual reality.

Section 2: Building an Education Experience
This section covers the nuts and bolts of building an educational experience. This
section explores how to use lighting, cameras, and sound to direct the user's
attention. It also incorporates custom models, animation and shows how to use the
Sumerian particle system to great effect.

Amazon Sumerian Introduction

raywenderlich.com 24

This section also introduces the Sumerian API. It shows how you can leverage the
API to add new features not included with the engine. The section also provides a
JavaScript primer that will help you get started writing code in Sumerian.

Section 3: Creating an Augmented Reality
Experience
One of the coolest things Sumerian offers is the ability to create augmented reality
apps for mobile devices. This section will put you to the task of creating a virtual
shoe store. Users will be able to try on new shoes with their phone. You'll learn the
basics of augmented reality and also how to store data for a Sumerian scene outside
of Sumerian using AWS.

Section 4: Creating a Virtual Travel Agent
This final section walks you through the process of creating an interactive travel
agent. This is a fully interactive agent that asks questions and responds to answers.
In this experience, you'll leverage AWS to create the speech, respond to the user and
return a list of recommended destinations.

How to read this book
It's best to start with the first chapter and make your way through the book in order.
The book assumes no 3D experience or programming knowledge. This book intends
to give you everything you need to know to create interesting dynamic scenes.
Hopefully, you'll have as much fun reading it as we did writing it. Enjoy!

Amazon Sumerian Introduction

raywenderlich.com 25

Section I: Creating an Escape
Room

Sumerian provides many tools to create rich 3D experiences. From an easy-to use-3D
editor to an easy-to-understand visual scripting engine, Sumerian has everything
you need to build unique scenes.

In this section, you’ll cut your teeth on Sumerian by building an escape room. An
escape room is a room filled with puzzles that you must solve to escape. Over the
next eight chapters, these puzzles will each highlight a different aspect of the engine
to give you an overview of what’s possible with Sumerian. These chapters assume
that you have no programming or 3D development experience. They’ll walk you
through the whole process, from creating a new Amazon account to enjoying your
published your scene.

Here’s what the following chapters will cover:

Chapter 1: Getting Started with Amazon Sumerian: Every journey starts with a
first step. In this case, that means creating an AWS account and setting up a IAM
user account.

Chapter 2: Building an Escape Room: This chapter introduces you to the 3D
objects that you’ll use to construct your escape room.

Chapter 3: Entities & Materials: This chapter introduces you to entities and how
to use materials to give them some color.

Chapter 4: Adding Interactivity With Behaviors: Scenes are best when they are
interactive. The chapter shows you how to use behaviors to make your scene
dynamic.

raywenderlich.com 26

Chapter 5: Creating Branching Logic with Attributes: This chapter shows you
how to create logical behaviors that change based on user input.

Chapter 6: Physics: Here, you’ll get an overview of the Sumerian physics engine,
from adding gravity to a scene to throwing objects on command.

Chapter 7: Virtual Reality: Sumerian comes with built-in virtual reality tools. This
chapter walks you through the process of turning your escape room into a virtual
reality experience.

Chapter 8: Post Effects & Publishing a Scene: Once you’ve completed your scene,
you’ll add effects to make it pop. You’ll also learn how to optimize your scene and
publish it.

Amazon Sumerian Section I: Creating an Escape Room

raywenderlich.com 27

1Chapter 1: Getting Started
with Amazon Sumerian
By Brian Moakley

Amazon Sumerian is an excellent tool that you can use to create unique user
experiences. With Sumerian, you can create a virtual shop where users can interact
and buy products as if they were in a real store. You can use it to augment the real
world so that when a user points their phone at a movie poster and they’ll see movie
times, short trailers or animated models. You can even create a three-dimensional
world and embed it in a web page, allowing users to navigate a virtual floor plan
without having to install custom software.

Ten years ago, you would have needed a team of programmers to do even a fraction
of what's offered by Amazon Sumerian. You would have needed custom software
built for a specific platform, requiring users to download a large amount of software.
Now, you can do it all in your browser; but better still, you don’t need a team of
developers. You only need this book and a little quiet time to read through all of the
examples.

raywenderlich.com 28

This book intends to teach the Sumerian platform from the ground up. It will enable
you to create unique experiences. By doing so, you'll become proficient with
Sumerian.

Some of you may be breaking out into a cold sweat, thinking, “But I’m not a
programmer.” That’s OK – Amazon designed Sumerian for beginners. It provides a
way for you to visually code your experiences as if you were writing traditional code.
This book will walk you through the basics, and by the end, you’ll be writing your
own code.

Others may be thinking, “I am a programmer and I want to dive deep.” Sumerian has
you covered. It provides an extensive API where you can leverage Amazon Web
Services (AWS) you may be already using. You can record items to DynamoDB. You
can run Amazon Polly to provide text-to-speech capabilities. You can even leverage
the powers of Amazon Lex to provide an Alexa-like interface into your 3D world. This
is all done using JavaScript and leveraging Sumerian’s API. You’ll learn how to do all
of these things in this book.

Throughout this book, you'll learn Sumerian by building four different experiences.
In the first experience, you’ll create an escape room.

What’s an escape room, you ask? It’s not a cheesy movie from 2019. Rather, it’s a
physical room where you and some friends must solve clues to escape. The clues,
often cryptic, may lead to keys or combinations that open boxes filled with other
clues that lead to your eventual escape.

Every escape room needs to have a theme, and yours is no different. The escape room
you’ll build takes place in a well-known Swedish furniture store. These stores are
known to be quite large, and it’s easy to get lost in them.

In this scenario, you decided to take a break and sit down on a sofa. There, you fell
asleep. When you wake, the store is closed and locked up and the alarms are active as
well. Stepping on the floor will alert the nearby police force.

You read somewhere that the showrooms are locked down, but can be unlocked by
solving some cryptic clues. Your mission is to solve these clues and, hopefully,
escape.

Amazon Sumerian Chapter 1: Getting Started with Amazon Sumerian

raywenderlich.com 29

Creating an AWS Account
Before you can build custom experiences, you need to create an AWS account. If you
already have an AWS account, feel free to skip to the "Creating an IAM account"
section in this chapter to learn about the required Sumerian permissions.

To create your AWS account, you’ll need to provide not only a valid email address but
a phone number as well. This provides an additional layer of verification.

To get started, visit the following URL: https://aws.amazon.com. While the design of
the page may have changed since the writing of this book, there’s likely still a button
on the page inviting you to create a free AWS account. Click that button.

Now, fill out all the details to create your AWS account.

Amazon Sumerian Chapter 1: Getting Started with Amazon Sumerian

raywenderlich.com 30

Once you've added the initial details, AWS will ask you to enter more registration
information. The first prompt asks you to create either a business account or a
personal account.

Both accounts have the same features and functions. If you select a business account,
AWS will prompt you to provide additional information about your company. For this
book, select the personal account option.

Fill out the rest of the form, being sure to provide a valid phone number. Once you
submit the form, AWS will ask you for your payment information.

Amazon Sumerian Chapter 1: Getting Started with Amazon Sumerian

raywenderlich.com 31

The account is free — registering won't cost you anything. Amazon only charges your
credit card after you exceed the free usage tier.

Once you’ve filled out the payment information, click Secure Submit to continue.

After you submit your payment information, you’ll need to verify your identity. You
can do this via a text message or a voice call. Select the Text message (SMS) option.
Fill out the form and click Send SMS.

As soon as you click the button, you’ll see a form where you enter the verification
code.

Amazon Sumerian Chapter 1: Getting Started with Amazon Sumerian

raywenderlich.com 32

You should receive a text message once you submit the form. If you don’t
immediately receive a text, give it a few minutes. If you still don’t receive the code,
click the link sending you back to the previous page, and re-enter your phone
number.

If all goes well, you’ll see a green checkmark, letting you know that Amazon has
verified your account.

Click Continue to move on to the next step.

With your account verified, your next task is to select a support plan.

You can use the support plan for technical guidance or troubleshoot issues with a
service. Since you're just learning the platform, there’s no need for a paid account.
Select the Basic Plan and click Free.

Amazon Sumerian Chapter 1: Getting Started with Amazon Sumerian

raywenderlich.com 33

Congratulations! You’ve created a new account. You should see something like the
following:

Although you've created your account, you haven't logged into it. Click Sign In to
the Console and provide your login credentials.

Once you log into the system, you’ll see the AWS Console. From here, you can launch
Sumerian and get started, but before you do that, you need to create an additional
user account.

Creating an IAM account
When you created your AWS account, you created what's known as a root account.
The root account has access to all of the various services. The account also has access
to your payment information, your personal information, and even your password.
This is a very sensitive account.

The problem compounds when you’re working with a team. By sharing your
username and password, you’re unnecessarily exposing this confidential
information.

To avoid this, AWS requests that you create additional accounts that are known as
Identity and Access Management (IAM) accounts. This lets you limit each account to
only the services it needs. Each account has its own password, which doesn’t affect
the root account in any way, and the IAM accounts don't have access to any billing or
personal information like the root account does.

Even if you’re working by yourself, it’s a good idea to use IAM accounts and only
switch to the root account when you need to manage account access or billing
information.

Amazon Sumerian Chapter 1: Getting Started with Amazon Sumerian

raywenderlich.com 34

Note: IAM accounts provide many features that go well beyond the scope of
this book. You can create groups, delegate access and responsibilities and
manage security levels. Read the official IAM documentation to learn about
the features and best practices. You can access the user guide here: https://
docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

To start creating your first IAM account, head to the IAM console by following the
URL: https://console.aws.amazon.com/iam/home#/home. Click the Users link in the
left column.

You’ll see a page that allows you to create IAM users. Click Add user to create a new
IAM user.

Amazon Sumerian Chapter 1: Getting Started with Amazon Sumerian

raywenderlich.com 35

First, you’ll need to give the user a name. You can enter your first name or any other
username that makes sense to you.

Once you've entered the username, you must set the access type for the user. Add
Programmatic access and AWS Management Console to the account.

Programmatic access is useful if you need to access AWS features in your apps. For
instance, you may be writing an iPhone app, but you still need to upload data to
AWS. In that case, you'd need programmatic access.

The AWS management console allows the user to access the AWS site to make
changes such as configuring AWS services. Since you’ll be playing around with lots of
different AWS services, you’ll need access to the AWS management console.

Finally, you need to create a new password for the IAM account. You can provide your
own or have a password auto-generated for you.

Once you have everything set, click Next: Permissions. By default, IAM users can’t
do anything with AWS. You must provide permission to the user.

Amazon Sumerian Chapter 1: Getting Started with Amazon Sumerian

raywenderlich.com 36

AWS gives users only the permissions they need to accomplish their tasks. That way,
if an IAM account is compromised due to a stolen password, it will have a minimal
impact. It’s like setting a credit card to buy only groceries.

Now, select Attach existing policies directly.

You’ll see a list of policies that you can assign to the account. In the Filter policies
box, type Sumerian, which will filter out all of the unnecessary policies. Check the
box for the AmazonSumerianFullAccess policy.

Once you’re done, click Next: Tags. This form allows you to add metadata tags such
as a physical mailing address. For now, click Next: Review. The review page
summarizes everything you’ve set up. If you need to make any adjustments, click
Previous to return to the previous screen.

With everything all set up, click Create user to create your new IAM user account. It
may take a few moments for AWS to create the user, but once it has been set up,
you’ll get a confirmation page. You’ll also receive a link for the IAM account to sign
in as well as a CSV file with all of the credentials.

Amazon Sumerian Chapter 1: Getting Started with Amazon Sumerian

raywenderlich.com 37

Important Note: This is the last time you’ll have an opportunity to download
the CSV file that contains the login credentials, so it’s essential to download
this file now. If you lose the credentials, you can reset the IAM account
password using your root account.

Click the sign-in at link to sign in with your new IAM account. AWS will prompt you
to change your password. After you sign in, you’ll see the AWS console, except this
time, you’re using the IAM account.

Well done! You’re ready to get started using Amazon Sumerian.

Key points
• The first account that you will create is your root account. Only use this account

to change billing or account information.

• Use an IAM account to do all your development

• Permissions are assigned to IAM accounts to access the various web services.

• To use Sumerian, your IAM account must have AmazonSumerianFullAccess
permissions.

• Make sure to download your user credentials when you create an IAM account.

Where to go from here?
Working with Sumerian all starts with creating an AWS account. While you may not
initially use AWS services in your scenes, down the road you may want to utilize
these services to record data and capture user audio recordings.

If you want to learn more about IAM accounts and all the various features, Amazon
provides a nice tutorial over here: https://docs.aws.amazon.com/IAM/latest/
UserGuide/tutorials.html

That said, creating an AWS account is the first step. The second step is learning
Sumerian, which you’ll do in the next chapter.

Amazon Sumerian Chapter 1: Getting Started with Amazon Sumerian

raywenderlich.com 38

2Chapter 2: Building the
Escape Room
By Brian Moakley

In the previous chapter, you went through the process of creating an AWS account. If
you skipped the chapter because you already had an AWS account, you’ll need to add
Sumerian permissions. If you do run into permission errors, please refer to the
“Creating an IAM Account” section of the previous chapter.

Launching Sumerian
To start working with Sumerian, log into your IAM account, where the AWS Console
will greet you. In the Find Services filter box, type Sumerian to bring up the
Sumerian service.

Click on Amazon Sumerian and the Sumerian dashboard greets you. The dashboard
is the central hub for your Sumerian projects. A collection of scenes defines each
project; a scene is a 3D experience that you design.

raywenderlich.com 39

To get started creating your escape room, click Projects.

Since Sumerian creates a project for you by default, you'll see a project list already.
Click New Project to create a project for your escape room.

When you click the link, you’ll see a prompt asking for the project name. Name your
project Showroom Skedaddle and click Create.

Click Create; it may take a few moments to complete. After the project is ready, you’ll
see a scene list. Click Create new scene.

As with the project creation, you’ll need to create a name. Give the scene the same
name as the project: Showroom Skedaddle. Click Create, and you’ll come to the
Sumerian editor.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 40

Using the Sumerian editor
When you first arrive at the editor, it may feel a little overwhelming. There’s a lot of
information here, so it’s best to get a high-level overview of the various functions. As
you progress, you’ll dive deeper into each one.

Here’s a complete breakdown of what you can find in the Sumerian editor:

1. This is where your menu items and toolbars live. This is where you can save your
current scene, jump to another scene, create various pre-customized entities, or
manipulate those entities. What’s an entity? I’m glad you asked (that was you,
wasn’t it?). An entity is an object that’s part of your scene, such as a camera, light
or cube. If you’re coming from Unity, you can think of these entities as
GameObjects.

2. This is the Entities panel. This a list of the current entities in the scene. Entities
act very much like folders in so much as an entity can exist inside of another
entity. This provides an excellent mechanism for organizing your scene. If you’re
coming from Unity, you can think of this as the hierarchy window. The eyeball to
the left of each entity controls its visibility. If you need to make an entity
invisible, click the eyeball. You click it again to make it reappear. Keep in mind,
this doesn’t work in real life!

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 41

3. Beneath the Entities panel is your Assets panel. The Assets panel contains all of
the raw assets that make up your scene. You can think of the Assets panel like a
bookcase with books you might need and the Entities panel like a desk with the
books you’re actively reading. If you’re coming from Unity, you can think of this
as your Project Browser window.

4. This is the 3D space where you’ll create your experience. The white dots indicate
the default lights in the scene.

5. When you’re working with the editor, it’s either in edit mode or play mode. In
edit mode, you can add your entities, position them and configure all of your
scripts. In Play mode, the scene will play and you will be able to interact with it.
The editor controls play, stop or pause your scene.

6. This is the Inspector panel, which allows you to configure your entities. For
instance, you may want to change the color of a mug or set the sounds that you
want to play.

First, you need to create your room. The floor is an excellent place to start. At the top
of the editor, click Create Entity.

Clicking the button gives you a list of predefined entities that you can create. Click
the icon that looks like a cube. This is the box entity.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 42

This places a box entity in the center of the world.

The box is very far away from your vantage point. Scroll up on your mouse wheel.
You’ll zoom toward the box. Now, scroll down. This zooms you out.

Note: If you're working on macOS, you may find your scroll directions to be
exactly the opposite. The key point is that the scroll wheel lets you zoom.

Now, press the F key. You’ll zoom right to the object. Using the F shortcut is a great
time saver when you have lots of entities on the canvas.

This book will introduce you to a variety of shortcuts. Do your best to memorize
them, as they’ll dramatically increase the speed and efficiency of your workflow. I call
the F key my “focus key”, as it focuses on the object. That’s an easy way to remember
it.

Configuring Firefox
In a recent update, Sumerian has been improved with multi-select. For this change to
work well on Firefox browser, you must make an alteration. If you don't use Firefox,
then feel free to skip to the next section.

To get Sumerian working well with Firefox, first launch the Firefox browser. Next
type about:config into the url. You'll get a warning that a change will void your
warranty. Click the I accept the risk! button.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 43

Now, you must disable auto scroll. In the search field, type in general.autoScroll.
You'll see the preference appear. Double-click the true value to convert it to false.
The preference will bold indicating that it has been modified.

Navigating the Canvas
The canvas is the central place where you put your objects so it's critical for you to
know how to navigate around in it.

You can orbit around the box to see the surrounding geometry or view the model
from different vantage points. Right-click your mouse and drag your mouse in a
circle. Conversely, you can alt-left click to orbit the camera as well.

You can also pan around the canvas. Press your middle mouse button, and drag
your mouse left then right.

By left clicking your mouse, you'll see a blue selection. This allows you to select
multiple entities at once.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 44

You can tell an entity is selected by the blue outline.

By using those keyboard and mouse commands, you'll be able to navigate throughout
your scene.

For now, return to the box. Press the F key. If nothing happens, make sure that the
box is selected in the Entities panel, and then press the F key again.

You’ll also notice three colored arrows pointing from the box. This is the transform
of the entity.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 45

The arrows allow you to move the box on the canvas. Place your cursor over the blue
arrow and hold the left mouse button. You’ll notice the arrow turns yellow, which
means it’s actively selected.

Drag the mouse up or down and you’ll move the box only on that z-axis – you won’t
be able to move the box in any other direction. The green arrow restricts movement
to the y-axis, and the red is the x-axis. You’ll quickly find that manipulating objects
in a 3D space is challenging, so using these arrows will save you time.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 46

In the center of the transform, you’ll notice colored three colored squares. The
squares allow you to move the box on two axes at once.

The color of the square indicates the axis that won't move. By selecting the red
square, which is the x-axis, you can move the box only on the y- and z-axes.
Experiment by clicking each of the color squares and then moving your mouse.

OK, back to the business of creating your escape room floor. The box needs to shrink
in height and expand in width. Thankfully, you have tools to do this.

With the box selected, click Scale (R) from the toolbar.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 47

You’ll notice the transform arrows have now changed to boxes. This lets you know
that you’re using the scale tool. Other tools change the transform in different ways.

As with the transform arrows, each colored box indicates the axis to scale the box.
The center gray box allows you to scale the entire cube.

Decrease the height of the cube and expand the size of it until it covers four
squares in the grid. Don't worry about exact sizes. Just eyeball it for now.

You’ll notice in the Entities panel that your floor is still named Box. Double-click it
and rename it to Floor. It’s a good habit to name your entities, especially when you
have a lot of them in a scene.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 48

Now, you need to create some walls. Click Create Entity and select Add box from
the options. You'll need to scale and translate (move) it to form a wall. When you
need to translate it, press Translate (W) in the toolbar.

When complete, your room will look like this:

In the Entities panel, double-click the newly added box entity and name it Wall 1.

One side of the wall may be black because it is blocking the light.

To make an adjacent wall, you need to duplicate the existing wall. Duplicating the
wall raises some issues, which you’ll learn about in later chapters.

For now, select your wall and press Duplicate all selections in the toolbar.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 49

The Entities panel gains a new entity, smartly named Wall 2. You’ll notice that the
canvas shows only one entity, the wall you already created. There’s a new entity
except it’s in the exact position of the current wall. Move the new wall to the center
of the floor.

Next, you need to rotate it to form a side wall. You could click Rotate (E) in the
toolbar:

Or you could use the keyboard shortcuts:

• W: Translate.

• E: Rotate.

• R: Scale.

• Q: Cycle between them.

These shortcuts may seem strange, but they all correspond to keys above your left
hand on the keyboard. This makes the keys easy to access.

Sumerian also provides an extensive undo/redo system. You can access the undo and
redo icons near the top of the editor.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 50

With Wall 2 selected, press the E key. You’ll see that the transform component has
transformed into a rotation component.

As you can probably deduce by now, each color corresponds to an axis. Click on the
green ring (y-axis) and rotate the wall until it’s perpendicular to the other wall. Then
align it against the floor edge — and look at that, you have half of a room.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 51

Your mission now is to add the two other walls. You can either duplicate the existing
walls or create new walls from box entities. When you’re done, your room will look
like this:

Congratulations! You’ve built your first room. Zoom the camera into the center of the
room and click Play in the bottom toolbar.

Now, move the mouse to look around the room. You can continue to orbit, pan and
zoom, but the movements are much smoother. This is what a user will experience.
When you're done, click Stop, also located in the bottom toolbar, to return to the
editor.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 52

Creating a secret door
At this point, you have the basic room created, but there’s no way to escape it. It’s
just an empty room hanging out in space. You need to create a way for the user to
escape.

Select one of the walls and press the R key. Scale the width of the wall until it's
about half of its previous width.

Translate the wall (W) and move it to the corner of the room. Now you have one half
of the wall. Don't worry about it being precisely half.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 53

With the wall still selected, click Duplicate all selections (from here on out, I'll
refer to it simply as Duplicate). Translate the duplicated wall until it fills the missing
gap. You may need to scale the walls until they exactly fill the gap.

You now have a newly-completed wall made up of two individual walls. When the
user solves the puzzle, the walls will slide open. Your completed room will look like
this:

Don’t worry if it looks a little different right now. In the next chapter, you’ll build
your room with exact specifications.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 54

Challenges
It’s important to practice what you’ve learned, so some chapters in this book may
have challenges associated with them.

I recommend trying all of the challenges. While following a step-by-step tutorial is
educational, you’ll learn a lot more by solving a problem on your own. Also, each
chapter will continue where the previous chapter’s challenges left off, so you’ll want
to stay in the loop!

If you get stuck, you can find solutions in the resources for this chapter – but to get
the most from this book, give it your best shot before you look.

Challenge 1: Adding the ceiling
Your escape room looks great, but it lacks one thing: A ceiling. Your task is to create
that ceiling using the skills you've learned. Start by creating a box entity and moving
on from there.

Solution

Start by creating a 3D box. Click Create Entity and select the box model. You may
not see the box right away because it may be under the floor.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 55

With the box selected, translate it to where the ceiling should be.

Next, press R to size the box so that it fits the size of the room.

In the Entities panel, double-click the new box and rename it to Ceiling.

Finally, that ceiling is blocking your view. Click the eyeball to the left of it to make it
disappear.

You’re ready for the next challenge!

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 56

Challenge 2: Creating a secret hallway
When your secret door opens, the user will see an empty space, as if the room is
hanging over a massive abyss. It’s better to display a hallway so that the showroom
looks like it's connected to a larger space.

Your challenge is to create this new hallway. When you’re done, your escape room
will look like this:

In the previous challenge, you manipulated a box. Try completing this challenge by
duplicating existing entities.

Solution

To build your secret hallway, you could create new entities, but it’s much easier to
duplicate existing ones. Duplication saves time so you’re not repeating existing work.

Select the floor and duplicate it. Translate the floor so that it’s flush against the
secret wall. In the Entities panel, rename it to Secret Hall Floor.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 57

With the secret floor still selected, scale the floor until it’s as narrow as the hall and
translate it against the wall.

Now, to deal with the wall. Select Wall 1 and duplicate it. Translate it to the other
side of the secret hall floor.

Finally, select Wall 2 and duplicate it. Translate and scale it to fill the empty space
at the end of the hall.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 58

Key points
• An entity is an object that exists in your scene.

• The Entities panel contains all the various entities being actively used in your
scene.

• The Assets panel contains all the various objects (entities, sounds, scripts, etc)
that you can add to your scene.

• The Inspector panel allows you to change various properties on your entities.

• Click the Create Entity button to create new entities.

• Use the arrow and transform tools to move, scale and rotate your entities.

Where to go from here?
It's hard to believe that in just one chapter, you've learned how to create entities,
you've learned how to position and manipulate those entities and find your way
around the interface.

If you are interested in learning more about the Sumerian interface, the Amazon
Sumerian team has created an informative tutorial that you can find here: https://
docs.sumerian.amazonaws.com/tutorials/create/getting-started/sumerian-interface/

The fun is only starting. In the next chapter, you'll add some color to your escape
room and even do some interior decorating with the built-in assets.

Amazon Sumerian Chapter 2: Building the Escape Room

raywenderlich.com 59

3Chapter 3: Entities &
Materials
By Brian Moakley

At this point in the book, you have a constructed room that isn’t very interesting. It’s
just a collection of white walls that contain a secret hallway. Your goal is to make the
escape room give off a more Swedish-furniture-store vibe.

To do this, you’ll need to learn more about entities, materials and even how to
import models provided by the Amazon Sumerian team.

Diving deeper into entities
Entities. What are they good for? As it turns out, they are good for absolutely
everything. Everything you’ve done so far has used entities.

You constructed your simple escape room with boxes, but those boxes are entities.
The default lights that allow you to see are also entities. The camera which captures
your scene is an entity. Even the folders in your Entities panel are entities. Entities
are everywhere; but what does it mean to be an entity?

raywenderlich.com 60

The answer is simple: An entity, in its barest form, represents a point in space in your
scene.

Every entity contains a transform that provides its x, y, and z location. This is the
physical address where the entity lives in your scene. You’ll learn about this a
moment.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 61

Entities also contain metadata. You can give an entity a name and a description, and
provide custom tags as well. Every entity is unique. When you create an entity,
Sumerian creates a unique identifier for it as well as recording when the entity was
created.

As you can imagine, your scenes will use a lot of entities. Sumerian provides up to
1,000 of them. If you find yourself reaching the limit, you may want to either
downsize your scene or break your scene into smaller scenes.

Note: You can import entities as assets, but not all assets are entities. When
you import items, such as 3D models or images, into your scene, they’ll appear
in the Assets panel. You can think of this as a warehouse for your scene. You
can only drag entities and skyboxes onto the canvas.

Components
Being that everything in your scene is an entity, you might wonder how Sumerian
treats a camera differently from a box.

Entities are modified by components. These components can make the entity display
a 3D model, play a sound, move through space and do a whole lot of other things. In
essence, an entity is a single point in space whose behavior you provide by way of
components.

If your scene isn't open, start your scene from the Sumerian dashboard In the
Entities panel, select the Wall 1 entity. You’ll notice that the right-hand side of your
screen provides all this new information.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 62

This panel is called the Inspector panel. The Inspector lists all the various
components attached to Wall 1. You’ll notice the following components: Transform,
Geometry, and Material.

The Inspector panel allows you to customize the values of all these components. In
short, you convert your wall into a camera by simply adding, changing and removing
existing components.

Click the Geometry component and from the drop-down, select Remove.

It looks like your wall has disappeared, but what happened is that you deleted the 3D
model of the wall. Don’t worry, you can get it back. Just press Control-Z to undo.

Note: Sumerian will run on any modern browser such as Google Chrome or
Firefox. This means that you can run Sumerian on a wide range of platforms.
For the sake of simplicity, I’ll refer to Windows-based shortcuts. Please refer to
the shortcuts of your platform.

The question mark icon in the component heading represents the documentation.
Click this icon when you need to look up any details about the component.

Getting in sync
In the last chapter, you shaped boxes to match the shape of the escape room. While
you may have matched the shape of the escape room, your escape room has a
different size and position from the one featured in this book. It’s best to be on the
same page.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 63

To get in sync, you’ll use the Transform component, which every entity contains. As
mentioned, every entity is a point in space and the transform allows you to modify
that location.

Since Sumerian is a 3D engine, you’ll be working in 3D space. You can visualize a 2D
system by looking at a simple graph over your monitor.

The x-axis represents the horizontal coordinates and the y-axis represents the
vertical coordinates.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 64

For a 3D system, you now need an additional coordinate system, where the z-axis
goes into the monitor or out towards you.

Select the Floor and in the transform component, set the translation (first row) to
(-0.367, -0.03, -0.027).

Note: The translation are the coordinates that represents the position of an
object in 3D space.

These numbers are arbitrary. The floor ended up in this translation as I was building
the project.

Note: The transform component also contains one cool feature: You can scrub
the values. Select the value inside of a field, then hold down the left mouse
button and try moving your mouse either up or down. This allows you to
rapidly change a value. This is great to do when you make broad changes.
Remember, if you change a value too much, Control-Z is your friend.

Next, set the scale (the third row) to the following values: (8.888, 0.045, 7.084)

Your transform should look as follows:

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 65

Now, in the Entities panel, delete all the entities except the following: Default
Dynamic Lights, Floor and Camera. To delete an entity, select an entity in the
Entities panel and press your delete key. Each time you delete an entity, you'll be
prompted with a confirmation dialog.

Make sure to click the Yes button for each delete.

Another way to delete the entities is to view the room from the side, and drag select
the room entities.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 66

When you release the select, the necessary entities will be selected.

At this point, you can press your delete key and mass delete them all.

Next, create the following entities using the box as your template.

Note: Forgot how to create a box? Click the Create Entity button on the top of
the editor and in the dialog, select the cube icon in the 3D Primitives section.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 67

Your escape room should look like the following:

Hide the ceiling so you can get a better glimpse of the room. To hide the ceiling, click
the eyeball next to the Ceiling entity. Your escape room now looks like the
following:

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 68

Your escape room could use some nice columns. Add the following using the box
entity:

Congrats! You now have a completed escape room with columns.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 69

Parenting entities
While your escape room is looking good, your Entities panel looks like a mess.

Mind you, this is with a dozen or so entities. Imagine working with hundreds of
them. Thankfully, you can organize an entity by using entities.

Every time that you create an entity, it’s all by itself. Don’t worry, the entity is quite
happy. Nevertheless, you can provide a parent to the entity. From this perspective,
entities work very much like folders in that you can create a tree structure.

Click Create Entity and this time click the Entity button. This creates an empty
entity.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 70

You’ll now have a new entity in the Entities panel named — wait for it — Entity.
Rename it to Columns.

Now, drag each column into your new Columns entity.

Once you have all your columns organized, you’ll find that you can expand and
collapse the Columns entity by clicking on the disclosure triangle next to the name.

Parent entities can also influence their children. Click the Columns entity, and you’ll
notice that a transform appears on the canvas. Remember, an entity occupies a point
in space — even empty entities.

Now, move the Columns entity in any direction. You’ll notice that all of the columns
move with it. When you’ve finished moving, just press Control-Z to return to the
previous state.

Next, create a new empty entity and give it the name: Walls. Drag the following
entities into it: Wall 1, Wall 2, Wall 3, Wall 4, Wall 5 and Wall 6.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 71

Create another empty entity and call it Room Geometry. Drag the following entities
into it: Walls, Columns, Floor and Ceiling.

Your Entities panel should look like the following:

Adjusting the Lights
Lighting is incredibly important when developing your scenes. This book has an
entire chapter just on lights. For now, you'll make some small adjustments to get rid
of those sharp shadows.

First, you'll rename the Default Dynamic Lights entity. There are two ways to do this.
First, you can double-click the entity name in the Entities panel. The second way is
to select the entity and rename it in the Inspector Panel.

Select the Default Dynamic Lights entity and in the Inspector panel, rename it to
Default Lights.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 72

Select the Key - Directional entity and set the rotation to (-38, 16.958, -18). In the
Light component, set the Intensity to 1.15. This sets the light's overall brightness.

Next, select the Rim - Directional. Set the rotation to (-35.112, 154.697, 9.967). Set
the Intensity to .5.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 73

Finally, click the Create Entity button and select the Directional Light. A
directional light is like the sun.

Rename the light to Fill - Directional. Set the rotation to (-21.913, -70.363, 5.503).
Set the Intensity to .35.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 74

This produces even lighting throughout your escape room.

Drag your new light into the Default Lights entity.

Now, it’s time to bring some color and texture to your escape room. You’ll do this by
using materials.

Using materials
When working with a 3D environment, you provide models that are composed of
geometry and materials. The geometry tells the engine how to draw the object. The
materials determine how the model looks. These materials paint the model as well as
determine how the textures appear under various light conditions.

It’s easy to confuse materials with textures. A texture is an image such as a JPG or
PNG that you import into a scene. A material uses textures to provide detail to a
model.

When you create a box entity, Sumerian creates a 3D model of a box then applies a
white material to it.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 75

In the Entities panel, select the Floor entity and in the inspector, expand the
Material component. You’ll see that you have lots of options.

You’ll learn more about some of these options later, but for now, give the floor a
different color. Expand Color, and set the color by clicking the white color box.
From the color picker, select a red color.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 76

Now you have a red floor and when you orbit the camera around the room, you’ll
notice that the light sheen off the floor. This is due to the material.

With one click of the mouse, you’ve brought some color into your world.

While the red floor might make for a good Edgar Allen Poe story, for this tutorial,
you’ll use a texture instead. Don’t worry! You don’t have to supply your own texture;
Sumerian provides a bunch for you to use.

At the top of the editor, click Import Assets.

A dialog will appear with all the various assets that you can include with your
project. In the search field, type: material.

You’ve now filtered the assets to show a bunch of material packs. Some are labeled
PBR.

When working with materials, Sumerian provides two options: Classic and PBR. A
material encapsulates a program called a shader that runs on your graphics card.
This program determines how your textures will appear on the model. Classic is the
rendering option that originally shipped with the engine. PBR stands for Physical
Based Rendering. This is a relatively recent method of rendering graphics that tries
to accurately depict how surfaces are affected by light.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 77

Double-click on the PBR Material Pack: Walls. When you import the package, the
editor will inform you that the new materials have been imported into your assets
panel. Click OK to continue.

Click the Import Assets button again and this time, import the PBR Material:
Concrete and PBR Material: Wood packages as well.

When you import an asset, you import a pack into your project. When you add assets
to your own project, you put them in the default pack. As you import assets, you’ll
import packs related to those assets.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 78

If you look in the Assets panel, you’ll see that you now have additional packs:
Default Pack, PBR Material Pack: Walls, PBR Material Pack: Wood and PBR
Material Pack: Concrete.

You can also create your own asset packs and export them to other projects as well.
For instance, you can create an animated login form that you can use in other
projects. Instead of recreating the form, you could simply create a custom pack, add
the entities and assets to it and then export the pack. Once exported, all your other
projects can import it from the import assets menu.

Note: By default, when you add entities to your canvas, they will not be added
to your sassets pack. To add them to your custom pack you must drag the
entity to the pack.

Now that you have materials imported, your next task is to put them to use. The first
entity is the floor. Select the Floor entity and expand the Material component.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 79

Next, in the Assets panel, you want to assign one of your imported materials. To do
this, click the Materials tab.

The Assets panel will now display only materials. In the PBR Material Pack:
Concrete Pack, find the Concrete_Polished_MAT material and drag it to the
Default Material field.

Now do the same for the ceiling. Once you assign the texture, you’ll notice that the
ceiling is darker than the floor.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 80

Now for the walls. Select Wall 1 and in the PBR Material Pack: Walls Pack, assign
the Walls_Stucco_Cream_MAT material component. Do this for the rest of the walls.
Your room should look like the following:

For the columns, assign the Wood_Pine_MAT material to all of the columns. Your
escape room should now look like this:

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 81

Congrats! Your escape room has texture. You’ll notice that there are a lot of materials
in the asset panel. Remember, when you created the box entities, new materials were
created for you.

You could go on and delete them, but you should make sure they nothing is using
them. Select the Walls_Stucco_Cream_MAT material and then click the chain-link
icon. You’ll see all the entities that are currently using the material.

This works for all assets in the asset pane, not just materials.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 82

Now in the Default Pack, select the Default Material and click the chain link icon.
This time, there are no dependencies found.

Select the Default Material and click the trash can icon to delete it.

You still have a lot of unused materials left. Instead of checking if anything is using
each asset, you can simply delete all unused assets from the Default package. In the
Default Package header, click the broom icon.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 83

The following dialog will give you a list of all the assets you’re about to delete. Press
Yes to delete the unused assets.

You have a much cleaner Assets panel, just in time to import models.

Adding models
Now comes the fun part — decorating your escape room. You have two options when
it comes to models: You can import your own models or you can use models included
with the engine.

If you choose to use your own models, you need to provide them in either OBJ or FBX
format. When you import your model, Sumerian will convert it into an asset pack
that contains all the various assets that form it. Keep in mind, you can’t import a
super high-res model of the Death Star. Your models should be low poly (not a lot of
geometry) and the file size cannot exceed 50 MB.

Note: Sumerian does charge money for hosting your models and using related
AWS services. There’s a lot you can do with the free tier. After that, the prices
are quite reasonable. That said, it never hurts to check the pricing page to get
an idea of how much a scene may cost.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 84

If you don’t want to use your own models, you can use the models provide by
Sumerian.

Click the Import Assets button and search for Rug. Click Add to import it into your
project. Once you add it, you’ll gain a new asset pack. This one is aptly called Rug.

The big question of the hour — how do you add it to the scene? You need to provide
an entity. Thankfully, the asset package provides an entity for you. In the Asset
panel, click the entity tab and drag the rug_ViewRoom.fbx onto the canvas.

Once you drag your entity on the canvas, you’ll notice that the rug has an interesting
name. In the inspector, change the name back to Rug.

At this point, you will assign a translation to the rug. It’s essential that the entity is
parentless. You’ll learn why in the next chapter. For now, add each model to the top-
level (parentless), assign a translation to it and then place it in an entity.

With the rug selected, set the translation to: (-4.421, 0, 3.104). Next, set the scale to:
(1.796, 1, 1.378).

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 85

Your room should now have a nice rug on the floor.

With the translation set, in the Entities panel, put your new Rug entity into the
Room Geometry entity. You set the translation first because the parent coordinate
system is different from a child's coordinate system. You'll learn about this in detail
in the next chapter.

At this point, you'll import a few more models to decorate your room. First, import
the following assets and drag an instance to your scene. Don't worry about the
translation. You'll handle that in a moment. Rename them according to the
following:

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 86

Now set the following:

Now create a new empty entity and call it: Furniture. Inside the Furniture entity,
create another entity and call it: Cabinets. Parent your entities according to the
following table:

You’ve now decorated your room. Granted, you’ll add more elements to it eventually,
but this gives you a good start.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 87

The cool thing about those models prefixed with “ASIN” is that you can buy them on
Amazon. Search for “ASIN: B071W5VD5C” on Amazon and you’ll see your comfy
chair in its native habitat.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 88

Challenge

Challenge: Swedish artwork
If you’ve ever been to a Swedish furniture store, you’ll notice that there are lots of
abstract paintings hanging on the walls. Your challenge is to recreate the following
abstract painting that uses the various shapes provided by Sumerian. Make sure to
place it on Wall 1. Use only the 3D primitives. Place the painting in an entity named
Painting inside of the Furniture entity.

Once you’ve created your painting, go through the challenge completion so you can
get the exact coordinates. You’ll use this painting later in the book.

Solution

If you haven’t done it yet, create an empty entity and call it Painting. You’ll add
items to it in a moment. For now, create the painting.

Start by creating a new box entity. Name it Left Frame Edge. Set the translation to:
(-4.669, 1.466, 0.954). Set the scale to: (0.112, 1.400, 0.141). Set the color to
000000.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 89

In the Assets panel, select the Materials tab and change the name of the Default
Material 3 to Ceiling and Default Material 4 to Black Frame.

Duplicate the Left Frame Edge and give it the name: Right Frame Edge. Set its
translation to: (-4.669, 1.466, -0.334).

With the Right Frame Edge still selected, duplicate it. Rename it to: Top Frame
Edge. Set the translation to: (-4.669, 2.095, 0.300). Set the rotation to: (90, 0, 00).

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 90

Duplicate the Top Frame Edge, and rename the duplicate to Bottom Frame Edge.
Move it to the following translation: (-4.669, 0.832, 0.307).

You should now have an empty picture frame.

Next, create a next box entity and rename it to Painting Background. Set the
translation to: (-4.670, 1.461, 0.305). Set the scale to: (0.112, 1.176, 1.175). In the
Material component, set the color to ffffff (white).

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 91

In the Assets panel, select the Materials tab and rename the material to Painting
Background.

Now create a torus (that’s the donut-looking entity). Set the translation to: (-4.757,
1.451, 0.306). Set the rotation to: (0, 90, 0). Set the scale to: (0.820, 0.820, 0.820). In
Material component, set the color to 4fb47b.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 92

In the Assets panel, rename the material to Painting Donut.

Finally, create a new box entity. Name it Red Diamond. Set the translation to:
(-4.767, 1.444, 0.304). Set the rotation to: (45, 0, 0). Set the scale to: (0.313, 0.313,
0.313). Set the color to ff0000.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 93

Your painting should look like the following:

Finally, switch the assets panel. In the Materials tab, rename Default Material to
Painting Background, Default Material 2 to Painting Donut and Default Material 3
to Red Diamond. Remember, you can always check the material source by clicking
on the chain icon.

You’re almost done! Move all the entities you just created into the Painting entity,
then drag the Painting entity into the Furniture entity. Next, drag all of the parts of
your painting into the Painting entity. And that’s it! You have a new painting.

When you’re finished, make sure to save your scene.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 94

Key points
• Every entity represents a single point in space.

• An entity's behavior is created by adding, removing and altering components.

• An entity can have child entities which provides a great way to organize related
entities.

• A material is a special object that affects how an entity looks in the scene.

• Sumerian supports OBJ and FBX model formats.

Where to go from here?
You now have an escape room with some furniture. One of the more fun aspects of
working with Sumerian is incorporating models and building your scene. If you
would like to practice setting up a scene, the Sumerian team put together a piece on
creating a TV-viewing room. You can read it here: https://
docs.sumerian.amazonaws.com/tutorials/create/getting-started/sumerian-basics-tv-
room/

Unfortunately, your room is static. In the next chapter, you'll add some interaction by
way of State Machines and behaviors.

Amazon Sumerian Chapter 3: Entities & Materials

raywenderlich.com 95

4Chapter 4: Adding
Interactivity with Behaviors
By Brian Moakley

Your furniture showroom is looking good. The floors and walls are nicely textured. It
features a nice, colorful rug. There's plenty of furniture and even a nice abstract
painting on the wall. There's only one thing that it is lacking: A means to escape!

Part of the fun of working with Sumerian is adding interactive elements. Sumerian
allows you to do this in two ways: You can create behaviors to visually organize your
logic, or you could write individual scripts.

raywenderlich.com 96

A behavior is a way to code your interactivity without writing a single line of code.
With behaviors, you define individual states and trigger transitions to switch
between them:

While the behaviors allows for visual logic, scripting allows you to define your own
behavior as well as incorporate other AWS services. The big question of the hour is
which approach should you use? The answer is simple enough: Both!

Behaviors provide an easy way to construct your logic, while scripting allows you to
build additional behavior that isn't provided by Sumerian. You can even incorporate
your scripts into the state machine giving you the best of both worlds.

Sumerian manages the behaviors by way of a State Machine. A State Machine tracks
the progress of behaviors. A State Machine can also simultaneously run several
behaviors at once.

Setting up the Player Camera
At this point, you have a complete room. You now need to set a starting point for the
player. Remember, the idea of the escape room is that you’re locked overnight in a
Swedish furniture store. Stepping on the rug might set off the alarms, so you will
jump from furniture to furniture to try to escape.

Note: This is a somewhat contrived situation. You can create a player
controller that works using a traditional mouse and keyboard. This results in a
very complex state machine. By using teleportation, you'll get a good idea of
how to create state machines. It also provides a great segue into virtual reality
since teleportation is often preferred to avoid motion sickness.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 97

To get started, navigate to the Sumerian dashboard, and click on your current scene
to open the editor.

The first thing you need to do is set up the camera. You'll notice that you already
have a camera in the scene. This is the Editor Camera. If you click the play button,
the scene will start where you had last moved the camera. This means you will have
to position the camera in the start location each time that you start the scene.

A better approach is to add a new camera. In the Entities panel, select the Default
Camera and click the duplicate button.

Name the new camera: Player Camera.

This new camera will follow the Editor Camera. You want the camera to be in a fixed
location. With your new camera selected, uncheck the Follow Editor Camera
property.

Note: Cameras are a fundamental aspect of working with Sumerian. Cameras
(as well as lights) are covered in depth in Chapter 10, "Lights, Camera, Action!"

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 98

You can only have one main camera in a scene. The main camera is what users of
your scene will see. Right now, the Default Camera is the main camera. You want the
Player Camera to be the default camera. Every camera contains a camera component
and only one camera can be the main camera.

So, in the Camera component, check the Main Camera checkbox. By ticking this
checkbox, any other camera designated as the main camera will become unchecked.

By default, this kind of camera orbits around a point. This is provided by a script
attached to the camera. It's better to use a mouse look script.

In the Script component, remove the OrbitNPanControlScript by clicking the X in
its right-hand corner.

Still within the Script component, click + to add a new script. From the list of
options, choose Mouse Look Control.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 99

The MouseLookScript is configured to activate when the user presses the left mouse
button. You'll need that button so that users can click on elements.

In the MouseLookScript, set the Mouse Button to Right.

Finally, set the translation to (-2.626, 1.606, 1.043) and the rotation to (-15.72, 0, 0).

Now, play the scene. You'll find yourself hovering over a comfy chair. To make sure
everything works, try looking around by pressing the right mouse button.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 100

Adding interactivity
Adding interactivity is quite simple with Sumerian. You create a behavior and assign
it to an entity. A behavior is composed of individual states — each containing actions
such as animating an entity, playing some music or even speaking dialogue.
Sumerian comes with a lot of pre-built actions and, with the power of scripting, you
can even add your own actions.

To get started with creating your own behavior, select the Couch entity. Remember,
if you select the Couch on the canvas, the bottom most entity will be selected. To
select the Couch entity, you will need to select it in the Entities panel.

A good habit to get into is to check the Entities panel after you've made your
selection on the canvas to confirm the correct selection.

In the Inspector panel, click Add Component. You'll see that you have a lot of
options. In this case, choose State Machine

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 101

Your couch will now get a state machine component added to it. You can either add
existing behaviors or create your own. Click the + button next to the Drop Behavior
field. This creates your first behavior.

Once you create a new behavior, the State Machine Editor will open at the bottom of
the editor. It even comes with a state aptly named State 1.

Before you start playing around with states, it's a good idea to name the state. Often
with Sumerian projects, you'll acquire lots of behaviors and states. When something
goes wrong — say, for instance, your teleportation isn't working — you'll know that
the logic is found the Teleport behavior, versus searching in Behavior 1, Behavior 2,
etc.

In the Inspector panel, change the name of the behavior to Couch.

In the State Machine Editor, make sure to select State 1 by clicking on it. You'll see
that you get information about the state in the inspector. Change the name of the
state to Click on Couch. Now click the Add Action button.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 102

The following dialog provides a whole bunch of actions that you can use with your
behaviors. Take a moment to click through all the various categories and check out
all of the various actions you can use. Once you know these, you'll use the search
field to speed things up.

For now, click on the Controls category, and then click on the Click/Tap on entity.
Finally, click the Add button at the bottom of the dialog.

You'll notice that your state now has a statement that reads: "On Click / Tap Entity."
This is your action. This means the couch will respond to all clicks. Yet, nothing will
happen when the user clicks.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 103

Click the Add State button to add another state.

Change the name to Hide Couch and click the Add Action button. In the Display
category, select Hide.

Now, you have two states with actions but the states aren't connected. In the Click
on Couch state, click and drag the text that reads "On Click / Tap Entity" to the
Hide Couch state.

This will draw an arrow between the two states. When the user clicks on the couch,
the state will transition to the Hide Couch and the couch will disappear.

Play the scene. Notice that there is a difference in the behavior. When the scene is
playing, you'll notice that the Click on Couch state has a green outline around it.

This lets you know the active state of the behavior. Right now, the behavior is waiting
for the click event. Click on the couch and you will see it disappear. Also, notice that
the Hide Couch state is the active state.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 104

When a state transition occurs, all the actions will run in the order listed in the state.

Of course, the objective isn't to make the couch disappear (although that'd be a good
magic trick). Your goal is to teleport the player. This raises an interesting
conundrum.

Behaviors are designed to just work on the current entity. Later you'll see how some
actions and custom scripts can affect other entities, but these are exceptions. In this
current situation, when a user clicks on the couch, you'll want to move the camera to
it. Thankfully, there is a way to communicate between entities and that's
accomplished by sending messages.

Sending messages
Messages are the primary means in which entities communicate with other entities.
Messages are interesting in that a receiving entity can't reply to the message and the
sender has no idea who is receiving the message. This may seem a little bit strange.
But this keeps the entities separate from each other. This means that changes to one
entity won't affect another.

You can think of a message like an announcement. When an event occurs, an entity
broadcasts a message. Any number of entities can listen for the message and react
when they receive the message.

Messages can be named anything. Typically, you name it as a result of an action. For
instance, if a basketball team scores a basket, you may broadcast a BasketScored
event or a HomeTeamScores event. The name and meaning of the event is up to you.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 105

In the case of the couch, when the user clicks on the couch, the couch will broadcast
a CouchClicked message. Any entity in the scene can respond to it. Since the camera
is interested in the event, it will listen for the CouchClicked event. When the
message is broadcast, the camera will receive the message and then change its
position.

To get started withs messages, you'll need to edit your couch behavior. You can select
the couch and then click the pencil icon next to the behavior name. There is another
way to access your behavior. In the Assets panel, click the Behavior tab and then in
the Default Pack, click the pencil icon next to the couch behavior:

This opens the State Machine Editor. Select the Hide the Couch state and rename it
to Send Couch Click Message. Click the Add Action button and, in the Transitions
category, select the Emit Message action.

You'll see that there is a new action underneath the Hide action. It contains only one
field named Channel. This is the name of the message.

Note: You can only broadcast the message name when using a behavior. When
working with scripts, you can send data with the message. You'll do this in
Chapter 12, "The Sumerian API."

Set the Channel to MoveToCouch. You may be wondering why all the letters are
squeezed together. Typically, spaces can cause problems in computer languages and
so when broadcasting messages it's just a good practice to remove spaces to avoid
any potential issues.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 106

Right now, there are two actions in the selected state. The first action hides the
entity while the second action sends out a message. These actions will start with the
first message and run every subsequent action in order.

Note:: As you'll soon see, Listen actions will run concurrently.

You can reorder the actions by clicking on the two arrows and dragging the action.

For now, you don't need the hide action, so delete it by clicking the x icon next to the
reorder icon. Doing so will leave you with just one action. There is only one problem
with the current behavior, when the user clicks on the couch the behavior will emit a
message but nothing else will occur.

You want the emit action transition back to the click action. That way, the couch will
be able to be clicked multiple times. When you added a click action, the action
provided its own transition. The Emit Message action doesn't have such a transition.
You'll need to add your own transition.

Click the Add Action button and, in the Transitions category, select the transition
Transition action. Now your state will have an On Enter transition. Click on the On
Enter transition and drag to the Click on Couch state.

You now have two states referring to each other.

Now that you are sending messages, you'll need the camera to respond to the
message. In the Assets panel, click the Behaviors tab and then click the + button in
the Default Pack header.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 107

As you can see, there is more than one way to create a behavior or assets in general.

Rename your new behavior to Player Camera. Make sure to edit the behavior to
access the State Machine Editor.

Like the Couch behavior, you have a state already provided for you. Rename it to
Listen for Clicks.

Note: When naming your state, it helps to be clear with the intention of the
state. That way, you'll understand the state's intention at a glance

Click Add Action and in the Transitions category, select the transition Listen
action. In the Message channel field, give it the name MoveToCouch.

You've now defined an event listener. When the MoveToCouch message is broadcast,
your behavior will transition to another state. Keep in mind that spelling and casing
is important. If you listen to the MveToCouch, the event won't fire since the event
name is misspelled.

Now, click the Add State button to create a new state. Give it the name Move to
Couch. This is the part when you move the camera. Thankfully, there's a move
action!

With Move to Couch selected, click the Add Action button. In the Animation
category, add the Move action. Set the translation to (1.380, 1.606, -0.116). Make
sure to uncheck all the other values. This will make it so that the camera will jump
to the nearby chair.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 108

Since you need to transition back to the Listen for Clicks state, click the Add Action
button. In the Transitions category, add the Transition action. Drag a connection
between the Move to Couch state and Listen for Clicks state.

Now, to add the behavior to the Place Camera. First, select the Player Camera in the
Entities Panel. Its information should appear in the inspector. In the Assets panel,
select the Player Camera behavior and drag it to the bottom of the inspector.

You will see an Add component message appear in the inspector panel.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 109

When you release the mouse button, a State Machine component will be added to the
entity with your behavior assigned to it.

Note: If you select the entity from the canvas, the Canvas will allows select the
lowest most child. If do you select from canvas, it's good habit to check the
Entities panel to make sure you've selected the correct entity.

Now, run the scene and click on the couch. The camera will teleport.

When you teleport to the couch and look down, you may notice the top of the couch
getting removed.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 110

You'll learn more about this in Chapter 10, "Lights, Camera, Action". For now, you
must adjust your camera's clipping plane. Select your Player Camera, and set the
Near Clipping Plane to .5.

Now the top of the couch won't get cut off.

Completing the teleportation
At this point, the couch is the only item that you can click. You need to send out
messages for the left comfy chair and the right comfy chair.

In the Assets panel, select the Couch behavior and click the duplicate button.
Rename this new behavior to Left Comfy Chair. Duplicate the Couch behavior
again and rename it Right Comfy Chair.

Select the Left Comfy Chair behavior and in the State Machine Editor, rename the
Click on Couch state to Click on Left Comfy Chair. Make sure to also rename Send
Couch Click Message to Send Left Comfy Chair Message. Finally, in the Send
Couch Click Message state, change the message channel to
MoveToLeftComfyChair.

Next, do the same for the Right Comfy Chair. Rename all of the states to reference
the Right Comfy Chair and change the message channel to
MoveToRightComfyChair.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 111

Note: You'll notice that the behaviors are almost the same except for a few
small details. This is a problem. Later, you need to change the logic of the
behavior. Instead of changing it in one place, you will now have to change it in
multiple places. This is a sign that the behavior is better expressed as a script.
You'll learn how to do this in Chapter 12, "The Sumerian API." For the time
being, you'll use duplicated behaviors.

Once you have both the Left Comfy Chair and Right Comfy Chair behaviors
configured, select the Player Camera behavior in the Assets panel.

In the State Machine Editor, select the Move to Couch state and press the
Duplicate State(s) button:

Doing so will create a new state, all transitioning to Listen for Clicks. Select the state,
and for the Move action, set the Translation to (-0.638, 1.606, 1.043). Rename the
state to Move to Left Comfy Chair.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 112

Duplicate the state and rename it to Move to Right Comfy Chair. Set the
Translation to (-2.626, 1.606, 1.043)

Your behavior should look like the following:

At this point, you have transitioned from your new move states, but there are no
transitions to the move states.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 113

Select the Listen for Clicks state. Add two Listen actions. Set one channel to be
MoveToLeftComfyChair and the other to be MoveToRightComfyChair.

Next, create a transition from On "MoveToLeftComfyChair" event to Move to Left
Comfy Chair. Do the same from On "MoveToRightComfyChar" event to Move to
Right Comfy Chair.

Your behavior should now look like the following:

Now you have a completed behavior!

Note: If you found that you made a mistake and dragged a transition to the
incorrect state, simply click on the arrowhead of the transition. This will delete
the transition.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 114

Finally, select the Behaviors tab in the Asset Panel. Select the Left Comfy Chair in
the Entities panel. Drag the Left Comfy Chair behavior to the Inspector Panel.
Do the same for the Right Comfy Chair, using the Comfy Chair behavior.

Now, run your scene. You will be able to hop between all the furniture.

Light switch puzzle
Now that the user can effectively move, it's time to put the first puzzle into the game.
The escape room features three puzzles and the first is easiest. It's just a switch that
needs to be pressed.

With your scene open, click Import Assets. Search for the Light Switch asset and
add it to your project.

In the assets inspector, switch to the Entity tag and drag a light switch entity to the
canvas. Set the translation to (0.301, 1.392, -1.156).

Now to provide the behaviors. When the user clicks on the light switch, the switch
should rise. The actual switch is in the midpoint, so select the light_switch child
entity. Set the rotation to (32, 0, 0).

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 115

When the user clicks the switch, the switch should animate upwards. The light
switch itself is too small for a user to click so it's better to add it to the entire switch
panel.

Select the light switch parent entity in the Entities Panel. In the inspector, click Add
Component and select State Machine. In the State Machine component, click the +
button to create a new behavior.

The State Machine editor will open. In the inspector, rename the behavior to Light
Switch Panel.

Select State 1 and rename it to Click on Light. Press the Add Action button and in
the Controls category, add a Click/Tap action.

Click the Add State button. Select the new state and rename it to Emit Activate
Message. Click the Add Action button and, in the Transitions category, add a Emit
Message action. In the Emit Message action, set the Channel to ActivateSwitch.

Drag a transition from the Click on Light to the other. Your behavior should look
like the following:

Clicking the overall switch will fire a message. Now, you need to create a behavior in
the child switch to listen to the message. As you can see, a project can acquire quite a
few behaviors.

Click the child light_switch and click the Add Component button. Add a State
Machine and then click the + button to create a new behavior. Name the behavior
Light Switch.

In the State Machine editor, select State 1. Rename it to Listen for Light Switch
Click. Click the Add Action button and, in the Transitions category, add a Listen
action. In the channel, add ActivateSwitch.

Now, click the Add State button and rename your new state to Rotate Light Switch.

So far, you've moved an entity but that was an instant movement. In this case, you
want the switch to animate over time. There is an action for this.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 116

Click the Add Action button and select the Animations category. You'll notice that
there are two Rotate actions. One is called Rotate and the other is called Tween
Rotate.

The Rotate action will instantly rotate the switch much like the Move action moved
the entity. To animate movement, you must select a tween variant of the action.
Tween is an animation term. It's a shortening of the word between. It's the process
of generating the intermediate frames between two images.

That is, you provide a start point and then an endpoint, and the engine will generate
the animation for you.

Select Tween Rotate. You'll get a lot of options with this action. For now, set the
Rotation to (-32, 0, 0), uncheck the Relative option and set the Time (Seconds) to
0.3.

Note: You'll learn all about the various animation options in Chapter 13,
"Animation & Particle Systems."

Drag a transition from the first state to the current one. It should look like the
following:

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 117

Now, play your scene and click on the light switch. You'll see that you have a working
light switch that required not a single line code.

Revealing the next clue
When the players click on the light switch, they will expect something to happen. In
this escape room, it will reveal the clue for the second puzzle.

For this to happen, you'll need to add a few more assets to the scene. Click the
Import Assets button and search for the asset: Television Hanging. Select the
television and click the Add button.

In the Assets panel, drag the television_wall_ViewRoom.fbx entity onto the canvas.
Rename the entity to Television. Finally, set the translation to (-2.646, 1.076,
-3.425). Set the scale to (0.691, 0.691, 0.691)

Now, with your television in place, you want to rotate it on the left once the user
activates the light switch. All you need to do is have the television listen to the
ActivateSwitch event.

With the television still selected, click the Add Component button and select the
State Machine. Click the + button to add a new behavior and name it Television.

Open the Television behavior in the State Machine Editor. Rename the default state
to Listen for Light Switch. With the state selected, click the Add Action button and
in the Transitions category, add the Listen event. Set the Message Channel to
ActivateSwitch.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 118

Click the Add State button and name it Rotate Television. Click the Add Action
button and, in the Animation category, add a Tween Rotate action. In the Tween
Rotate action, set the Rotation to (0, -90, 0).

Finally, drag a transition for the Listen for Light Switch state to the Rotate
Television state.

Now, run your scene and flick the switch. The television rotates to reveal... nothing!
It's time for you to add a clue.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 119

Nested coordinate systems
In escape rooms, clues are meant to be both obvious but also obtuse. That way, the
escapees can all share an a-ha moment when they figure it out.

This clue is a simple image with three colored shapes. The shapes don't matter. It's
the color that's important. The clue is just an image. You have to import it into the
engine.

In the Assets panel, click the folder icon.

This opens the file browser. Navigate to the Resources folder and select clue.png.
Now, if you click the Texture tab in the Assets panel, you'll see your imported image.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 120

At this point, you have a 2D image. If you drag it onto your canvas, you'll get an error.
Remember, only entities can be added to your scene. You'll need to create one. What
you need are some geometry and material. You could use a box entity, but a quad is a
better fit.

A quad entity is a rectangle. It has no depth and is perfect for signs and images.

Click Create Entity and, in the 3D Primitives category, select the quad

This will add a quad to your scene. If you look at the scene from behind, you may just
see the outline of a white rectangle.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 121

Quads are only meant to viewed from the front. The quad won't be rendered from
behind which is why you can see through it. This is an optimization. There's no point
in rendering a surface if it isn't meant to be seen.

You'll often see this in a game when you glitch through the world. You'll see through
all the walls of a level because you are seeing the back-faces of all of them.

If you can't see the quad, simply rotate around it until you can see the plain white
face. Now to add the clue.

First, rename the Quad to Clue. Next, in the quads material, drag the clue.png
texture to the material Texture property.

Set the scale to: (1.378, 0.730, 1). Finally, rename Default Material 2 to Clue.

At this point, your quad should look like the following:

Now, you need to position the clue. The clue should go directly behind the television.
So far you've been just entering the translation via coordinates provided by this
book. This time, you'll use another entity's coordinate system.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 122

When you assign an entity to be a child of another entity, the child's coordinate
system becomes expressed in terms of the parent's coordinate system.

It's easier to think about this in 2D coordinates. Entity A is located at a translation of
(1, 1). Entity B is located at a translation of (-1, -1).

When you make Entity B a child of Entity A, Entity B's translation doesn't change,
but the center of the coordinate system does.

To Entity B, the origin point of the world (0, 0) is the location of the parent entity.
This means its coordinates are expressed in terms of the parent. Entity A's
coordinates are (0,0). Entity B's new coordinates are (-2, -2).

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 123

This is why you set the translation of the entity before you made it a child of another
entity. Had you made the entity a child first and then set the coordinates, the entity
would have been misplaced since all the coordinates in this book are provided in the
world space.

You can use this to your advantage when you need entities to be positioned at the
same place as other entities. In the Entities Panel, drag the clue entity to be a child
of the television.

Right away, the clue's coordinates will update since the television is the parent.

Now set the translation of the Clue to be (0, 0, 0). This moves the entity to the place
of the television.

Using the translation controls, move the clue to the center of the television. If your
clue is in front of the television, use the transform controls to move it behind the
television. That way, the user won't be able to see it.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 124

Once in position, un-parent the Clue. You can do this by dragging the Clue entity to
the scene name.

Now, play your scene and flick the switch. This time, you'll see a clue.

Congrats on making it this far! In the next chapter, you'll add additional complexity
by the way of attributes and branching logic.

Key points
• A state machine is a component that provides interactivity to any entity.

• The interactivity is saved into a file known as a behavior.

• An entity can have multiple behaviors added to it.

• A behavior is composed of individual states that have actions added to them.

• A message is an action sent between behaviors.

• Child entities adopt the coordinate system of their parent entity.

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 125

Where to go from here?
Behaviors allow for dynamic interactions with your 3D scene. You'll be writing lots of
behaviors with Sumerian. The Sumerian team has provided two additional tutorials.
One tutorial covers the interface that can be found here: https://
docs.sumerian.amazonaws.com/tutorials/create/beginner/state-graph-editor-
interface/

The other tutorial provides details on state machines that can be found here: https://
docs.sumerian.amazonaws.com/tutorials/create/beginner/state-machine-basics/

Amazon Sumerian Chapter 4: Adding Interactivity with Behaviors

raywenderlich.com 126

5Chapter 5: Attributes &
Branching Logic
By Brian Moakley

Creating behaviors to provide interactivity is one of the cooler things you can do
with Sumerian. The visual State Machine editor makes it easy to track how states
transition into other states. Adding additional states is just a matter of creating new
states and integrating them with the rest via transitions.

Unfortunately, the current behaviors in your escape room are somewhat simple.
While they do provide interactivity, their linearity limits them. Thankfully, Sumerian
provides a tool to add complexity to your behaviors with attributes; by using these
attributes, you’ll learn how to make branching choices in your behaviors.

In this chapter, you’ll use attributes to construct your second puzzle. When you last
left off, the light switch caused the television to move, revealing a cryptic clue.

The shapes on the clue don’t mean anything – it’s the colors that are important. The
user will need to click three objects in the room, each of which matches a color. The
user will need to click the colors in order. If they click the wrong color, the puzzle will
reset. As you can imagine, this behavior is going to be a bit complicated.

raywenderlich.com 127

Setting up the puzzle pieces
To get started with the puzzle, you need to provide three different objects for the
user to click.

From the Sumerian Dashboard, open the Showroom Skedaddle scene.

Click Import Assets and search for statue. Once you find it, select it, and click Add
to add it to your available assets.

Click Import Assets again and, this time, search for ASIN: B073P2DNTD. This
search returns a lamp. Select it, and click Add.

You’ll need an end table to hold the lamp. Click Import Assets, search for Table
Curved, select the asset, then click Add.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 128

Click Import Assets one final time and search for ASIN: B00PCS8PDY. This search
returns a vase. Click Add.

Arranging the room
You now have four objects you can use in your puzzle, so your next task is to arrange
the room. In the Assets panel, select the Entities tab.

Drag a Table Curved entity onto the canvas and set its translation to (-0.321, 0,
-0.625).

Rename the entity to Side Table and drag it into the Furniture entity. This will hold
the lamp.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 129

Next, drag a B073P2DNTD.obj entity from the Assets panel onto the canvas.
Rename the entity to Desk Lamp. Set its translation to (-0.316, 0.532, -0.624).

Finally, drag it into the Furniture entity.

Finally, drag a vase_ViewRoom.fbx entity onto the canvas. Rename this entity to
Vase. Set its translation to (-1.557, 0.199, -1.592) and set the scale to (0.594, 0.594,
0.594).

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 130

Expand the Vase entity in the Entities panel and select B00PCS8PDY:Bottle
B00PCS8PDY:Stone1.

In the Inspector, expand the Material component. In the COLOR (DIFFUSE) section,
click on the white color box and set the color to #0046dd.

You now have a blue vase. Drag it into the Furniture entity.

Now, drag a smooth_statue_ViewRoom.fbx entity onto the canvas. Set its
translation to (-1.563, 0.517, 1.466) and set the scale to (0.675, 0.675, 0.675).

Rename it to Statue.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 131

In the Entities panel, expand the Statue entity. Select the B000SAGNT4:Artwork
entity child.

In the Inspector, expand the Material component. In the COLOR (DIFFUSE) section,
set the Color to 79fd4d. Now, drag the Statue entity into the Furniture entity.

When you’re all done, your escape room will look like this:

Now comes the fun part: Creating the behaviors!

Setting up the emitters
Now that you have all the elements in place, you need to start building the puzzle.
Each element in the puzzle will emit a message when the user clicks it. A central
entity will listen for the messages and determine when the user has solved the
puzzle. When this occurs, the puzzle manager will emit a puzzle complete message,
triggering the third and final puzzle.

Start by clicking Create Entity then, in the Others category, select Entity. Give it the
name Color Puzzle Manager and select it. In the Inspector, click Add Component
and select State Machine.

In the State Machine component, click the + button to add a new behavior. Rename
this new behavior to Color Puzzle Manager.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 132

When you’re done, the entity will look like this:

Now, to create the emitting behaviors!

In the Assets panel, select the Behaviors tab. In the Default Pack, click the + button
and select Behavior from the list. Rename your new behavior to Blue Trigger.

In the State Machine editor, select State 1 and rename it to Listen for Click. Click
Add Action and, in the Controls category, select the Click/Tap on Entity action.
Once selected, click Add.

You need to add another state to this behavior, so click Add State. Rename this state
to Emit Click Message. Click Add Action and, in the Transition category, select the
Emit Message action and click Add. Set Channel to ClickedBlue.

Click Add Action again and, in the Transitions category, select the Transition
action and click Add.

Drag transitions between both states. Your behavior should look like this:

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 133

In the Asset panel, select the Blue Trigger behavior and press the duplicate button.

Rename the duplicate behavior to Green Trigger. Edit the behavior and change
Channel in the Emit Click Message action to ClickedGreen.

In the Asset panel, duplicate the Green Trigger behavior and rename it to Yellow
Trigger. Edit the behavior and change Channel in the Emit Click Message action to
ClickedYellow.

Now, assign the Yellow Trigger behavior to the Desk Lamp. Assign the Green
Trigger behavior to the Statue. Finally, assign the Blue Trigger behavior to the
Vase.

Building logic with attributes
When you first read about entities, you learned that they represent a single point in
space. Later, you saw how you could customize your entities by using components.
You also learned that entities can contain metadata such as a description of the
entity and when it was created.

In short, entities have many useful features, but here’s one additional feature that
will take your scenes to the next level: With entities, you can store data by way of
attributes.

When you create an attribute on an entity, you can use that attribute to store
whatever data is relevant to your scene. For instance, you can store whether the user
has clicked on a certain entity. You can use them to save user preferences, such as
music or sound volume. You can also use them to keep track of any interaction in
your scene and make choices based on them.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 134

You have three different types of attributes at your disposal: You can use them to
store numbers, true or false values, and text. Using these values, you can create rich
interactive scenes.

Unfortunately, attributes do not persist between sessions. Every time a user restarts
your scene, the attributes will be reset. If you want data to persist between sessions,
you’ll need to save outside of Sumerian by using one of the many services provided
by AWS. You’ll learn how to leverage AWS later in this book.

In this puzzle, you’ll be using attributes to store two different values. The first
attribute will store the color that the user just clicked. You’ll use another attribute to
store the previous color that the user clicked.

The puzzle reaches a winning condition when the current clicked color is blue and
the previous clicked color is yellow.

Defining attributes
Before you can use an attribute, you must define that attribute. There are two ways
to define attributes. You can either use a Set x Attribute action in a behavior or you
can manually set an attribute on an entity.

When manually setting an attribute, you can only use string (text) attributes. When
using an action, you can set text (string attribute), a number (numeric attribute) or a
true or false value attribute (boolean attribute).

In the Entities panel, select the Color Puzzle Manager. In the Inspector, expand the
Custom Attributes section.

Defining an attribute means giving it a name and providing a value.

For Key, use CurrentClicked. For Value, use None. Click the + button. For the next
attribute, set Key to PreviousClicked, and set Value to None. Click the + button to
add it.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 135

Your entity now has two different attributes assigned to it.

Building a branching behavior
Attributes work well with behaviors; you can create behaviors that run actions based
on the value of certain attributes.

When evaluating attributes, there are four types of results. You don’t need to
respond to all of them; you may be interested in only one result.

The first result is an equal result, which you express using ==. This is a sign that’s
used in many programming languages to test for equality. The definition of equality
is pretty strict – the value "Green" is different from the value "green", for example,
since one is uppercase and the other is lowercase.

The second result is a not equal result. You express this using !=.

The third result is a greater than result expressed using >.

The final result is the less than result expressed using <.

You express the branching logic in transitions. You simply drag one of these results
to another state.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 136

Clicking puzzle pieces
For your escape room, you’re going to use branching behaviors to determine what
happens when a user clicks on one of the puzzle pieces.

To get started, switch to the Behaviors tab in the Asset panel, then click on Color
Puzzle Manager to start editing it.

Rename State 1 to Listen for Clicks then click Add Action. In the Transitions
category, select the Listen action and click Add. Set the action’s Message channel to
ClickedGreen.

Create two more listen actions. For blue, set the Message channel to ClickedBlue.
For yellow, set it to ClickedYellow.

Once a click is registered, you need to save the currently-clicked color (say that ten
times fast). To do this, add three new states and name them: Set to Green, Set to
Yellow and Set to Blue.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 137

Create transitions from the ClickedGreen to the Set to Green state. Do the same for
the yellow and blue states.

You now want to set the CurrentClicked attribute to the color that the user clicked.
You’ll do this by using an action. Select the Set to Green state and click Add Action.
In the Add Action dialog, select the Attribute category.

You’ll notice that you have lots of related actions that you can run on attributes.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 138

Scroll down then select and add the Set String Attribute action. This is another way
to define attributes. If the attribute isn’t defined, this action will create one.

In the action, set Name to CurrentClicked and set Value to Green.

Do the same for both the Set to Yellow and Set to Blue states.

Setting up the order of the puzzle pieces
At this point, when the user clicks a color, it will set the current color. Remember, you
need to keep track of the previous color, too. Currently, when the user clicks the
green statue, it will set the current color. When they click the yellow lamp, the
CurrentClick attribute is still set to the statue until it’s updated.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 139

What you need to do is copy the CurrentClicked attribute to the PreviousClicked
attribute. Thankfully, there’s an attribute action for that.

Select the Set to Green action and click Add Action. Select the Duplicate Attribute
action and click Add.

In the Duplicate Attribute action, set the Source Attribute to CurrentClicked and set
the Destination Attribute to be PreviousClicked.

Note: If the attribute doesn’t exist, then the attribute won’t be copied. You
need to create the attribute first.

There is a small bug (mistake) with your implementation. The CurrentClicked
attribute is being set before you copy the value to the PreviousClicked attribute.
You need to change the order of the actions.

Using the double arrows on the Duplicate Attribute action, drag it above the Set
String Attribute.

Do this for the Set to Yellow and Set to Blue states.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 140

Adding transitions for each state
Finally, these three states need transitions. For each state, click Add Action, and in
the Transitions category, select the Transition action, and then click Add. Your
states should look like the following:

Now it’s time to construct the overall puzzle logic. First, you need to check the Green
click. When the user clicks the green statue, you have to check if they clicked a
previous color. If so, the puzzle resets. Otherwise, they can proceed to the next step.

Click Add State and name your state Check for Previous Click. Now you need to
test the PreviousClick attribute. Click Add Action, then in the Attribute category,
select the Compare String Attribute to a Constant and click Add.

If the PreviousClicked is None, that means the puzzle has just started. Otherwise,
the user’s puzzle progress is reset.

In your new action, enter PreviousClicked in the Attribute field.

The constant is the value you’re testing against. In this case, you’re testing for
"None", so enter None in the Constant field.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 141

Now, your state has two different transition options. Remember, == indicates that the
values are equal, whereas != indicates that the values are not equal.

Drag a transition from On PreviousClicked == None to the Listen for Clicks state.
This is the correct path.

If the user clicks the wrong color, you’ll need to reset the puzzle. Click Add State and
name your state to Reset Attributes.

Click Add Action and, from the Attribute category, select and add a Set String
Attribute. Set Name to CurrentClicked and Value to None.

Add another Set String Attribute action. This time, set Name to PreviousClicked
and Value to None.

Finally, add a Transition action to the state. When you’re done, your state will look
like this:

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 142

Pulling everything together
Now, it’s time to link everything up. Drag a transition from Set to Green to Check
for Previous Click. In Check for Previous Click, drag a transition from On
PreviousClicked != None to Reset Attributes. Finally, drag a transition from Reset
Attributes to Listen for Clicks. When you’re done, your behavior will look like this:

At this point, you have one color set up. Now, for the other two. They’ll follow the
same pattern.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 143

Click Add State and name it Check Yellow Click. Add a Compare String Attribute
to a Constant then set Attribute to PreviousClicked and Constant to Green.

Drag a transition from On PreviousClicked == Green to the Listen for Clicks state.
Drag another transition from On PreviousClicked != Green to the Reset Attributes
state. Finally, drag a transition from the Set to Yellow state to the Check Yellow
Click state.

When the user clicks the yellow lamp, the behavior checks if they had previously
clicked the green statue. If not, then it resets the puzzle. Otherwise, it reverts to the
listening state.

Note: Typically in a puzzle such as this, you’d provide additional audio clues
to help the user. You will learn how to incorporate audio into your scenes in
Section 2, “Building an Educational Experience.”

Your behavior will look like the following:

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 144

As you build out your behaviors, it helps to spread out your states so that the
transitions are easy to follow versus looking at a spaghetti behavior. You want to
avoid behaviors that look like this:

Now for the blue vase. Click Add State and name the new state Check Blue Click.
Add a Compare String Attribute to a Constant. Set Attribute to PreviousClicked
and Constant to Yellow.

Drag a transition from On PreviousClicked != Yellow to the Reset Attributes state
then drag a transition from the Set to Blue state to the Check Blue Click state.

Click Add State and name this state Puzzle Solved. Add an Emit Message action
and set Channel to ColorPuzzleComplete. Drag a transition from On
PreviousClicked == Yellow to Puzzle Solved. For now, you won’t have an entity
respond to the message, but it’s still important to know if the user has solved the
puzzle.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 145

With the Puzzle Solved state still selected, click Add Action. Select the Misc
category, and then select and add the Log Message action.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 146

Logging the results
Logging is a way to send messages to the browser, which you can read with the
developer tools. Each browser comes with its own set of tools to help diagnose,
troubleshoot and develop web pages. Since Sumerian is a web-based engine, you can
use these tools as well.

Each browser provides different methods to access their tools, so you’ll need to look
up how to access them.

This book uses Chrome as the primary browser. If you are using Chrome, simply
press F12 on your keyboard. When the tools appear, make sure you’ve selected the
Console.

The console displays any relevant messages for the current page. It will show any
errors, warnings, and messages. The console can be quite useful when
troubleshooting complicated behaviors. In the Log Message action, set the Message
to Puzzle Solved. Next, select the Set to Green state and add the Log Message
action to it. Make sure to move the Log Message action above the Transition action.
Set Message to Green Clicked. Your state should look like the following:

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 147

Then do the same for Set to Yellow and Set to Blue. Also, select the Reset
Attributes action and add a Log Message action. Set Message to Puzzle Reset.
Remember to move the Log Message action above the transition or the Log Message
won’t run.

Testing your escape room
Now play your scene. Click on the Green Statue. Your console should display a
message.

Next, click the yellow lamp then the blue vase. You’ll see that you get a "puzzle
complete" message.

Stop and restart your scene. This time, click the green statue and then blue vase.
Now, you’ll get a message letting you know that the puzzle has reset.

You now have a working puzzle! But there’s just one problem: The user can access
the puzzle at any time. You want the puzzle to only become activated under after the
user clicks the light switch. So your next step is to add that functionality.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 148

Click Add State and name the state Listen for Puzzle Start. Click Add Action and
add a Listen action. Set Channel to ActivateSwitch. Drag a transition between your
new state and the Listen for Clicks state. Your behavior will look like this:

While you’ve added a new state and positioned it to be the first state to run,
Sumerian considers it just another state – position doesn’t matter.

Every behavior comes with a state that is, by default, the initial state. Thankfully, you
can designate a state to be the initial state.

Select the Listen for Puzzle Start state and, in the Inspector, click Set As Initial
State.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 149

Now, the behavior will wait for the ActivateSwitch message to broadcast. Once it
does, the user will be able to perform the second puzzle. Your completed behavior
should look as follows:

The next puzzle will involve some physics, which you’ll learn in the next chapter.

Using multiple clues
The clue for this escape room is intentionally vague; because there are no audio
clues to help the user yet, the puzzle may be too hard for many people.

For your upcoming challenge, you’ll update the puzzle to include three other images.
When the user clicks on the green statue, the clue should update to the following:

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 150

Then, when they click on the yellow lamp, the clue should use the following:

When the user completes the puzzle, the following image will appear:

If the user clicks a colored item out of sequence, the clue should revert to the three
colored shapes.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 151

Your task is to update the Color Puzzle Manager. First, you need to update the
project to use these new clues.

Start by importing all the clue images into your project. Do this by clicking the folder
icon in the Assets panel and then selecting the images.

In the Entities panel, click the Clue entity. Rename it to Clue 1.

In the Inspector, click Add Component and then select State Machine. In the
newly-added State Machine component, click the + button to add a new behavior.

Rename the behavior to Clue 1 and rename the first state to Listen for Instructions.
Create add two more states. Rename one state to Show Clue and the other to Hide
Clue.

In the Show state, click Add Action and, in the Display category, select the Show
action. For the Hide state, add a Hide action from the Display category. Add
transitions to both the states and create transitions from the new states to the
Listen for Instructions state.

Select the Listen for Instructions state. Add four Listen actions to it. Have them
listen to the following messages: ShowClue1, ShowClue2, ShowClue3, ShowClue4

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 152

Your behavior will look like this:

Drag a transition from the ShowClue1 action to the Show Clue state. For the other
listen actions, drag transitions to the Hide Clue state. This means when another clue
displays, this clue will hide.

Now you need three other permutations of this behavior. In the Assets panel, switch
to the behavior tab and select Clue 1. Press the duplicate button three times.

You should now have the following behaviors: Clue 1, Clue 2, Clue 3, and Clue 4. If
not, then rename the behaviors for each clue.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 153

Open the Clue 2 behavior. It's currently setup as Clue 1. Drag a transition from
ShowClue2 to the Show Clue state. Then, drag a transition from the ShowClue1
event to the Hide Clue state.

Do the same for Clue 3 and Clue 4. When complete, Clue 3 should look as follows:

And Clue 4 should look as follows:

Now that you have the behaviors created, you must customize the entities.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 154

In the entities panel, select Clue 1 and duplicate three times. You should now have
Clue 1, Clue 2, Clue 3 and Clue 4. If the names don't match, rename them as such.

With Clue 1 selected in the Entities panel, click the duplicate button. First you need
to remove the Clue 1 behavior. Select Clue 2 and in the State Machine component,
click the X to remove the Clue 1 behavior.

Drag the Clue 2 behavior to the Clue 2 State Machine component.

Do the same for Clue 3 and Clue 4.

Now you need to update the texture. In the Assets panel, switch to the Materials tab.
Select the Clue material and rename it to Clue 1. Duplicate it three times. Rename
the new materials to Clue 2, Clue 3 and Clue 4.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 155

Select the Clue 2 material and in the Assets panel, switch to the Texture tab. Your
material will continue to be displayed in the inspector panel. Drag clue2.png to the
Material texture property.

Do this for the Clue 3 material using clue3.png and for the Clue 4 material using
clue4.png. Once your materials are setup, assign them to the appropriate entity. For
example, assign the clue 2 material to the material component on the Clue 2 entity.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 156

Finally, hide Clue 2, Clue 3 and Clue 4.

Your scene is ready to use for your challenge.

Challenge

Challenge: Multiple clues
At this point, you have prepared four clues. They have behaviors to hide and show
clues. Your challenge is to alter the Color Puzzle Manager behavior to use these
clues.

Just a few hints: You’ll need to create two additional states and then wire those
states into the overall behavior. You’ll also need to update two other states.

Also remember, you just need to broadcast one message. When you broadcast a
message to ShowClue1, the other clues will hide because of the way you set up the
behavior. Now give it a shot!

Solution

Hopefully, that wasn’t too bad. If you got stuck, then follow along.

To get started, select the Color Puzzle Manager to open the State Machine editor.
First, select the Reset Attributes state. Click Add Action and add an Emit Message
action. Set Channel to ShowClue1. Make sure to drag the new action above the
Transition action.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 157

This means every time the user clicks the wrong item, the clue will reset.

Now, select the Puzzle Solved state. Add an Emit Message action to it. Set Channel
to ShowClue4.

This reveals the final clue once the puzzle is solved. Now you need to add two
additional state.

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 158

Next, click Add State. Name it Reveal Clue 2 then add an Emit Message and a
Transition action. In the Emit Message action, set Channel to ShowClue2.

Now duplicate the state by clicking the Duplicate State(s) button. Rename the state
to Reveal Clue 3. In the Emit Message action, set Channel to ShowClue3. At this
point, it’s time to hook them up.

In the Check for Previous Click state, drag a transition from On PreviousClicked ==
None to Reveal Clue 2. In Reveal Clue 2, drag a transition from the On Enter to
Listen for Clicks

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 159

Now, do the same thing for the Reveal Clue 3 state. In Check Yellow Click, drag a
transition from On PreviousClicked == Green to Reveal Clue 2. In Reveal Clue 3,
drag a transition from the On Enter to Listen for Clicks.

Here is the entire behavior:

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 160

At this point, you have updated your behavior to use additional clues. Run your scene
and this time, when you complete the puzzle, you’ll experience a moment of
inspiration.

Key points
• Attributes allow you to associate data with a given entity.

• An attribute takes both a key and a value. A key is used to look up a value much
like in a dictionary, a word is used to look up its definition.

• Editor defined attributes can only be string attributes.

• Behavior defined attributes can be strings, booleans and numbers.

• Attributes can be compared against constants to create branching logic.

• Logging prints messages to the browser console.

Where to go from here?
Attributes provide an excellent mechanism for tracking the choices made by your
users. You can branch choices based on them but you can also perform mathematical
operations on them as well. You'll put them to work in the next section of this book.

To learn more about attributes, check out the documentation page: https://
docs.aws.amazon.com/en_pv/sumerian/latest/userguide/statemachines-
attributes.html

Amazon Sumerian Chapter 5: Attributes & Branching Logic

raywenderlich.com 161

6Chapter 6: Physics

By Brian Moakley

Modern graphic engines typically come with their own physics engine, and Sumerian
is no different. The difference between it and an engine like Unity or Unreal is that
Sumerian's physics simulation is all managed within a web browser.

Managing physics in a web browser is challenging since physics engines are
computationally heavy. They must compute trajectories, determine how surfaces and
gravity affect a moving object, calculate collisions and determine how those
collisions affect velocity and rotation.

Those are just some of the things that a physics engine must do for you. They do a lot
more, and they must do it all in a way that doesn't slow down your scene. Sumerian
provides you with everything you need from a physics engine. In this tutorial, you'll
learn how to use physics to make your third puzzle come to life.

Note: At the time of this writing, Sumerian is currently previewing NVIDIA's
PhysX physics implementation. This preview requires that you opt into it
using custom attributes. This chapter is currently written using the older
physics implementation and may not work as written using the new
implementation. Please see the official documentation for more information.

Setting up the third puzzle
When the user solved the second puzzle, they were left with a picture of a lightbulb.
This clue points to a lightbulb that doesn't exist in your room... yet. You'll need to
add it in a moment.

raywenderlich.com 162

When the user completes the puzzle, the lightbulb will fall from a hanging lamp. The
user will need to click the lightbulb to indicate that they have picked it up.

Next, they must throw it at the painting. They'll throw it by clicking on the red center
of the painting. By hitting the red center, the walls will open and the user will be
allowed to escape. (Not really, but I'm getting ahead of myself — muahahaha).

Open your scene, if it isn't already open, and click Import Asset. Search for the
Lamp Hanging asset.

Select the asset and click Add to import it into your assets library. Once you return
to the editor, drag a lamp_hanging.fbx onto the scene. Set its translation to (-1.586,
3.28, 0.436).

Rename it to Hanging Lamp and drag it into the Furniture entity.

Nice, you now have a lamp hanging in your escape room.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 163

Next, you need to add a lightbulb to your lamp. Click Create Entity and select the
Sphere entity.

In the Inspector panel, rename the entity to Lightbulb. Set the translation to
(-1.588, 2.217, 0.437) and the scale to (0.141, 0.141, 0.141).

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 164

You now have a lightbulb inside the lamp, and you’re ready for a physics puzzle.

Using Rigid Bodies
When you add a new entity to Sumerian, that entity will not respond to physics. As
mentioned, physics can use a lot of your computer's resources, so an opt-in approach
makes sense.

To start using physics, you need to add a Rigid Body component. This not only tells
Sumerian that your entity will respond to physics, but it also allows you to set
various physical properties for the entity.

Select the Lightbulb in your scene and click Add Component. From the list of
options, select Rigid Body.

The component will show all the various options for your rigid body.

The Rigid Body component allows you to add an entity's velocity at the start of the
scene as well as its angular velocity. You can also add drag to it and prevent the
entity from moving or rotating on a certain axis.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 165

Now, run the scene and look at the lamp. You'll notice that the lightbulb is gone. This
happens because the lightbulb starts responding to physics once the scene starts. By
the time you look, it’s gone.

Where did it go? Stop the scene and look underneath the escape room. That's a long
way to drop.

You'll learn why it fell through the floor in a moment. For now, you want to configure
the lightbulb to fall on demand.

Select the Lightbulb in the Entities panel. Click Add Component and select the
State Machine component. Click the + button to add a new behavior. Name it
Lightbulb.

In the State Machine editor, select State 1. Name it Click to Activate. Later, you'll
have the lightbulb fall from gravity as a result of a message. But for now, you'll have
it fall with a click.

Click Add Action and, in the Controls category, select the Click/Tap on entity
action, and click Add.

Now comes the magic. In the Entities panel, select the Lightbulb. You want the
lightbulb to respond to physics, but not at the start of the scene. Instead, you want it
to react when you click the lightbulb.

To do this, you need to set the Rigid Body to kinematic. When you set a rigid body to
kinematic, you indicate that you are manually moving the entity via animation. This

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 166

means that the Rigid Body won't respond to gravity or move due to collisions. That
said, these entities can still be notified when a collision occurs, even though the
entities won't react to the collision.

In the Inspector panel, check the Kinematic property.

Play your scene and look at the lightbulb. You’ll notice that it's fixed in place.

To make it move, you need to disable the kinematic property of the Rigid Body.

At this time, Sumerian doesn't have an action to disable a rigid body being kinematic.
For that, you have to write your first bit of code.

In the Assets panel, switch to the Behaviors tab and click on the Lightbulb behavior
to open it in the State Machine editor. Click Add State and name your new state
Disable Kinematic.

Click Add Action and, in the Script category, select the Execute Script Expression
action. This will run a script expression when a state is entered.

You'll notice the following dummy code:

ctx.entityData.example = "hello"

Replace the dummy code with the following:

ctx.entity.rigidBodyComponent.isKinematic = false

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 167

It should look like this:

The code starts with ctx variable. This represents the current context, which you'll
learn all about in Chapter 12, "The Sumerian API." The entity represents the current
entity which is the Lightbulb. Next, the code accesses the current rigid body and
disables the kinematic state.

If this is your first time encountering JavaScript, do not panic. You will not be tested.
You'll learn all about JavaScript in Chapter 11, "Introduction to JavaScript." For now,
all you need to know is that the code turns off the kinematic state.

Now, drag a transition between Click to Activate and Disable Kinematic.

Your behavior should look like the following:

Now, run the scene and click the lightbulb. This time, you'll see your lightbulb fall,
but the floor won't stop it. You'd better take care of that!

Adding colliders
As you learned, using the physics engine is an optional process and you opt your
entities into it by assigning Rigid Body components.

Not surprisingly, collisions are also opt-in. By default, all objects will fly through
each other. You need to add a collider to stop them.

A collider defines the shape of the entity. You have limited shapes when using
colliders: You can use a Box, Cylinder, Sphere or an infinite plane.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 168

An infinite plane is great for floors. Select the Floor entity and, in the Inspector
panel, click Add Component. Add a Collider component.

You'll see that you have a few options. In the Shape drop-down, select Infinite
Plane.

You now have a new collider plane in your scene.

Unfortunately, the plane is vertical so it's acting like a wall instead of a floor. You
need to turn it into a horizontal plane, but there's no way to do that without rotating
the floor. Select the Gear icon in your collider component, then select Remove to
remove your collider component.

To make the collider horizontal, you'll need to make a child entity do all the work.
Click Create Entity and select the Entity option from the Others section. Name it
Floor Collider.

Drag it into the Floor entity to make it a child then set its translation to (0, 0, 0).

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 169

Now, click Add Component and add a Collider to it. In the Collider component, set
it to Infinite Plane.

Next, set the rotation to (-90, 0, 0). Use the transform arrows to move the plane just
on top of the rug.

Now, run your scene. You'll notice that the lightbulb continues to fall through the
rug, even though there’s a collider attached to it.

That's because the Lightbulb entity doesn't also have a collider. You need two
colliders to form a collision. Select the Lightbulb entity and, in the Inspector panel,
click Add Component. Select the Collider component. This time, set the collider to
be a Sphere. You'll notice a green outline will encompass your sphere. The green
indicates the borders of the collider.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 170

Now, when you run your scene, your lightbulb will land on the rug.

Adding velocity
At this point, you have a lightbulb on the floor, but that's not all you want to do with
it. The lightbulb is a part of the puzzle, and the user needs to be able to pick it up and
throw it.

Picking up the lightbulb is the easy part. When the user clicks the lightbulb, you'll
simply hide it. This is a matter of adding a click action that triggers a hide action,
which you'll add next.

In the Assets panel, select the Behaviors tab and then the Lightbulb behavior. You
want the click action to be added after the lightbulb has fallen to the ground. So
select the Disable Kinematic state then click Add Action. In the Transitions
category, add a Transition state.

Add another state, name it Click on the Lightbulb and add a Click/Tap on Entity
action. Add another state and name this one Hide Lightbulb and Notify. Then, add
a Hide action to it. Next, add an Emit Message action to it and set the channel to
LightbulbTaken.

At this point, any interested objects will know that the user is holding the lightbulb.

Finally, add a drag transition from the Disable Kinematic state to the Click on
Lightbulb state, and from the Click on the Lightbulb state to the Hide Lightbulb
and Notify state. Your behavior will look like the following:

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 171

Run your scene. Click on the lightbulb to make it drop; once it has landed, click on it
again.

The lightbulb should disappear. Magic!

For the second part of the puzzle, you need to throw the lightbulb at your painting.
Throwing your lightbulb means adding velocity to it, which you can handle with an
action. Being that this is a 3D engine, you apply velocity on the X, Y and Z axes.
Once you apply force, the object will respond to gravity as well.

To trigger the throw, the user needs to click on the red part of the painting while
holding the lightbulb. In the Entities panel, select the Red Diamond and in the
Inspector panel, click Add Component. Select a State Machine component. Click
the + button to add a new behavior and name it Red Diamond

Note: So far you've been naming your behaviors after the entity that uses
them. Later, you may create entities that are used by multiple entities. In that
case, it's better to name the behavior after what it does as opposed to what
uses it.

Like the last behavior, this behavior is also quite linear. Rename State 1 to Listen for
Lightbulb. Add a Listen action, and have it listen to the LightbulbTaken message.

Add another state. Name it Click to Throw. Add a Click/Tap on entity action. Add
one more state and name it Emit Throw Message. Add an Emit Message action
and set the Channel to ThrowLightbulb.

Now, drag a transition from Listen for Lightbulb to Click to Throw and from Click
to Throw to Emit Throw Message.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 172

At this point, you can add velocity to the lightbulb. The user will be throwing the
lightbulb from a fixed position, so you'll provide different velocities for the player's
position. This ensures that the lightbulb will hit the target every single time.

You first need to keep track of the user's position. In the Entities panel, select the
Lightbulb. Add a custom attribute to it. Name it Position and set the value to Right.
This indicates that the user is standing on the right comfy chair.

Each time the user switches between furniture, the behavior will need to track it. In
the Inspector panel, click the + in the State Machine component to create a new
behavior. Name it Throw Lightbulb.

Notice that Lightbulb is now responding to two different behaviors. This is useful to
avoid complicated logic.

Select the first state and name it Listen for User Actions. Add four Listen actions
and set the channels to: MoveToLeftComfyChair, MoveToRightComfyChair,
MoveToCouch and ThrowLightbulb.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 173

Now, add a state. Name it Set to Couch and add a Set String Attribute action and a
Transition action to it. For the Set String Attribute action, set the Name to Position
and the Value to Couch.

Duplicate the state, name it Set to Left Chair and set the String Attribute Value to
Left. Duplicate your new state and name it Set to Right Chair and set the String
Attribute Value to Right. The behavior will look like the following:

Now to setup the transitions. Drag a transition from MoveToLeftComfyChair to Set
to Left Chair. Drag a transition from MoveToRightComfyChair to
SetToRightChair. Then, drag a transition from MoveToCouch to SetToCouch.

Finally, drag transitions from Set to Couch, Set to Left Chair and Set to Right
Chair back to Listen for User Actions. Your behavior should look like the following:

At this point, the behavior knows where the user is located. Now, for the throwing
part. First, you need to show the lightbulb.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 174

Add a new state and name it Reveal Lightbulb. Add a Show action and a
Transition action. Drag a transition from the ThrowLightbulb event to the Reveal
Lightbulb state.

Now, you need to check for the actual position. Add a new state and name it Check
for Left. This state will test if the user is standing on the right comfy chair. If not, the
user must be standing on the left chair or the couch.

Click Add Action and in the Attribute category, add a Compare String Attribute to
a Constant action. Set the Attribute to Position and the Constant to Left. Drag a
transition from Reveal Lightbulb to Check for Left.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 175

Duplicate the state and name it Check for Right. Set the attribute constant to
Right. Drag a transition from On Position != Left to Check for Right.

Now that you have all of the logic in place, it’s time to launch the lightbulb.

Add a new state and rename it to Launch from Left Chair. At this point, you can
launch the lightbulb. Remember, the lightbulb is on the ground. You want it to
appear that the user is throwing it, so you need to change its position.

Add a new action and, in the Physics category, add the Set Rigid Body Position
action. Set the translation to (-0.757, 1.361, 1.606).

Click the new action again and, in the Physics category, add the Set Rigid Body
Velocity action. This is where you add the velocity amount. Set the velocity to (-10,
2.5, -3).

The first thing you did was set the Rigid Body translation. Remember, the lightbulb is
no longer kinematic so it responds to the physics system. This is why you set the
Rigid Body translation versus just moving the entity. The translation is set to be from
the user's perspective, so when the velocity is added, it looks like the user is throwing
the lightbulb.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 176

Drag a transition from the Check for Left state to the Launch from Left Chair
state. Use the On Position == Left event.

Run the scene. First, jump to the left comfy chair. Then, click the lightbulb, and when
it lands on the ground, click it again. After that, click the red diamond to throw the
bulb. You'll see that it goes right through the painting because the painting has no
colliders attached to it.

You'll handle this in a moment. For now, you need to add the other two states. Open
the Throw Lightbulb behavior and duplicate the Launch from Left Chair state.
Rename it to Launch from Right Chair. Set the rigid body position to (-2.896,
1.361, 1.606). Set the velocity to (-5, 2, -3.5).

Drag a transition from the Check for Right state to the Launch from Right Chair
state, then drag the transition from the On Position == Right event.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 177

Now, run the scene and click on the painting from the right chair. You'll see how the
user can now throw the lightbulb from this position.

Finally, you'll deal with throwing the lightbulb from the couch. Duplicate the state
and rename it to Launch from Couch. Set the Rigid Body translation to (-1.556,
1.361, -0.262). Set the velocity to (-23, 2, 4.6).

Finally, drag a transition between the On Position != Right and the Launch from
Couch state.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 178

Now that you have the velocities all in place, you need to add solidity to the world. In
the Entities panel, select the Painting Background and in the Inspector panel, click
Add Component. Add a Collider to it. Now, play your scene again, and this time, the
lightbulb bounces off the painting.

Time to make something happen.

Listening for collisions
Oftentimes, you'll want to know when two bodies collide. With your escape room,
you want to know when the lightbulb collides with the red diamond. When that
occurs, you’ll open the escape room.

Begin Contact and End Contact actions respond to collision events like every other
event. Keep in mind, when responding to collisions, your entity needs to have a
collider attached to it.

In the Entities panel, select the Red Diamond and in the Inspector panel, click Add
Component. Add a Collider to it.

In the Assets panel, open the Red Diamond behavior. Select the Emit Throw
Message and add a Transition action to it.

Click Add State and name your state Collide with Lightbulb. In the Collision
category, add a Begin Contact action to the state.

Click Add State and name it Hide Red Diamond. Add a Hide action to it. Drag a
transition from the Emit Throw Message state to the Collide with Lightbulb state.
Then, drag a transition from the Collide with Lightbulb state to the Hide Red
Diamond state.

Your behavior will look like the following:

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 179

Play the scene and throw the lightbulb at the red diamond. When it collides, the
diamond should disappear.

Note: As it turns out, collision detection can be very twitchy with Sumerian. If
your behavior expects a collision event and that event doesn't happen, reload
the page and page try again. Thankfully, the physics engine is slated for an
overhaul so this behavior should go away.

In some cases, you want a collision event but not an actual collision. For instance,
imagine that you've produced a virtual art museum. When a user stands in front of
the picture, your experience would then provide narration about the particular
painting.

For this to work, you want to use a collider that doesn't stop motion but still gets
notified when it's entered. To do this, you'll use a trigger. A trigger uses a collider to
define a collision space, but it doesn't cause collisions. Entities can pass right
through it.

Select the Red Diamond in the Entities panel, and in the Inspector panel, check the
Trigger checkbox. Objects will be able to pass through the collider. Now, you want
to extend the collider beyond the Red Diamond. Set the value of the Half Extents to
(1, 0.5, 0.5).

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 180

The Collider will look like this:

If you look at the painting, you'll notice that the collider now extends beyond the
length of the red diamond.

Note: You can increase how far both regular colliders and triggers extend.

Play your scene and throw the lightbulb at the red diamond. The lightbulb will pass
through the collider, but you'll also notice that the diamond doesn't disappear. That's
because no collision occurred. You need to listen for a trigger event instead.

Open the Red Diamond behavior and select the Collide with Lightbulb state.
Remove the Begin Contact action and, instead, add a Trigger Enter from the
Collision category. Drag a transition between the On Trigger Event event to the
Hide Red Diamond state.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 181

Now, when you play the scene and throw the lightbulb at the red diamond, the
diamond will disappear before the lightbulb hits it. That's because the lightbulb hits
the trigger first.

There's only one thing left to do, and that's to escape the escape room!

Escaping the escape room
The user solves the last puzzle by throwing a lightbulb at the painting. When this
happens, the wall should open up revealing the exit.

Open the Red Diamond behavior and select the Hide Red Diamond state. Rename
it to Puzzle Complete. Remove the Hide action. Now, add an Emit Message action.
Set the Channel to PuzzleComplete.

Select Wall 3, and in the Inspector panel, add a State Machine component. Click the
+ button to add a new behavior and name it Move Left Wall.

In the State Machine editor, name the default state to Listen for Puzzle
Completion. Add a Listen action. Set the Message channel to PuzzleComplete.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 182

Next, add a new state. Name it Move Left Wall. Add a Tween Move action. Set the
Translation to (0, 0, -1).

Drag a transition between the two states.

Select the Move Left Wall behavior in the Asset Panel and duplicate it. Rename it
Move Right Wall. In the editor, select the Move Wall state and set the Tween Move
to (0, 0, 1).

Select Wall 4 and drag the Move Right Wall behavior to it.

With the walls set up, you need to provide a way for the user to escape. Click Create
Entity and select a Quad. Name it Escape Arrow. Set the translation to (4.052,
1.437, -0.663), the rotation to (0, -90, 0) and the scale to (2.03, 2.03, 2.584).

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 183

In the Assets panel, click the Import files icon.

From resource files, select exit.png and import it into Sumerian.

Select the Escape Arrow. In the Inspector panel, expand the Material component.
Drag exit.png from the Asset panel to the Texture property. Since this a transparent
texture, you need to indicate transparency when using the Classic shader. Expand the
Opacity category and check the Enabled property.

With the Escape Arrow selected, click Add Component and add a State Machine.
Click the + button and name the new behavior to Exit Arrow.

Rename the default state to Escape the Room. Add a Click/Tap action to the state.
Click the Add State button. Name it Change Room.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 184

At this point, you'll redirect the user to a different web page. For now, you'll use
Google as the target, but be sure to read the challenge to do something else.

With the Change Room state selected, click Add Action. In the Controls category,
select the Exit to URL action. In the URL, type http://www.google.com.

Finally, drag a transition between Escape the Room and Change Room.

You almost have a complete working room. Right now, the lightbulb falls when the
user clicks it. You did this to make it easy to work on the final puzzle without having
to keep completing the first two puzzles. But now, you want it to happen only when
the user has solved the second puzzle.

In the Asset panel, select the Lightbulb behavior. Rename the first state, Click to
Activate, to Listen for 2nd Puzzle. Remove the On Click/Tap action then add a
Listen action. Set the Message Channel to PuzzleSolved and drag a transition from
Listen for 2nd Puzzle to Disable Kinematic.

Before you run through the escape room, make sure to reveal any entities that you
may have hidden.

Now, run through your escape room from the very beginning. Work your way through
the puzzles and click the escape arrow. You should see the following:

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 185

Congrats! You've escaped!

Key points
• A rigid body component indicates that the entity is going to use the physics

system.

• A kinematic rigid body means the entity will not respond to collisions or gravity.

• A collider determines the boundaries for an entity.

• Colliders can be larger or smaller than the attached entities.

Where to go from here?
If you've ever been to a Swedish furniture store, you know that those stores are large
and sprawling, filled with lots of different showrooms.

Your job is to create an entirely new escape room, using all of the pre-built assets
included with Sumerian. Have fun with the project but also, don't make it too hard.

Before you finish your escape room, you need to link to another Swedish themed
escape room. Thankfully, there's a great resource for finding escape rooms, which is
the Amazon Sumerian Slack channel. To browse the channel, head over to
amazonsumerian.slack.com.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 186

Note: Slack is a free instant message platform. It's used by groups and
organizations all over the world. You learn more about slack by visiting https://
slack.com

Once in the Sumerian Slack, ask where to look for escape room links. There may be a
dedicated channel for them. Find a published escape room and paste it in the Pick
and Exit exit action, then publish your room.

When you publish your escape room (don't worry, you'll learn about publishing
soon), paste the published game URL in the appropriate Slack channel. By linking
escape rooms, you can get a true experience of being trapped in a Swedish furniture
store.

Amazon Sumerian Chapter 6: Physics

raywenderlich.com 187

7Chapter 7: Virtual Reality

By Brian Moakley

Virtual Reality (VR) is a technology that aims to remove the four borders of your
computer monitor and replace them with a living, albeit computer-generated, world.
People have been pursuing this technology for decades, but it’s only been in the past
years that VR has become accessible to the average consumer.

Typical virtual reality devices rely on a headset that performs two functions. First, it
blocks out the physical world so that the head-mounted display (HMD) provides the
only light. The second thing it does is project computer-generated images to each
eye. When you move your head, the display matches your head movement, providing
an unparalleled sense of immersion. Some headsets provide controllers to match
your hand movements. There are even treadmills that allow you to walk in realtime.

Of course, VR tooling is equally as important as the headsets. As more people
purchase VR gear, they’ll be eager to consume VR content.

Thankfully, Sumerian supports creating VR experiences. In fact, this feature has been
in front of you the entire time. If you look at your canvas, you’ll see that there’s a
button that activates virtual reality.

raywenderlich.com 188

However, unless you set up your browser, you may run into this message:

Don’t worry, you’ll make this message go away later on. This chapter will show you
how to set up your browser to work with VR, and then give you the chance to play
around with some VR features. Once you get the knack of how things work, you’ll put
your knowledge to work by updating the escape room to work in VR.

Configuring Sumerian to use VR
Sumerian supports a large number of VR headsets. At the time of this writing,
Sumerian supports:

• Oculus Rift

• Oculus Rift S

• Oculus Go

• Oculus Quest

• HTC Vive

• HTC Vive Pro

• Samsung Gear VR

Sumerian is very proactive about supporting VR headsets. If you purchased a new VR
headset and it’s not on this list, then chances are that Sumerian will support it soon.

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 189

VR headsets come in two different types: Tethered and untethered. A tethered
headset is one where the host computer generates everything that appears in the
HMD. The tether may be a simple cord coming out of the back of a headset, or the
actual contents may be wirelessly transmitted from the host computer. The key point
is that you need a separate computer to generate the visuals and then transmit them
to the HMD.

An untethered headset is one where the HMD generates all of the content for the
user. With a focus on mobility, these headsets provide a VR experience at the
expense of limited movement or graphical fidelity.

Sumerian supports both of these headset types, although how you interact with your
scene will be slightly different. Sumerian uses a technology known as WebVR, which
allows for virtual reality experiences through a common browser. WebVR launched in
the spring of 2014, so it’s a relatively new technology. This means support is
scattered throughout a variety of browsers. Whereas Firefox supports WebVR out of
the box, Safari does not. Chrome's support requires configuring and may not be
available on all platforms.

Before you can do any work with VR in Sumerian, you must first prepare your
headset. Each manufacturer provides specific instructions. Make sure you go through
all of these instructions so that, by the time you start working with Sumerian, your
headset is up and running.

If you run into issues getting your headset working, contact the device manufacturer
or visit the support forums. Some headsets can be a bit tricky, but thankfully, setup is
getting easier all the time.

Setting up a tethered headset
Once your headset is ready, your next step may require you to configure your
browser. If you’re using an untethered headset like the Oculus Go, Oculus Quest,
Lenovo Mirage Solo, Samsung Gear VR and Google Daydream, you can skip to the
next section, "Setting up an untethered headset".

Each browser requires a different configuration. To see if Sumerian supports your
headset, head to https://webvr.rocks/.

Note: If you can’t get your headset to work in VR, you might find help in the
Amazon Sumerian Slack channel: https://amazonsumerian.slack.com/

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 190

Here are some instructions to get WebVR up and running in Google Chrome.

First, you need to have at least version 66 of Chrome. To find out your version, click
on the three dots on the right side of the browser. Select Help and then About
Google Chrome.

Once you’ve confirmed that your version of Chrome supports WebVR, you need to
activate it. In the URL field, type chrome://flags.

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 191

If you are using an HTC Vive headset, search for the WebVR and set it to Enabled.

Do the same for the following properties:

• WebXR Device API: Enabled

• WebXR Gamepad Support: Enabled

• Oculus hardware support: Disabled

• OpenVR hardware support: Enabled

Note: These settings are found on the Windows platform. If you don't see the
options listed, your platform may not support VR. For more information, you'll
need to read Chrome's documentation for your particular platform.

These properties activate the technologies that enable you to experience VR from a
browser. If you have an Oculus Rift, set the following properties:

• WebVR: Enabled

• WebXR Device API: Disabled

• WebXR Gamepad Support: Enabled

• Oculus hardware support: Enabled

• OpenVR hardware support: Disabled

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 192

At this point, you need to restart the browser and turn on your headset. When you
press the VR button this time, you’ll preview your scene inside of your headset.

Note: While working on this book, I ran into mixed results working with
Google Chrome and an HTC Vive. I found Firefox to have better results since it
doesn’t require any configuration. Hopefully, this will change in the coming
year.

With that, you should be off to the races! Remember, this technology is relatively
new, so you may run into problems.

Setting up an untethered headset
If you’re working with an untethered headset, you’ll need to publish your scene.
Once you publish your scene, you can then enter it into the device’s integrated
browser and view your content. Once you make a change to your scene, you’ll need to
republish it to see it in your headset.

To publish your scene, click Publish in the top-right part of the editor, then select
Create public link.

Note: In the following chapter, you’ll learn about additional options and how
to optimize your scene for publication.

You’ll receive a published link such as: https://us-east-1.sumerian.aws/
7b78d519f48e4b9cb389ba0fa8a5ae34.scene. As you can imagine, that link may be a
bit frustrating to type in your device’s browser.

To save time, you can use a link shortener service such as bit.ly. This will convert the
long link into something like bit.ly/2MhWWzO, which is far easier to type.

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 193

Note: Bit.ly requires an account to shorten your links. This allows you to
customize them and to track any stats. If you want a no-frills link shortening
service, use cutt.ly instead.

Using the VR Asset Pack
Now that you have your headset configured to work with WebVR, your next task is to
learn how to use Sumerian’s VR implementation.

Open Sumerian and, instead of returning to your escape room scene, create a new
scene. Once you’ve learned the basics, you’ll incorporate them into your escape
room. Oftentimes, demonstrating new concepts is easier when you start with a fresh
scene.

In the Sumerian dashboard, click Create new scene and name it Learning VR.

With your scene up and ready, your first step is to add VR functionality. Since not
every project is going to use virtual reality, you must opt in by importing a specific
asset. Click Import Assets and in the search field, type: VR

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 194

You’ll notice that this returns two assets: VR Asset Pack and Core VR. Core VR was
the first asset pack developed for Sumerian. However, Amazon has recently
deprecated Core VR in favor of the VR Asset Pack. Being deprecated, Core VR may
be removed at any time, so it’s best not to use it in your projects.

Once you’ve imported the VR Asset pack, you’ll notice that it has imported a lot of
items in the Assets panel. With VR, you need to use a special camera. VR works by
projecting an image to the left eye and an image to the right eye. Your brain does the
hard work of stitching those images together. Unfortunately, the default camera
doesn’t provide this functionality. You need to use a special VR camera.

Note: At some point in the future, Sumerian will unify the camera system so
that the default camera will also work as the main VR camera. Keep an eye on
project updates by visiting the following URL: https://aws.amazon.com/
releasenotes/?tag=releasenotes%23keywords%23amazon-sumerian.

In the Assets panel, switch to the Entities tab and drag a VRCameraRig to the
canvas. In the Entities panel, select the VRCameraRig. You’ll see that you have a few
options in the Inspector panel.

You can have multiple VR cameras so you need to designate this camera as the
current camera. In the Inspector panel, check the CurrentVRCameraRig option.
Since it’s helpful to have the VR camera show up at the current camera’s location,
check the StartAtCurrentCamera option as well.

If you’re using a tethered VR system, play your scene and then press the VR button
on the canvas. Otherwise, publish your scene and view it in your VR browser. You’ll
notice that you can look around. Pretty cool stuff!

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 195

Note: The rest of the chapter will instruct you to play your scene. If you’re
using an untethered headset, consider that shorthand for publishing your
scene.

Granted, there’s nothing to really see or do, but you’ll take care of that soon enough.

Teleporting and movement
One of the hard facts of life with VR is that it can make you sick.

According to Jonathan Ogle-Barrington, an author of Unity AR & VR by Tutorials,
motion sickness occurs when there is a mismatch between the vestibular system
(inner ear and brain) and the oscular system (eyes and brain). Essentially, the eyes
may be telling you that you are falling from a high vantage point, but your inner ear
is telling you that you aren’t moving at all. This conflict of information can cause
sweating, fatigue, headaches and even vomiting. In a nutshell, it’s not a good time.

A trick to limit motion sickness is to limit movement. That’s why teleporting is an
essential tool in your VR toolbox. And thankfully, this is a tool that the VR Asset
Pack provides.

In your scene, click Create Entity and select the Box entity. In the Transform
component, set the scale to (30, 1, 30).

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 196

In the Material component, set the Color (Diffuse) Color to 00ff00. The color you
select doesn’t matter. Ideally, you want a color that contrasts with the color of the VR
pointer, which makes the pointer easer to see.

Wait! Did someone mention a VR pointer? When using VR, you’ll typically be using a
controller represented in 3D space with a line projected from it. This line lets you
know what you’re pointing at. Some headsets come with multiple controllers; others
don’t. Sometimes, these controllers are referred to as gamepads.

In cases where your controller passes over an entity, Sumerian provides an icon that
indicates that you can perform some action. In this case, you’re providing a
teleporting behavior, so you need a teleporting icon.

In the Assets panel, switch to the Scripts tab.

In the Scripts tab, drag the vr_action_object_teleport onto your Box entity.

Play your scene in a VR headset. Look at the green box and point one of the VR
controllers at it. You’ll notice a teleport icon where you point it. Clicking the
controller’s button will teleport you to the location.

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 197

All it took was adding a script. How’s that for convenience?

Grabbing entities
In VR, one of the cool things that you can do is actually grab things. This allows users
to pick up entities with a press of a button. Even better, implementing this ability is
as easy as adding a script to an entity.

Again, click Create Entity and select the Box entity. Set the translation to (0.5, 1,
-1.5).

Select the newly-created box and, in the Assets panel, switch to the Scripts tab. Set
the Material to have a red color.

Drag the vr_action_object_grab script and drop it on the box.

Now play your scene and switch to VR. Click on the box and you’ll see that you can
move it with your controller. You can rotate it as well.

Notice that it doesn’t respond to gravity. As you learned in Chapter 6, "Physics",
that’s because the box doesn’t have a Rigid Body component attached to it.

Stop the scene and select the red box. In the Inspector panel, click Add Component
and add a Rigid Body to it. Click Add Component again and add a Collider
component.

Finally, click on the green box and add a collider to it as well.

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 198

Now, play your scene, pick up the box and release it. You’ll see that it now responds
to gravity and physics.

Activating the escape room
So far, you’ve learned how to teleport and how to grab things. The last, and probably
most important, thing is to learn how to activate things.

Don’t worry – this won’t be totally new to you. Activating is the equivalent of
clicking on an entity. The big difference between a click action and a VR activation is
that the click transitions to another action. When you activate an entity, that entity
sends out a message instead.

To see this in action, you’ll update the escape room to work in VR by using
activations.

Note: At the time of this writing, some of the provided Sumerian assets are
high poly, meaning they’ve been made up of lots of triangles. High poly
models can affect the framerate of a scene. A variable framerate can induce
motion sickness in VR. If you find yourself working on the scene and getting a
little queasy, stop using VR until the queasiness passes. Motion sickness is
something you can’t power through. Just take a break, step aside and have a
glass of water. You’ll feel better for it!

To get started, return to Sumerian and start your Showroom Skeedaddle scene. Click
Import Assets and import the VR Asset Pack.

In the Assets panel, drag a VRCameraRig to the canvas and, in the Inspector panel,
check all of the VRCameraRig component options.

Now, when you run the scene, you can switch to VR mode and look around your
escape room. Of course, you can’t do anything with it yet.

Currently, your user activates all of your puzzles by clicking their mouse. Your task is
to activate these puzzles from your VR controller.

You can activate an entity either by clicking on it or by hovering over it.

In the Entities panel, select the Light Switch entity. In the Assets panel, switch to
the Scripts tab and drag a copy of the vr_action_object_activate to the light switch.

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 199

Unlike the other scripts, this one contains a few additional parameters. The Input
option determines how you want to trigger the activation. The user can hover a
controller over the entity or click the controller at it. In this case, select the
OnActionButtonDown option. Next, you need to emit a message. Set Emit Message
to ActivateSwitch.

Now, play the scene. When you hover your controller over the Light Switch, you’ll see
it’s replaced with a pointer icon.

The activation triggers just the first puzzle. You now need to activate the three
different-colored entities.

In the Entities panel, select the green Statue and drag the
vr_action_object_activate to it. Set the Input to OnActionButtonDown and set
Emit Message to ClickedGreen.

Do the same for Desk Lamp, setting Emit Message to ClickedYellow. Do the same for
the Vase setting Emit Message to ClickedBlue.

Finally, you need the Lightbulb to be clickable. Add thevr_action_object_activate to
it. Set the Input to OnActionButtonDown and set Emit Message to
LightbulbTaken.

So far so good, but the Lightbulb responds only to clicks and not to activations. To fix
this, open the Lightbulb behavior and in the Click on the Lightbulb state, click
Add Action. Add a Listen action and set the channel to LightbulbTaken. Finally,
drag a transition from the OnLightbulbTaken event to the Hide Lightbulb and
Notify state.

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 200

Now, play the scene. You should be able to activate the Light Switch, solve the puzzle
and pick up the Light Bulb.

To add the throwing element, select the Painting in the Entities panel and drag a
vr_action_object_activate script onto it. Set the Input to OnActionButtonDown
and set Emit Message to ClickedPainting.

Now, you want it to respond to the activation. Select the Red Diamond behavior to
edit it. In the Click the Throw state and add a Listen action. Set the Message Channel
to ClickedPainting and drag a transition from the On "Clicked Painting" event to
the Emit Throw Message state.

Now when you run the scene in VR, you should be able to get through all of the
puzzles with a click of the controller.

At this point, you have an almost-functional escape room. The VR escape room is
missing two things: A proper ending and movement.

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 201

The current ending is not VR friendly. It sends the user to another escape room, and
the quick transition would be jarring. A better solution is to present a
"Congratulations, you escaped!" message with a button prompt to launch another
escape room. Later in the book, you’ll learn how to display user interface elements.
Once you learn how to create a user interface, head on back to this chapter and see if
you can produce an appropriate VR-friendly ending.

Finally, there’s no way to move in the scene. In the regular version, the user jumps
between the pieces of furniture. You’ll do this now using an activation.

Challenge

Challenge: Teleportation
Currently, users can teleport by clicking on a piece of furniture. Your task is to use
this teleportation mechanism with your VR controller. This requires you to add the
activate script to the couch and the comfy chairs. Of course, there are a few other
things to do as well, but that’s the fun of the challenge.

Here’s a hint: Remember that the scene has two cameras now. One camera is for
standard users and the other is for VR users. Think about what happens when a
regular user clicks on a piece of furniture. Now figure out how to update the scene
when a VR user clicks on that piece of furniture.

Give it a shot!

Solution

This challenge boils down to clicking on a piece of furniture and moving the camera
to it. When a regular user clicks on a piece of furniture, the regular camera moves.
For the challenge, you need the VRCameraRig to move.

First, you need to set up the VR click actions. Drag an instance of the
vr_action_object_activate script onto the Couch, the Left Comfy Chair and the
Right Comfy Chair.

For all instances of the script, set the Input to OnActionButtonDown.

Next comes the messages. For the couch, set Emit Message to MoveToCouch. For
the Left Comfy Chair, use MoveToLeftComfyChair, and for the Right Comfy Chair,
use MoveToRightComfyChair.

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 202

Now, you need to move the VRCameraRig. Thankfully, you don’t have to do much at
all. Instead of writing a new solution, you can just reuse an existing one. In the
Entities panel, select the VRCameraRig and drag a Player Camera behavior onto it.
The Player Camera behavior listens for all the events and moves the associated
entity. In this case, the VRCameraRig will move just like the Player Camera.

Now you can teleport with style.

Key points
• Web VR is a new technology. You will need to research your preferred browser to

learn if WebVR is supported on your platform.

• Headset support is always being updated.

• Tethered headsets can run Sumerian scenes from the editor whereas untethered
headsets will need to publish the scene.

• To enable VR in your scene, you need to import the VR Asset Pack.

• The asset pack allows you to grab, teleport and activate entities.

Where to go from here?
At this point, you know everything you need to put together a nice interactive VR
scene. Not surprisingly, there’s a lot more to it. You can deactivate controllers,
configure the pointers and provide velocity when you drop things.

To learn more about the various configuration options available, check out the VR
Assets tutorial on the official documentation site. You can find it here: https://
docs.sumerian.amazonaws.com/tutorials/create/beginner/vr-asset-pack/

Amazon Sumerian Chapter 7: Virtual Reality

raywenderlich.com 203

8Chapter 8: Post Effects &
Publishing Your Scene
By Brian Moakley

By this point in the book, you should be familiar with Sumerian. You can add entities,
provide logic and even include virtual reality in your scenes. You have all the tools
necessary to make some awesome experiences. Unfortunately, no one can use your
scene unless you publish it. You can create an amazing experience, but it won’t get
any appreciation until you let other people interact with it.

Publishing is only part of the equation; you may want to optimize your scene or even
add additional effects to make it great. Don’t worry, this chapter will guide you
through the process.

Saving snapshots
Throughout this book, you’ve been using the Entities panel to select entities and
configure the components that are attached to them. You can also use the Entities
panel to adjust various aspects of your scene.

raywenderlich.com 204

In the Entities panel, select Showroom Skeedaddle and look at the Inspector panel.
You’ll notice that your scene has a lot of components attached to it.

This is where you can configure your scene and add additional effects to it.

Use the AWS Configuration when you need to access services outside of your scene.
You’ll do this in later chapters.

Now, before you make any changes, expand the Snapshots component. This
component allows you to save versions of your scene before you make any major
changes. Later, you can revert any changes. This is great when you are developing a
scene and you need to make some big changes. You can save a snapshot and then
make your changes. If something goes wrong or the feature isn't working, you can
simply restore to your saved snapshot.

You'll be making some changes, so now is a good time to save a snapshot. For the
name, enter Pre Post Effets and click Create.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 205

Once saved, you’ll see a list of snapshots that you can restore. Simply select the
snapshot you want to restore from the dropdown and click the Restore button.

This will restore all your assets from when you made the snapshot.

Note: As you continue through the rest of the book, try saving snapshots as
you make your way through the chapters. This will allow you to jump back to
earlier parts of your project in case you run into issues while troubleshooting
problems.

Adjust scene settings
Right now, the scene feels a little heavy. Click on the Scene Stats component. You
should see something like this:

This gives you a breakdown of the "cost" of your scene at the location you’re viewing
it from. As you move the camera, the numbers will change depending on things like
how many entities are displaying and the lighting conditions.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 206

Ideally, you want to provide a great experience with a scene that doesn’t take a lot of
resources to render. Although computers are growing in power all the time, you don’t
want to provide an experience that can only a small percentage of your audience can
enjoy.

The first category is FPS, or Frames per Second. A higher FPS provides a smooth
experience. Lights, draw calls and all of the various entities that make up your scene
all affect your FPS.

When working with VR, you want a high FPS so that you can provide a smooth visual
experience for your user. Frame rates that bounce all over the place can induce
motion sickness.

Draw Calls is the drawing for your scene. The more items the scene has to draw, the
slower it will run. Limiting shadows and post-effects will decrease the draw calls you
need.

You can also speed up your FPS by designating entities as static. When an entity
doesn’t move, you can mark it as static. Sumerian will then optimize that entity’s
materials to decrease the number of draw calls it needs to render the scene.

From the Entities panel, select Wall 1 and expand the Transform component. Check
the Static checkbox.

Starting at the top of the Entities panel, select each entity and, if they don’t move,
check the Static checkbox. If an entity has children, and those children don’t move,
then you can set the static property on the parent. When you do, Sumerian will
prompt you to ask if you want to set all the children to static.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 207

Doing so will make your scene render and perform faster. To learn about the other
settings, review the Sumerian documentation.

https://docs.aws.amazon.com/sumerian/latest/userguide/scene-scenestats.html

Note: Once you feel comfortable with the engine, take some time to review the
Sumerian User Guide. It’s a treasure trove of information and a great place to
go when you have questions about the engine or its components.

Finally, if you want to see how traversing the scene directly in your canvas affects
your stats, click the Toggle Stats on Canvas. This will display a small window with
all of your stats inside.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 208

Configuring the environment settings
So far, you’ve focused on configuring various options regarding the scene itself, but
you can also configure your scene’s environment. Select your scene and expand the
Environment component. You’ll see that you have many different options.

The Background section allows you to configure the color of your background. By
default, this is configured to a grey color. If the grey color isn't to your liking, you can
click the Color box to change it.

The Skybox section allows you to replace the dreary grey color with textures to
represent the sky. A skybox is just a series of images that wrap around the entire
world.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 209

By default, all scenes are generated with an empty skybox. You can create your own
skyboxes by adding textures to the component.

Sumerian also includes some built-in skyboxes as well. If you click Import Assets
and then search for skybox, you’ll see that you have many options.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 210

When you import a skybox, it’s imported into the Skybox tab in the Assets panel.

Some skybox assets just import textures instead of an actual skybox asset. In this
case, you must assign the textures to your current skybox. By default, skyboxes are
spherical. This means when you add a texture to it, the skybox texture will wrap
around a sphere. A box skybox means you need to provide a texture for the various
viewpoints.

The Environment Lighting section allows you to set the HDR textures for your
background. This is an advanced form of rendering that supports a wider range of
colors. Sumerian includes several HDRI images that you can import to see this high-
end feature in action.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 211

The Fog & Ambient section allows you to modify the global light and to incorporate
fog into your scene. The Ambient property is a color that you can apply to the light.
By default, it’s set to #000000. This means that you haven’t applied any lighting
effects. By selecting a color, you add that color to the light.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 212

Fog essentially removes entities from the scene. If you have a scene with a large
number of entities, you can use fog to hide them. This is a great way to increase
performance.

When you add fog, you provide near, far and color properties. The near property
indicates when you would like the fog to start to appear and the far property
indicates when you can’t see anything.

The Particles section is a global feature that allows you to add snow to your enter
scene. Thankfully, Sumerian features a particle system, which you can use to
simulate fire, smoke and other fun things. This is a global setting that affects the
entire scene where as particle system is attached to an entity. You'll learn how to
create your own particle system in Chapter 13, "Animation and Particle Systems."

Finally, the Sound section lets you configure the global sound settings for the scene.
You’ll be learning about adding sound in Chapter 9, "Custom Models and Sound."

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 213

Post effects
Post effects are where you can have a lot of fun with your scene. You can use
antialiasing to smooth out jagged edges or motion blur to smooth out movements.

You can think of a post effect like an Instagram filter. The engine determines the
elements it needs to display in the scene and then draws the image. Before that
happens, you can apply a filter to it.

Expand the Post Effect component and you’ll see there’s only one button which
reads, "Add Effects". Click the button.

You’ll see a list of different post effects. Select the Sepia post effect and click Add.

Once you add the post effect, your escape room will go all arty on you.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 214

You can add as many post effects as you like. Sumerian applies the effects in the
order that you added them.

For example, if you wanted to reproduce the look of the game Return of the Obra
Dinn, you’d add a Hatch effect, and your scene would look like this:

On the Hatch effect, set the Spread to 4 and then drag the Hatch above the Sepia.

Now, you’re left with an arty-looking room.

If you don’t want to view the effects while developing your scene, you can turn them
off. Click the Post Effect button located near the top menu bar to disable them.

This only works while you’re editing. The moment you play your scene, the post
effects will be applied. While the effects look cool, they do make it harder for users to
solve your room. You can remove the effects by clicking the x button or you can jump
to the Snapshots component and restore an earlier version of your scene.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 215

Keep in mind that post effects are not free. They require processing and can increase
the overhead of your scene as well. Last but not least, post effects will not work in
VR.

Document settings
So far, you’ve been developing your scene with the assumption that your users will be
on a desktop computer. But given that Sumerian is a web-based technology, a large
portion of your audience will be using mobile devices. You can test your scene on
various mobile devices, which is always a good idea, but you can also configure the
canvas to match the resolution of the scene.

Click the Document component and you’ll see that you have fields.

The first field, Grid, changes the color of the scene grid. For example, set the color to
Red.

The Size field allows you to set the resolution of the canvas. You have three different
options. Currently, you’ve set the canvas to Stretch. This stretches the scene across
the width of the window. The Aspect Ratio allows you to set a target ratio. For
instance, you can set a ratio to 16:9 or supply your own target ration. The
Resolution option allows you to target a specific pixel resolution. You can select a
preset your own resolution or use one of the presets.

For now, select the Resolution option.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 216

You can select one of the several presets or you can provide your own resolution.

If your device isn’t listed, you can find its resolution and add it manually.

Publishing
At this point, your scene runs really well. You’ve added some cool effects and have
everything ready to go. The last thing you need to do is publish it.

You have two options when you publish: You can make your scene private or public.

Regardless of which option you choose, the scene will be hosted by Amazon Web
Services. With public scenes, any person can access the scene. All they need to view
your content is a link.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 217

If you host privately, you determine who can view your scene. Unfortunately, setting
up private viewing is a little complicated. It requires using Amplify and configuring
your app to work with both Sumerian and Cognito. Cognito is a service that manages
users.

Later in this book, you’ll learn how to configure AWS to work with Sumerian so you
can leverage all those excellent services. For now, you’ll publish your game scene
with public permissions.

Note: If you’re unfamiliar with AWS, JavaScript or working on the console,
then you should avoid privately publishing your scene until you understand
the related technologies, as they take a lot of configuring. If not, then at least
have someone familiar with these technologies review your configuration to
avoid exposing private scenes to unauthorized users.

Regardless of whether a scene is public or private, you can incorporate that scene
into your own web apps. Amazon manages the authentication for you.

To publish your scene publicly, click Publish and select Create public link.

You’ll see a dialog that asks you to confirm your publication, along with another
Publish button.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 218

Once you do that, you’ll receive a public link. You can pass the link to anyone who’s
interested.

Later, you may discover a bug or mistake within your scene. Once you fix the mistake,
you need to republish it. To do so, click the same publish button, and then click
Republish.

You also have the option to unpublish a scene. You may want to unpublish a scene in
cases where an event expires or you find that it uses too many AWS resources.

Key points
• Snapshots allows you to save versions of your scene during various points in

development. This allows you to restore your scene at any later point in time.

• Setting entities to static is an easy optimization to make your scene run faster.

• Use the environment settings to configure the world around your scene such as
adding skyboxes to applying fog.

• Post effects provide great visual effects but they can affect your scene's
performance.

• Publishing your scene publicly allows everyone access it. With private access, you
set your user access levels.

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 219

Where to go from here?
For more information about publishing your scene, check out this excellent online
resource:

https://docs.sumerian.amazonaws.com/tutorials/create/intermediate/amplify-
react-2/

Congratulations! You’ve completed your first Sumerian experience. You made an
escape room that touches all aspects of the engine, but believe it or not, you’re just
getting started.

In the next section, you’ll create an instructional experience. In the process, you’ll
learn about Sumerian’s sound and lighting system, how to animate entities and how
to leverage the power of the engine by learning Sumerian’s application programming
interface.

See you in the next section!

Amazon Sumerian Chapter 8: Post Effects & Publishing Your Scene

raywenderlich.com 220

Section II: Building an
Educational Experience

Building an escape room is not only fun, but it’s also a great way to learn a 3D
engine. But while escape rooms are entertaining to build, Sumerian can do much
more. The engine can power a range of different experiences, such as virtual house
tours or a digital concierge service.

In this section, you’ll create an experience to educate a user. Imagine returning from
the store with a new bread machine. Instead of reading the instruction manual, you
scan a QR code. This opens a web browser that provides a quick-start walkthrough on
how to use the device.

You’ll create a walkthrough like this in the upcoming section. By doing so, you’ll
explore the following topics:

Chapter 9: Custom Models & Sounds: In this chapter, you’ll provide your own
models to create a scene and you’ll incorporate sound into your experience to
narrate the demo.

Chapter 10: Lights, Camera, Action: This chapter provides an overview of the
camera and lighting system. You’ll learn how to use cameras and lighting to direct a
user’s focus.

Chapter 11: Introduction to JavaScript: Being successful with Sumerian means
knowing JavaScript. This chapter will get you up and running with the language.
You’ll learn JavaScript basics while working in the context of Sumerian.

Chapter 12: The Sumerian API: The Sumerian API allows you to take your
experiences to the next level. This chapter will help you get started with the API by
introducing you to its core concepts.

raywenderlich.com 221

Chapter 13: Animation & Particle Systems: You’ll learn how to tween entities,
animate models and use the timeline editor. You’ll also use the particle system to
add some steam to your bread.

Chapter 14: Incorporating Web Content: This chapter shows you how to embed
YouTube videos into your scene. You’ll also learn how to provide dynamic
information in a scene by using HTML, CSS, and JavaScript.

Amazon Sumerian Section II: Building an Educational Experience

raywenderlich.com 222

9Chapter 9: Custom Models
& Sound
By Brian Moakley

Imagine that you’ve just returned from the store, and in your hands is the new Bread
Maker 6-5000, a powerhouse of a machine designed to bake the tastiest bread. Upon
opening the quick start guide, you find a simple QR code. You can scan the code with
a QR reader program on your phone and you find a nice little demo that shows you
the basics of the machine. In the next six chapters, you’ll build this demo and gain a
better understanding of Sumerian and its various components in doing so. There’s no
better place to start than at the beginning, so get yourself a nice mug of coffee and
crack those knuckles — there’s some bread that needs baking!

Setting up a Sumerian project
To get started, launch the Sumerian dashboard and this time, click the Projects link
on the left-hand side of the dashboard.

raywenderlich.com 223

So far, you’ve just created scenes and saved them – but what about working on
something that’s composed of multiple scenes? Sumerian projects allow you to
organize these scenes. You can think of projects as a grouping mechanism.

Click New Project to create a new project. Give it the name: Bread Maker 6-500 and
click Create.

Once you create a project, you’ll be brought to the scene list. A project can contain
up to a thousand scenes. You’ll also notice tabs for Assets and Templates.

When you create a scene, you can export assets, which other scenes in your project
can then import. You can find a list of those assets in the Assets tab.

Templates allow you to create starting points for scenes. For instance, imagine you’re
creating lots of different demo variations of the Bread Maker 6-500. You may add
your models and configure your lighting, then save the results as a template. You
then use that template as a starting point for any other demo. You don’t have to redo
the hard work of setting up your models.

Click Create new scene, name the scene Quickstart and click Create. This will
launch an empty scene. Exit to the dashboard and select the Bread Maker 6-500
project in the project listing.

You’ll see the newly-created Quickstart scene in the scene details. Select the scene,
but don’t click on the link (the scene name); otherwise, the scene will open. You just
want to select the scene by clicking on the row. Once selected, the right-hand column
changes to show the Scene Details.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 224

You can rename your scene, duplicate it and delete it, if necessary. You’ll notice that
the thumbnail it uses indicates the current template. By clicking on the thumbnail,
you’ll see the option to provide your own.

Now, open your scene. It’s time to get busy.

Setting up the scene
You built an entire escape room from scratch in the last section. You needed to
create the entire room because the user interacted with various facets of the room.
They controlled the camera and determined where to look. In this scene, you’ll build
only a partial room. The scene interaction will be limited, so it doesn’t make sense to
construct a complete environment.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 225

Think of your scenes like a Hollywood set. You only want to provide assets that the
user will see. For instance, a mansion on a Hollywood set may look exquisite and
well-detailed, but once you step through the doorway, you’ll discover that the house
is just the outside facade.

With your scene open, click Create Entity and select a Box entity. Set the box’s
translation to (-11.367, 3.711, -7.37). Set the scale to (12.428, 0.145, 7.19).

Name the entity Countertop.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 226

Click Create Entity again and select an Empty Entity. Name it Kitchen Walls.
You’ll use this entity to store your walls.

Once again, click Create Entity and this time, select another Box entity. Name it
Wall. Set the translation to (-11.912, 5.065, -3.847). Set the scale to (0.179, 9.88,
14.555).

You now have a wall with a countertop running through it... literally. The countertop
goes right through the wall. But you don’t have to worry about that since the user
won’t see it.

Drag your new wall into the Kitchen Walls entity.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 227

Click Create Entity again and select another Box entity. Name it Wall 2. Set the
translation to (5.596, 5.064, -11.041). Set the rotation to (0, 90, 0). Set the scale to
(0.179, 9.88, 34.718).

Now, drag Wall 2 to the Kitchen Wall entity.

Now that’s one bizarre kitchen.

Believe it or not, that’s your completed kitchen. There are no floors or ceilings, only
two walls and an empty countertop. Remember, the user won’t be seeing the entire
kitchen. They’ll only see what you want them to see.

Note: If it bothers you to see the countertop sticking through the wall, resize it
so it stops against the kitchen wall. Just remember, the user won’t know. In
some cases, like the escape room, the geometry needs to be perfect. In others,
it’s okay to color outside the lines, so to speak.

Tiling textures
The kitchen is a little bare and could use some decoration. It doesn’t require much; a
little texture can go a long way. Thankfully, there are two textures included to
decorate the walls and the countertop. These are special textures meant to be tiled.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 228

In the Assets panel, click the Import files from your computer button – it looks like
a folder icon. In resources/textures, navigate to Textures_Tiling and select both of
the textures.

In the Assets panel, switch to the Materials tab and select the Default Material.
This is your countertop. Change the name to Countertop Material. Next, switch to
the Textures tab and drag the Granite_Color.png texture to the COLOR (DIFFUSE)
section on your Countertop Material.

Now, you have a countertop worth looking at! If you zoom into it, you’ll find the
detail looks a little mushy. Since the user will be looking at the bread machine with
the camera close to the counter, it’d be better to increase the tiling to make the
close-up view look sharper.

In the Assets panel, select the Texture tab and then select the Granite_Color.png.
The Inspector panel will display some information about the texture. Expand the
Placement section. The placement determines how the texture maps onto a 3D
surface. You define the placement by U,V coordinates. You can control how the image
repeats using the Repeat U and Repeat V commands.

Increase the Repeat U and Repeat V value to 5.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 229

This decreases the tiling size, sharpening the overall counter.

Feel free to play around with these options to see how they affect the texture. You
also have a lot of advanced options to control how the textures look as well.

Now, for the wallpaper. Switch back to the Material tab and select Default Material
2. Rename it to Wallpaper Material.

Select the Texture tab and drag the WallPaper_Color.png texture to the COLOR
(DIFFUSE) section. Your wallpaper will appear on one of the walls.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 230

Now, for the other wall. In the Entities panel, select Wall 2. In the Assets panel,
switch to the Materials tab. Drag the Wallpaper Material to the Wall 2 Material
component.

You’ll notice that your wallpaper doesn’t exactly match up. The flowers on the long
wall are horizontally stretched.

To fix this, you can increase the horizontal tiling; however, this requires creating a
new texture and material. In the Assets panel, switch to the Textures tab and then
duplicate the WallPaper_Color.png texture.

Select the duplicated texture. In the Inspector panel, set the name to
WallPaper_Color_Long.png and, in the Placement section, set the Repeat U to 3.

Switch back to the Materials tab and select the Default Material 3. Rename it to
Wallpaper Long and assign the WallPaper_Color_Long.png to the COLOR
(DIFFUSE) section.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 231

Finally, in the Entities panel, select Wall 2 and assign it the Wallpaper Long
material.

The wallpaper now has matching-sized flowers.

Importing and adding models
With your kitchen all set up, your next task is to import your models. Earlier, you
imported the models by clicking Import Assets. In this chapter, you’ll upload your
own models.

Note: Keep in mind that AWS charges for model storage. At the time of this
writing, AWS charges six cents per gigabyte of storage. Thankfully, the models
used in this chapter are relatively small.

Sumerian allows for two model formats: FilmBox (.fbx) and Wavefront OBJ (.obj).
These are two industry-used formats. The max size for a model is 50 MB.

When you import a model into Sumerian, Sumerian will convert the model into an
asset pack that you can incorporate into your scene. If the model contains
animations, Sumerian will import those animations.

In the Assets panel, click the Import files from your computer button and, in
resources/models, shift select all of the FBX files. It may take a moment, but when
Sumerian has finished, you’ll have a bunch of new entities.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 232

Switch to the Entities tab to see your models.

Drag the BreadMachine.FBX entity onto the canvas. Name it to Bread Machine.
Set the translation to (-10.485, 3.78, -7.01) and the rotation to (0, 180, 0).

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 233

Unfortunately, your bread machine looks more like a Styrofoam cooler.

That’s because Sumerian imports the textures as separate images. You’ll fix this
soon, but for now, you need to add the rest of the models. First, import the following
models and add them to the canvas. Make sure to add three eggs to your scene. Once
you have all your models in your scene, rename them according to the following
table:

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 234

Set the models to the following:

Your scene should look like the following:

Click Create Entity and select an empty Entity. Name it Ingredients. Drag all of
your models except the Bread Machine into the Ingredients entity.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 235

Create a new Empty Entity and name it Eggs. Drag it to the Ingredients entity, then
drag all the eggs to it. Your panel should look like the following:

The bread pan is going to sit next to the ingredients. This is actually part of the bread
machine. In the Entities panel, expand the Bread Machine and select the
Bucket_14_-_Default entity. Rename it to Breadpan.

In the Entities panel, drag the Breadpan entity out of the Bread Machine and to the
Quickstart scene.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 236

Set the translation to (-10.693, 3.461, -8.6).

Your models should look like the following:

Now that you have your models, it’s time to add a little color to the world.

Texturing your models
While your models may look nice, they seem to lack a bit of color. As you know, when
you imported the models, Sumerian didn’t include the actual textures. However, you
can still see the model. Sumerian has created a material for you and assigned it a
generic white color.

To add a more realistic color, click Import files from your computer button in the
Assets panel. In the resources folder, navigate to textures/Texture_BreadMachine.
Shift-select all of the textures and click the Open button.

The textures will have interesting names like
BreadMachine_AmbientOcclusion.png and BreadMachine_Normal.jpg. Jake
Nolt, the model artist for this book, provided these names to let you know what role
the images play for your model.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 237

These images refer to the classic shader included with Sumerian. The PBR shader
uses a similar approach, but its internal methodology is different.

To get started, select the 14_-_Default Material so that it appears in the inspector.
Rename it to Bread Machine Material.

You'll be assigning textures to the various categories according to the following:

The first shader category is the COLOR (DIFFUSE) category. This provides simple
colors to your model. Drag the BreadMachine_Color.png texture to this category.
You’ll see your model gain some color.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 238

The normal category is next. The normal category determines how light bounces off
the model. It doesn’t affect actual light in a scene, but it provides greater detail on a
model.

Drag the BreadMachine_Normal.png texture to the NORMAL category and look at
the model update.

The specular category determines the direct reflections on an object. Drag the
BreadMachine_Specular.png to the SPECULAR category.

The reflectivity defines how much light the material reflects. Drag the
BreadMachine_Reflective.png to the REFLECTIVITY category.

Finally, the Ambient category determines the color and value of an object without
considering the lighting. Drag the BreadMachine_Ambient.png to the AMBIENT
category.

You’ve made the model look quite different now, just by adding a few additional
images.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 239

Now for the ingredients. In the Assets panel, click the Import files from your
computer button. In resources, navigate to textures/Textures_Ingredients. Import
all the textures.

All of the models contain their own material. You can use this material to texture
your model or you can create new material.

Your project will contain two scenes, with only one of them being user-facing. In this
case, you’ll have all your models share the same material.

In the Assets panel, switch to the Materials tab. Click the + and select Material.
Name it Ingredients Material.

Then, switch to the Textures tab. Drag the Ingredients_Color to the COLOR
(DIFFUSE) category. Next, drag the Ingredients_Normal.png to the NORMAL
category, the Ingredients_Specular to the SPECULAR category, the
Ingredients_Ambient to the AMBIENT category and the Ingredients_Reflection to
the texture in the REFLECTIVITY category.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 240

In the Entities panel, search for 18_-_Default to get a list of entities that all end with
that phrase. Select each of these entities and set them to use the Ingredients
Material.

You now have textured models. Your scene is really coming together!

Now, you’re ready to start providing instructions to your instructional scene.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 241

Adding sound
This experience is designed to teach the user how to operate a bread machine.
Usually, tutorials use pre-recorded voice-overs to handle instructions like that.

Thankfully, working with audio is not too difficult. First, you must provide your audio
in a supported audio format. At the time of this writing, Sumerian supports OGG,
MP3 and WAV (WAVE). The file size has a hard limit of 10 MB.

You add a sound asset much like you add all your other assets: You import it into the
Assets inspector.

Open the resources folders and you’ll see a sounds folder. This folder contains all
the sounds necessary for this experience. The number at the start of the file name
indicates the play order for the sound file.

In the Assets inspector, click the Import files from your computer button and
import all of the sound files.

Now, to start the demonstration. In the Entities panel, select the Bread Machine. In
the Inspector panel, click Add Component, and add a State Machine. Click the + to
add a new behavior. Name the new behavior Bread Machine Demo.

Select State 1 and rename it to Play Introduction. Now, click Add Action. Select
the Sound category. You’ll see that you have lots of different audio actions available.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 242

Add a Play Sound action. Now you might want to pick a sound to play, but
unfortunately, the Play Sound action doesn’t let you do that. That’s because you
haven’t attached any sound to the entity yet. Your entity needs to have an attached
Sound component before it can play your audio.

Select the Bread Machine entity and click Add Component. Select a Sound
component. This component lets you set the volume and provides a field where you
can drop files.

In the Assets panel, switch to the Sounds tab. Drag the 1__this-is-your-new-
breadmaking-machine.wav to the sound field. You now have a sound attached to
your entity.

Now, open the Bread Machine Demo behavior and select the Play Introduction
state. In the Sound action, select the 1__this-is-your-new-breadmaking-machine
from the drop-down. Now, play your scene.

You’ll notice two things have happened. First, your sound played right on start as
expected. Second, the Bread Machine closed without you touching it. Don’t worry,
there are no ghosts in this kitchen.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 243

Next, you’ll stop that unwanted animation. Select the Bread Machine and, in the
inspector, you’ll see there’s an animation component attached to it. Some models
include animations.

You’ll be playing with animation in Chapter 13, "Animation and Particle Systems."
For now, remove the Animation component from the Bread Machine.

Now, in edit mode, zoom far away from the Bread Machine. Play your scene. The
sound will be distant and slightly hard to hear because you are working with 3D
sounds.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 244

When you assign a sound to an entity, that entity is the audio source. As you move
away from the sound, the sound will lower in volume. If you position the camera to
the right of the sound, the sound will play through the right speaker. This creates a
sense of "reality" in your scene. Your audio source has a physical location in the
world.

For other sounds, like music or narration, this arrangement isn’t ideal. For example,
when providing narration, you don’t care about the audio source location. You want
the audio to play at the same volume, regardless of its position to the camera.

You accomplish this using 2D sound. 2D sound disregards location during playback.

In the Assets panel, switch to the Sounds tab and select the 1__this-is-your-new-
breadmaking-machine sound.

You’ll notice that you have a few options. You’ll also notice that 3D audio is checked
by default. Uncheck 3D audio.

Now play your scene and zoom out. As expected, the audio will play at a consistent
volume.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 245

Adding the rest of the sounds
At this point, you’re ready to add the rest of the narration. Select the Bread Machine
and drag the rest of the sound files to the Sound component. By the time you’re
done, you’ll have accumulated quite a large list of files.

Now, play your scene. You will hear what sounds like a demon incantation. Oops! By
default, Sumerian sets all sounds to play at start, so all of your sounds are playing at
once. Fix this by going to the Assets panel, selecting the 1__this-is-your-new-
breadmaking-machine sound, and unchecking Auto play.

Select each sound and uncheck both 3D Sound and Auto play.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 246

Now, open the Bread Machine Demo behavior. Add a new state and name it Start
Button Description. Add a Sound action and set it to use the 2__the-start-button-
begins-the-baking-process sound. Drag a transition from the Play Introduction to
the Start Button Description.

Notice that the event is On Sound End. This transition occurs once the sound finishes
playing.

Add a new state. Name it Pause. Click Add Action. In the Animation category, add
a Wait action. Set the time to 1.

The wait action is useful whenever you need your behavior to take a short break.

Drag a transition from Play Introduction to Pause and from Pause to Start Button
Description.

Play the scene and notice how the audio sounds much better.

Now, for the rest of the audio. Your behavior will expand in size as it cycles through
all the audio. At the start of the behavior, there will be narration followed by a pause.
Later, there will be no pauses as there will be various instructions for the user to do.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 247

Now, create the following states:

When you have all of your starts in place, your behavior should look like the
following:

Congratulations! You have the beginning of an educational experience.
Unfortunately, it’s not very good... yet.

When you start the scene, the narration starts without orientating the user. When
the narration speaks about various functions, there’s no annotation on the machine
to direct the user’s eye. There’s also no way to move the camera.

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 248

As you can see, you’re just getting started with the experience. In the next chapter,
you’ll improve the experience by managing multiple cameras, leveraging the lighting
engine and adding interactivity.

Key points
• When developing scenes, focus on just the elements that will be visible to the end

user.

• Texture tiling can be adjusted by adjusting the textures Repeat U and Repeat V
values.

• Sumerian converts models into asset packs. The model is broken down into
entities.

• Models are imported without their textures. You will need to import textures and
add them to models by way of materials.

• Sumerian supports OGG, MP3, and WAV sound formats.

• Sounds are imported to 3D sounds and will auto play by default.

Where to go from here?
Models and sounds are the key ingredients in creating compelling scenes. Once you
import your model, it's just a matter of dragging it into your canvas and then
incorporating it into your scene. You can learn more about models by reviewing the
Sumerian official documentation found here: https://docs.aws.amazon.com/en_pv/
sumerian/latest/userguide/assets-models.html

Sound is also a critical aspect when working with Sumerian. In this tutorial, you used
sound to drive a demo but you can also add music and sound effects. You can learn
more about sound from the following tutorial: https://
docs.sumerian.amazonaws.com/tutorials/create/beginner/music-and-sound/

Amazon Sumerian Chapter 9: Custom Models & Sound

raywenderlich.com 249

10Chapter 10: Lights,
Camera, Action
By Brian Moakley

Throughout this book, you've been creating scenes that use both the lights and
cameras. You've been passively using these items. You've been using lights to
illuminate everything in the scene while the user has controlled the cameras.

You can also use these items to illustrate important parts of your scene as well as
control the user's perspective. For instance, in the current bread machine demo,
there's narration, but that narration is divorced from the elements of the scene. At
one point, the narration details the various buttons. However, that narration is lost if
the user is pointing the camera at a wall or looking at the ingredients.

In this chapter, you'll use both the lights and camera to focus the user's attention
and, in the process, learn how those systems work inside of Sumerian. You'll also add
a little interactivity as well.

In Hollywood, you typically hear the expression, “Lights! Camera! Action!” but for
this chapter, we'll switch things up to “Camera! Lights! Action!” Granted, you
wouldn't want to run cameras without light, but hey, we're not using expensive
35mm film stock so we can afford the change.

Working with cameras
Every new scene comes with a camera, and this camera does a couple of things. You
use this camera to navigate through 3D space so that you can place and manipulate
3D objects. Yet once you press the play button, this editor camera becomes the main
camera. This is a locked-down camera. You can look around and even move the
location.

raywenderlich.com 250

By holding down the middle mouse button, you can move this camera even while the
scene is playing. For your current scene, this isn't a good idea. You've built this scene
like a Hollywood set. The user just needs to look up or down to discover that they
aren't in a real kitchen.

This setup poses another issue. By using the camera as both an editor camera and a
scene camera, you will need to set up the camera in its starting position every time
you start a scene. This is just needless busywork because you can use multiple
cameras.

When you use multiple cameras, only one camera can be the active camera. Then, as
your scene plays, you can switch between those cameras much like a live television
show.

Open your Quickstart scene and click Create Entity. At the bottom of the dialog,
you'll notice that you have four camera options.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 251

The Orbit camera is the default camera selection. This is the type of camera that
you've been using throughout this book. The camera is great for orbiting an entity,
but you can also move around the scene.

This option creates an entity, attaches a camera component, and also adds a script to
it that controls the camera. The script contains lots of options that you can
configure.

Using the Sumerian API, you can write your own control scheme. You'll learn about
the API in Chapter 12, “The Sumerian API.”

The Fly camera works using typical first-person controls. To move around a scene,
you use the WASD keys. Looking is managed by pressing the left mouse button. It
also contains a lot of configuration options.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 252

The Fixed camera is just an entity with a camera component attached to it. The
camera is locked at a specific translation and rotation. The user can't manipulate it at
all.

The 2D camera is much like the Orbit camera, except it's best used to work with 2D
elements. This camera flattens depth which makes it ideal for using images instead
of models.

Understanding the 2D, and by extension the 3D camera as well, you need to
understand two important concepts: Frustum and projection.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 253

Projecting your frustum
After a long moment of silence, the psychiatrist exhales a long sigh and turns to the
depressed camera. “The root of the problem,” she says, “is that you have a tendency
to project your frustum onto others.”

Cameras like to project. This isn't a problem. It's why we like having cameras around.
Yet, it's how cameras project that determines the look of your scene.

By default, cameras work very much like our eyes. As entities move closer to the
camera, they will increase in size. Conversely, as they move back, they shrink as well.
However, if they move too close or too far, they disappear.

This is the result of the frustum. A frustum is a pyramid with the top cut off. This
frustum extends from the camera and projects into the scene. The frustum displays
any objects that enter its view to the user.

When you select a camera, Sumerian provides a preview of what will be displayed.

You run into issues when a model extends beyond the top of the frustum. When this
happens, the part of the model that passes through the frustum is gone.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 254

For example, if the camera was moved right against the bread machine, the console
area is cut off.

There are a few ways to fix this. First, you could move the camera away from the
model. You could also move the model away from the camera. Finally, you can
change the size of the frustum.

The camera component contains a section called Clipping Planes which determines
the size of the frustum.

Decreasing the Near value decreases the space between the top of the frustum to the
camera.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 255

This shows more of the model, but it also may impact the performance of your scene.
The Far value determines the overall size of the frustum. A larger size means that
more objects will be rendered.

Like all things, you must weigh the pros and cons of the scene performance against
what you are trying to do with the scene and how you are trying to do it.

Working with 2D
With 2D, things are a little different. With 2D, depth doesn't matter, yet you are still
working in a 3D engine. To remove depth, you must change the camera's projection.

Switching the camera to a parallel projection changes how your scene will appear.

For example, the following screenshot contains cubes of equal size. The cube that is
closer to the camera appears larger, whereas the cube further away looks to be
smaller.

Switching to a parallel projection removes the depth from the scene. Now, both cubes
are the same size regardless of distance and appear next to each other.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 256

When you look at the camera, it is no longer projecting a frustum. It projects a long
rectangle.

The parallel project does contain clipping planes like the frustum, but it also has a
size to determine the size of the projection.

In summation, if you do anything with 2D, use the parallel projection.

Setting up cameras
Now that you understand cameras; it's time to put them to use. The first thing to do
is to create a starting point.

Right now, the demo just starts, which can be disorientating. The user should initiate
an action to begin the demo.

This isn't just a good strategy, it's a requirement for iOS devices. Apple requires that
a Mouse Up/Touch end event fires before any sound is played.

Note: Why a touch end versus a touch start? A touch end means that the user-
initiated a complete touch. The user pressed down on the screen, and then
lifted their finger off the screen. This indicates compliance. A canceled touch
is when a user touches on an element, then slides the touching finger off of it.
This indicates non-compliance.

Click Create Entity and select Entity. Rename it to Cameras. Now to create your
cameras.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 257

Click Create Entity again, and this time select a Fixed Camera. Name it Demo Start
Camera. Set the translation to (5.446, 4.73, -3.945).

Drag it into the Cameras entity. This is how the scene will start; looking at some
empty wallpaper.

There is a hotspot due to the lighting, but you'll take care of that in a moment.

Of course, if you play the scene, the scene will start from the editor camera's
position. This is because the editor camera is designated at the Main Camera. You
can think of the Main Camera as the entry point to the scene.

There can only be one Main Camera, and you cannot delete a Main Camera. Every
scene is required to have one. You can designate another camera to be the camera,
and then delete the current camera.

Select the Demo Start Camera, and in the Camera component, check the Main
Camera checkbox.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 258

Now when you play the scene, you'll see your wallpaper in all its blazing glory. The
narration also starts.

Click Create Entity and select a Quad. Name it Start Button. Set the translation to
(5.356, 4.391, -10.931). Set the scale to (3.454, 1, 1).

In the Assets panel, click Import Assets. Navigate to resources/textures and select
press-to-start.png. Switch to the Materials tab and select the Default Material.
Rename it to Start Button Material.

In the Inspector panel, set the press-to-start.png to the COLOR (DIFFUSE)
category.

Your wall will look like this:

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 259

In the Entities panel, select the Start Button. Click Add Component and select
State Machine. Click the + button to create a new behavior. Name it Demo Start
Button.

Rename the first state to Click to Start. Click Add Action and in the Controls
category, add a Click/Tap on entity acton.

Click Add State and name it Switch Camera. Drag transitions from the Click to
Start state to the Switch Camera state.

Before you can switch cameras, you need to add a few more cameras.

Click Create Entity and select a Fixed Camera. Rename it to Bread Machine
Camera.

Duplicate the camera and name the new camera Bread Machine Closeup Camera.

Duplicate your last camera and rename it to Ingredients Camera.

Now you have three cameras that cover different parts of the scene. Select the Bread
Machine Camera. You want the camera to take a medium shot of the bread
machine. First, set the translation to (-9.206, 6.167, -7.077). Set the rotation to (-46,
90, 0).

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 260

Your camera will see the following:

The camera is a little close to the bread machine. You can move the camera back, but
you can also change the camera’s field of vision (FOV). Lower numbers get closer to
the subject whereas larger numbers move further away. This means you can perform
an extreme closeup of a model without having the model break the frustum.

Set the FOV to 57 and now you'll get a fuller view of the machine.

Note: When setting up a camera, it's helpful to set that camera to temporarily
be the Main Camera. That way, you can play the scene and immediately see
your adjustments.

Now that you are finished with the camera drag the Bread Machine Camera into
the Cameras entity.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 261

Select the Bread Machine Closeup Camera. Set the translation to (-9.217, 6.007,
-6.918). Set the rotation to (-46, 90, 0).

Set the FOV to 23. Drag the camera into the Cameras entity.

Now you get nice a close up of the console.

Select the Ingredients Camera. Set the translation to (-9.222, 5.97, -9.12). Set the
rotation to (-46, 90, 0).

Set the FOV to 58. Drag the camera into the Cameras entity.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 262

You now have a nice view of all your ingredients.

As you can see, fixed cameras work great with “incomplete” sets. You don't need to
build an entire kitchen if the user doesn't view it.

Switching between cameras
Now that you have your cameras all set up, you need to switch between them. A
simple Switch Camera action handles this. This means adding additional states and
making adjustments to your behaviors.

Open the Demo Start Button behavior and select the Switch to Camera state. Click
Add Action and, in the Camera category, select the Switch Camera state.

Your new action will contain a drop-down of all the cameras in the scene. Select the
Bread Machine Camera.

Click Add Action again and add an Emit Message action. Set the channel to
StartDemo. You want the demo start before the switch action, so drag the Emit
Message above the Switch Camera.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 263

Open the Bread Machine Demo behavior. Click Add State and name it Listen for
Demo Start. Add a Listen action to it and set the message channel to StartDemo.
Drag a transition from Listen for Demo Start to Play Introduction. Finally, click
Set As Initial State.

Now play your scene.

The scene is looking better. Now's a good time to incorporate your other cameras.

Select the Bread Machine Demo behavior and in the State Machine editor, select
the Pause state. Rename it to Switch to Closeup and Pause. Click Add Action and
in the Cameras category, add a Switch Camera action. Set the cameras to the Bread
Machine Closeup Camera and drag it above the Wait action.

Select the Simple Recipe state. Rename it to Simple Recipe and Switch Camera.
Add a Switch Camera action and set the action to use the Ingredients Camera.
Drag the Switch Camera above the Play Sound action.

Select the Press Start Button state. Rename it to Press Start and Switch Camera.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 264

Add a Switch Camera action and set the action to use the Bread Machine Camera.

Now, play your scene, and you'll see it's coming together. As you can see, by directing
the user where to look, it's now a focused experience.

Lights!
Providing scene content requires a camera and lights. These items are so important
that Sumerian provides them with every new scene. This is why you haven't had to
worry about them. But like cameras, lighting can be used to illustrate important
aspects of your scene. You can use lights to direct attention which you'll do later in
this chapter.

Sumerian provides three types of lights that you can use in your scene. Click Create
Entity and look at the Lights category.

Clicking on one of these light options will create a light, but remember at the end of
the day, a light is just an entity with a specialized component attached. Any entity
can become a light by attaching a Light component to it.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 265

All lights come with three properties: Color, Intensity, and Specular. Color is the light
color. By default, all lights use white light. Intensity determines the brightness of the
light. Specular determines the brightness in the center of the light. You can think of
a specular light as being very powerful in the center and gradually fading away.

Here's a light with low intensity (0.24) but a high specular setting (10):

Here's the same kind of light with a lower specular setting (2.77):

The three kinds of light available are a Directional light, a Point light, and Spotlight.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 266

A Directional light acts like the sun. It lights your entire scene. Distance doesn't
matter to a directional light.

Directional lights do have a direction and can be rotated.

A Point light acts like a light bulb. The light provides a circular range around it, and
anything within that range will be illuminated. The center of the sphere is a source,
so it's the most powerful. The light grows less powerful towards the edge of the
sphere.

A Spot light is a powerful light that can be directed in a certain direction. The light is
emitted in a cone that you can adjust.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 267

With lights, you get shadows. Because shadows take resources, you must opt-in to
use them.

Every scene comes with two directional lights. In the Entities panel, select the Key -
Directional light, which is located inside the Default Dynamic Lights entity. This is
the light that is creating a hot spot. Hide the light by clicking the eyeball next to the
light's name. You'll notice the entire scene goes dark.

Show the light, and this time rotate it. You'll notice that the hotspot will move along
the wall.

Once you are done rotating the light, revert it to its original location using the undo
option.

Another way to remove the hotspot is to change the specular value. With Key -
Directional still selected, set the Specular value to 0.21. Now the hotspot goes away.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 268

Lighting callouts
Throughout the experience, the narration describes important features of the Bread
Machine's console. During this part of the experience, you switch to a close up of the
console, but the user will still need help finding the appropriate button.

This is a great use for the spotlight. You can place a light over the button. When the
appropriate button is mentioned, the light will turn off. When the discussion moves
on to another feature, the light will turn off.

For this, you'll create five spotlights. Each spotlight will have a behavior associated
with it.

Note: Some buttons are missing their textures like the Open button and the
Start button. You'll add these in an upcoming section.

Create the following spot lights and set their position and location according to the
table:

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 269

Next, set the light properties of all the lights according to the table:

Your console will look like this:

Hide your new lights and Drag them into the Default Dynamic Lights entity.

Each light must be able to turn on and turn off. To do this, you'll create five
behaviors.

In the Assets panel, click the + button in the Default Pack and select Behavior. Name
it In Use Light. Rename the default state to Listen.

Add two Listen actions. In the first listen action, set the message channel to
TurnOnInUse. For the second action, set it to TurnOffInUse.

Click Add State and name your new state to Turn On. Add a Show Action and a
Transition Action to it.

Click Add State again and name your new state to Turn Off. Add a Hide Action and
a Transition Action to it.

Drag a transition from the ON "TurnOnInUse" event to the Turn On state. Drag
another transition from the ON "TurnOffInUse" event to the Turn Off state.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 270

Duplicate this behavior four more times. Update it for each light and assign each
behavior to the appropriate light. To assign the behavior, select the light entity in
the Entities panel, and drag the behavior to the Inspector panel.

When you finished, you should have the following behaviors: In Use Light, Done
Light, Console Light, Open Light and Start light

Note: Sumerian also includes an option to change the values of a light. In this
case, it's easier to just hide a light. Also, in Chapter 12, “The Sumerian API,”
you'll learn how to leverage the API to get rid of all these duplicate behaviors
and control the lights from one entity.

Integrating the lights
At this point, all you need to do to integrate the lights is to send out messages. The
behaviors will take care of the rest.

Open the Bread Machine Demo behavior. Select the Start Button Description
state. Add an Emit Message state and set the channel to TurnOnStart.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 271

Next, select the In Use Description state. Add an Emit Message state and set the
channel to TurnOffStart. Add a Wait action to it and set it to 2. Remove the
transition from the On Sound End. Create a transition from On Wait End to Pause
3.

Select the Pause 3 state. Rename it to Turn on In Use and Pause. Add an Emit
Message action and set it to TurnOnInUse. Change the time for the Wait action to
2.75.

Select the Timer Description state. Add two Emit Message actions. Set one
channel to TurnOffInUse and set the other to TurnOnConsole.

Select the Done Button Description state. Add two Emit Message actions. Set one
channel to TurnOffConsole and set the other to TurnOnDone.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 272

Select the Open Button Description state. Add two Emit Message actions. Set one
channel to TurnOffDone and set the other to TurnOnOpen.

Finally, select the See Machine in Action state. Add an Emit Message action and
set the channel to TurnOffOpen.

Now, play your scene. Now you all the various aspects of the machine are illustrated
with light.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 273

ACTION!
You've set up your cameras, and you've positioned your lights. Now, you need a little
action to the scene. Your console contains two buttons that drive the demo forward.
Both of these buttons are blank.

This was very much intentional. When the user clicks or taps the button, an action
should occur. You could add a behavior on the Bread Machine, but this means the
entire machine would respond to the action as opposed to just the button.

To make a part of the model intractable, you need to add it as a separate entity. In
your case, you'll use quads for entities. By adding images onto the quads and placing
the quads on the bread machine, it appears that the user is pressing a button.

The Start button
Once the user has added all the ingredients to the bread machine, they start the
baking process by pressing the start button. The Start button is a quad with texture
added to it.

To get started, click Create Entity and select the Quad. Name it Baking Start
Button.

Set the translation to (-9.963, 5.141, -7.142). Set the Rotation to (-75.991, 91,
-1.991). Set the Scale to (0.073, 0.031, 7.19).

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 274

Next, in the Assets panel, click the Import files from your computer button. Look
in resources/textures and select But-Start.png. Once it's imported, switch to the
Materials tab. Select the Default Material and rename it Baking Start Button
Material. Next, switch to the Textures tab and drag But-Start.png to the COLOR
(DIFFUSE) category.

Next, in the Material component, expand the OPACITY and check the Enabled
checkbox.

Congrats! You now have a new start button!

With the Start Button still selected, click the Add Component button. Add a State
Machine and click the + button to add a new behavior. Name it Baking Start
Button.

Rename the first state to Listen for Button Activation. Add a Listen action and set
the message channel to ActivateStartButton.

Click the Add State button and rename it to Click Button. Add a Click action to it.

Create one more state and name it Emit Message to Start Cooking. Add an Emit
Message action and set the channel to StartCooking.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 275

Now for the transitions. Drag a transition from the Listen for Closed Lid event to
the Click Button state. Next drag a transition from the Click Button state to the
Emit Message to Start Cooking state.

Now to integrate it with the rest of the scene. Open the Bread Machine Demo
behavior.

Click Add State and name your state to Activate Start Button. Add an Emit
Message and set the channel to ActivateStartButton. Also, add a Transition action
to it as well.

You'll need a state for when the bread is cooking. Click Add State and name the new
state Start Cooking. Add a Listen action to it. Have the state listen to the
StartCooking channel. Later, you'll produce a custom countdown, but for now, you'll
just transition it to another state.

Drag a transition from the Press Start Button and Switch Camera state to the
Activate Start Button state then drag a transition from the Activate Start Button
to the Start Cooking state. Finally, add a transition from the Start Cooking state to
the Baking Is Done state.

Now, your demo will wait for the user to press the start button. Next comes the open
button.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 276

The Open button
This button pretty much replicates the start button.

Click Create Entity and select the Quad. Name it Open Button. Set the translation
to (-10.028, 5.147, -6.721). Set the rotation to (-80.484, 89.999, 3.819). Set the scale
to (0.061, 0.059, 0.347).

Next, in the Assets panel, select Import files from your computer icon. Look in
resources/textures and select But-OpenClose.png. Once imported, switch to the
Materials tab. Select the Default Material and name Open Material. Switch to the
Textures tab. Drag the But-OpenClose.png texture to the COLOR (DIFFUSE)
category. Next, expand the OPACITY and check the Enabled checkbox.

With the Open Button still selected, click Add Component. Add a State Machine
and click the + button to add a new behavior. Name it Open Button.

Rename the first state to Listen for Activation. Add a Listen action and set the
message channel to ActivateOpenButton.

Click the Add State button and rename it to Click Button. Add a Click action to it.

Create one more state and name it Emit Message to Open Lid. Add an Emit
Message action and set the channel to OpenLid.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 277

Now for the transitions. Drag a transition from the Listen for Activation event to
the Click Button state. Next, drag a transition from Click Button to the Emit
Message to Open Lid state.

With the button ready to go, you need to integrate it with the rest of the demo.

Now, open the Bread Machine Demo behavior. Click Add State and name it
Activate Open Button. Add an Emit and Transition action to it. Set the Emit action
to use the ActivateOpenButton channel. This will allow the user to press the
button.

Click Add State and name the state to Wait for Open Button Press. Add a Listen
action. In the Listen action, set the channel to OpenLid.

Drag a transition from the Baking is Done state to the Activate Open Button state.
Then drag a transition from the Activate Open Button state to the Wait for Open
Button Press. Then from the Wait for Open Button Press state to the Fresh Loaf
of Bread state.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 278

The final behavior should look like the following:

Now, run your scene from beginning to end. Your scene plays out, but the demo will
stop to prompt the user to press the start button and then the open button. As you
can see, the demo is coming together. There is a lot of behavior duplication
occurring, and it would be nice to add some additional interactivity. Thankfully, you
do this with the Sumerian API, but before you learn the API, you first must
understand JavaScript, which is the topic of the upcoming chapter.

Key points
• Sumerian provides many different camera types such as the Fly, Fixed, and 2D

camera.

• If you need a specific camera type that doesn't exist, you can always write your
own.

• Cameras project a frustum. Only the objects inside the frustum will be
rendered.

• The projection determines how the entities will appear. A perspective projection
adds depth whereas a parallel projection removes depth.

• Change the clipping panes to increase or decrease the frustum.

• Sumerian provides three light types: a directional, point and spot.

• A directional light globally illuminates the scene.

• A spot light is a powerful light emitted in a cone.

• A point light is emitted in a circular range.

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 279

Where to go from here?
Lighting and cameras determine what the end-user will ultimately see. To learn more
about lighting and cameras, check out this tutorial on both of the systems: https://
docs.sumerian.amazonaws.com/tutorials/create/getting-started/camera-light/}

Amazon Sumerian Chapter 10: Lights, Camera, Action

raywenderlich.com 280

11Chapter 11: Introduction
to JavaScript
By Brian Moakley

Sumerian is a 3D engine built using web technologies such as HTML, CSS, and
JavaScript. When you build web pages, you use both HTML and CSS to provide the
look of the page, whereas JavaScript provides interactivity.

So far, you’ve been able to add interactivity in your scenes by using behaviors, but
behaviors will only take you so far. For example, you may want to leverage AWS to
provide live chatting or to search a database. For this work, you need to use
JavaScript.

Now, some of you may be thinking, "I don’t plan on using external services, so I don’t
need to know JavaScript." Learning JavaScript also means saving time in the editor.

In the current scene, you created five lights that activate and deactivate based on
messages sent to their behaviors. You created a behavior for each light. Imagine you
were working on a complicated scene and were employing a hundred different lights.
If you used only behaviors, you’d need to maintain a hundred different behaviors,
each one identical except for its listening channel. Using JavaScript, you only need to
write two scripts, which you’ll do in Chapter 12, "The Sumerian API."

That said, learning a language can be difficult, especially if you’ve never written
code. This chapter will give you a quick introduction to working with JavaScript. It
will give you enough knowledge to follow the rest of the book.

If you want to dive deep with the language, you’ll need to spend some time learning
it. After all, there are entire books that cover what this single chapter aims to do.
Thankfully, there are lots of free resources on the web to help you along.

raywenderlich.com 281

Getting started
JavaScript is a web technology that you use to provide interactivity. Sumerian is built
in a way to leverage JavaScript It's a great tool to learn and play around with the
language.

Launch the Sumerian dashboard and select the Bread Maker 6-500 project. Click
Create new scene and name the new scene Learning JavaScript.

To get started, click Create Entity and select a Box entity. This will be your test
subject.

When you write a script, you attach it to entities by way of components. Entities can
have lots of scripts.

Click Add Component and select the Script. This adds an empty script component.
Click the + button to add a new script.

After you click the button, you’re presented with different prebuilt scripts. These
scripts provide various behaviors for your game, such as flying, WASD controls and
even adding lens flares.

Since you’re learning JavaScript, you’ll select a custom script. At the time of this
writing, you can choose either the Preview Format or the Legacy Format.

Note: At the time of this writing, the legacy format is still supported, but in
time, this option may be going away. If that's the case, then the only option
may just be "custom".

The Preview Format is the future of Sumerian, so select Custom (Preview Format).

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 282

When you add a script, you get a script instance listed in the Script component. With
some scripts, you can provide additional customization much like any other
component. You’ll learn how to do this in Chapter 12, “The Sumerian API.”

Your scripts are also shown in the Assets panel. In the Assets panel, select the Script
tab and you’ll see that it appears like any other asset. Select your Script. You’ll see it
has details, tags and custom attributes. Rename this script to Hello JavaScript. To
edit the script, click Edit in Text Editor.

The text editor is where you write all your scripts. This editor acts as a mini
Integrated Developer Environment (IDE). It performs code completion, has
integrated documentation and allows you to switch between all your scripts.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 283

Note: While the text editor does a fine job at editing scripts, there are plans to
allow external editors to work with Sumerian. However, there’s no estimated
delivery date yet.

Now comes the fun part: Writing JavaScript!

Java vs. JavaScript
JavaScript is often confused with Java. While the names are similar, JavaScript and
Java are quite different in both syntax and execution. It’s important to understand
this because as you start writing in JavaScript, it’s natural to ask for help.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 284

Asking a Java programmer for help with your JavaScript project is the equivalent of
asking a Mandarin speaker to help with your Japanese. At best, you can expect an
exaggerated eye roll served with a long, "Why do I even bother?" sigh. This isn’t your
fault.

You can trace the confusion between Java and JavaScript back to the 90s, with the
release of the Java programming language. The language made waves with its
release. It promised a "write once, run everywhere" approach to coding. This meant
your Java programs could run on any platform that supported the Java environment.

During this time, Netscape Communications was competing for market share on the
web. Netscape produced the popular Netscape browser. The company needed a
language to produce dynamic web pages. They created a language called LiveScript.
Being that Java was incredibly popular at the time, Netscape renamed LiveScript to
JavaScript, thus seeding confusion for decades to come.

Believe it or not, the confusion doesn’t end there: JavaScript isn’t even the official
name. When Netscape submitted JavaScript for standardization, there was a lot of
arguing over the name, so the standards body (ECMA) named it after itself.
JavaScript’s true name is ECMAScript.

Thus, you’ll often see the language version stated as ES6, which stands for
ECMAScript 6 which is JavaScript version 6. In short, if you aren’t confused, consider
yourself one of the lucky few! :]

Your first script
In almost every textbook about programming, your first task is to print out some
text. This book is no exception. With the Sumerian text editor open, erase the
existing code.

Write the following exactly as you see it. Capitalization and punctuation matter. A
computer requires precise code:

console.log("Hello Sumerian");

If this is your first line of code, congrats! Welcome to a brave, new, exciting world.
You’ll notice that Hello Sumerian is just text, otherwise known as a string.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 285

The semicolon at the end of the statement indicates the end of the line of code. The
semicolon acts as a period in code. If you forget a semicolon, JavaScript will add one
for you. There are cases where this may cause problems, so it’s a good habit to always
provide your own semicolons.

Click Save and close the text editor. To see your results, you need to open your
browser’s developer tools.

For a browser like Chrome or Firefox, simply press F12. For other browsers, you’ll
need to look up how to enable the developer tools.

Most developer tools contain a tab named Console. This is where you’ll find
messages from the current web page. These messages can be helpful when debugging
web page issues.

Click on the Console tab and you’ll see a bunch of text followed by your own
message: "Hello Sumerian".

Note: Some consoles print out a lot of unimportant text. Some of these
consoles will let you filter the text.

If you made a typo, then you’ll see a message like the following:

While the errors will point to the line, the descriptions can be a bit vague. Over time,
you’ll understand the meaning of these cryptic messages. For now, just compare your
code with the code in the book. Remember, you must copy the code exactly.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 286

When you add the code and save the file, the message prints to the console.
Typically, code will only run when you play your scene. Later, you’ll designate when
the code runs. For now, keep checking the console after you save a file.

JavaScript variables
When working with programs, you’ll often create variables to store data. If you’ve
done any Algebra, variables should be old hat to you.

For example:

x = 5
y = 10
z = x + y

Can you guess the value of z? The answer is 15. To perform that equation, you
substituted the numbers for the letters. So the following equation:

z = x + y

Is evaluated, like so:

z = 5 + 10

You do the same with JavaScript, except you can use different kinds of data. In Hello
JavaScript, add the following:

var name = "Ray";
var tutorialsWritten = 300
var likesSumerian = true;

You’ve defined three variables. You define a variable by using the var keyword.
Keywords are special words determined by the language. These words are reserved,
meaning you can’t create a variable named var. In this case, var creates a variable
for you.

As you can see, you write var, provide the variable name and then assign a value.

You write variable names in lowercase. Variables can’t contain spaces, so if you want
a variable name to have multiple words in it, you capitalize subsequent words. Thus,
you express "tutorials written" as tutorialsWritten.

You use = to assign a value, not to test equality. You’ll learn about equality
momentarily.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 287

Finally, when you assign a value, it must conform to a certain type. To create a
string (text), you must put your text between quotes. To create a number, you can
just write it as a regular number. In JavaScript, a number can be an integer or it can
contain floating point values (3.14159). You can also create Boolean variables, which
are either true or false.

You can always change the variables you created above. If you want a variable to be
fixed and unchanging, you create a constant, like this:

const daysInYear = 365;

The daysInYear variable is now fixed to 365. Changing it produces an error.

Trying this:

daysInYear = 10;

Will result in this:

Even the editor will let you know there’s a problem.

Now delete the line and add the following code:

console.log(name + " has written over " + tutorialsWritten + "
tutorials.");

Save the code and switch back to Sumerian. You’ll see the following in the console:

Ray has written over 300 tutorials.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 288

Here, you combined various strings to produce a new string. Notice that when you
add a number to a string, you produce a new string.

Using + is a great way to add items. What if you wanted to increase the number of
tutorialsWritten by one?

Add the following:

tutorialsWritten = tutorialsWritten + 1;
console.log(tutorialsWritten);

Here, you increase the number of tutorialsWritten by one and then assign the
result back to tutorialsWritten. This results in 301.

This is such a common operation, you can also write it like so:

tutorialsWritten += 1;

This is the shorthand method of increasing items. Believe it or not, you can even
further shorten it to:

tutorialsWritten++;

Note: You’ll see this last approach used in a lot of loops (as it’s the
convention), but it’s a good rule of thumb to avoid it when you can as it can
introduce subtle errors. In fact, the operation is so prone to subtle bugs that
some modern languages like Swift have removed it. If you’re interested in
more information, just search for increment operation danger.

Arrays
Oftentimes, you’ll work with related variables. Imagine that you want to track quiz
results for a class. You could write variables like the following:

var quiz1 = 85;
var quiz2 = 92;
var quiz3 = 65;
var quiz4 = 89;

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 289

This becomes a headache as you add more quizzes. With arrays, you can group
multiple values. Add the following:

var quizzes = [85, 92, 65, 89];

Your quizzes variable now contains multiple values. The brackets always indicate an
array. When you add items, you put commas between them. You can add as many
items as you want.

To access them, you need to specify an index. An index is basically saying, "give me a
quiz at the following location."

The index is zero-based, which means the first item in the array is at the 0 index. So,
for example, to print out the third quiz, add the following:

console.log(quizzes[2]);

The following will print out:

65

A common error is to forget that you start counting with zero. In these cases, a
person may try to get the fourth element by writing the following:

console.log(quizzes[4]);

While the programmer thinks they’re accessing the fourth element, they are actually
accessing the fifth element. Unfortunately, the fifth element doesn’t exist.

Try running the code. You’ll get the following:

undefined

In a programming language like Java, the entire app would crash. With JavaScript,
the browser just lets you know that there is no value in the fifth index.

An array is a type of object, and objects can contain properties. If you want to know
the number of elements in an array, write the following:

console.log(quizzes.length);

When you save, you’ll the result printed to the console.

4

This is useful when you are looping through arrays as you’ll see in a moment.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 290

JavaScript allows arrays to contain different types of variables. For example, add the
following:

var chris = ["Editor in Chief", 240, true];

You’ll make use of mixed-typed arrays when working with Sumerian.

Using const, you can fetch the data in a way that makes sense. Try the following:

const companyTitle = 0;
const publishedTutorials = 1;
const enjoysSumerian = 2;

console.log("Chris is the " + chris[companyTitle]);
console.log("Chris has written " + chris[publishedTutorials] + "
tutorials.");
console.log("Does Chris like Sumerian? " +
chris[enjoysSumerian]);

Looking through the code, the meaning of the array index is clear. At glance, it’s
easier to infer the meaning of chris[companyTitle] from code such as chris[0].

When in doubt, write your code in favor of readability and clarity.

Note: When using const variables, you must create new variable names. You
can’t reuse existing variables as constants.

Looping through values
You’ve defined an array of quiz results and now you want to average all the results.
Add the following:

var average = (quizzes[0] + quizzes[1] + quizzes[2] +
quizzes[3]) / 4;
console.log(average);

Here you’ve added all the quiz results together. Notice that you put the addition in
parentheses. JavaScript adheres to the order of operations, meaning certain math
operations occur first. Because of this, division has higher precedence so JavaScript
will try to divide first, which won’t return the result you’re expecting. By using
parentheses, you specify that you want to evaluate the addition before the division.

If you’re confused about the order of operations, do a web search for PEMDAS.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 291

When you run the code, you get the following result:

82.75

What happens if you add more quizzes? You would have to update your calculation
for every new quiz. Remember, you write code to save time.

Thankfully, loops are a great tool to use. Loops automate the grunt work for you. In
the next example, you’ll create a for loop. A for loop will run a predetermined
amount of time defined by you.

Add the following:

var gradeTotal = 0; // 1
for (var i = 0; i < quizzes.length; i++) { // 2
 gradeTotal += quizzes[i]; // 3
} // 4

There’s a lot going on here. Time to break it down:

1. This line creates a new variable to store your grade total. Notice the // at the end.
That indicates a JavaScript comment. JavaScript will ignore any code or text after
the //. Comments are a great way to write notes in your code.

2. This is the actual loop. It starts with the for keyword followed by a parenthesis.
There are three statements in the parentheses: The first creates an i variable that
manages the duration of the loop. The i starts at zero, which is the first element
of the array. The next statement determines how many times the loop will run. In
this case, the loop will run while i is less than the number of quizzes. The length
is four and the loop will run while i is less than four. Finally, the last statement
will run after each loop. In this case, the i variable is being increased by 1. You’ll
notice an opening brace. This is the start of the loop body.

3. This is the body of the loop that will run with each iteration of the loop. This
statement gets the quiz for the current loop iteration and adds it to the
gradeTotal.

4. The closing brace indicates the end of a loop. All the code between the braces will
run. Remember that when you have an opening brace, you must have a closing
brace.

Now, add the following after the loop:

var averageTotal = gradeTotal / quizzes.length;
console.log(averageTotal);

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 292

This calculates the average based on the length of the array. Now, you can add as
many items as you want to the array and you’ll always get the correct average.

Save the script and check out the console:

82.75

Now, add the following before the loop.

quizzes.push(39, 97, 56);

This allows you to add three more quiz results to the array. Save the array, and you’ll
see a different average.

74.71428571428571

There are a few other arrays you’ll see in this book, such as the while loop and the
forEach loop. Both work by looping through a collection of items and running code
on each item. Don’t worry, we’ll walk you through how they work when the time’s
right.

Branching logic
As you acquire data in your programs, you’ll need to make choices based on that
data. These choices distill to true or false questions.

Is the player out of life? Does the current student’s average exceed 80? Did the user
enter a valid email?

You create branches based on these questions. These branches allow for different
outcomes. For instance, if the email is valid you can send the user to the login page
otherwise, you would present an error.

Add the following:

if (likesSumerian == true) {
 console.log("Ray likes Sumerian");
}

The if keyword indicates the start of your branching logic. You ask the actual
question inside of the parentheses. The statement must always evaluate to true or
false. This question is referred to as an expression.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 293

Notice the expression uses ==. This tests for equality. In this case, you are testing if
likesSumerian is equal to true. The result of this expression is either true or
false.

To test for inequality, use != instead. For example, this code:

if (likesSummerian != true) {
 console.log("Ray does not like Sumerian");
}

Is the same as this code:

if (likesSummerian == false) {
 console.log("Ray does not like Sumerian");
}

You can also use greater than (>) or less than (<) as well as greater than or equals (>=)
or less than or equals (<=).

Following the expression is an opening brace. This shows that all the code afterward
will be executed if the expression evaluates to true.

When you save, you’ll see the following:

Ray likes Sumerian

The likesSumerian variable is a boolean. This means it is either true or false, so
you can write an if statement as following:

if (likesSummerian) {
 console.log("Ray likes Sumerian");
}

You can also provide an else clause for when the expression results to false. Update
your if statement to this:

if (likesSumerian) {
 console.log("Ray likes Sumerian");
} else {
 console.log("Ray does not like Sumerian. He needs more
coffee. :]");
}

Now set the likesSumerian to false and save the file, and you’ll see the following:

Ray does not like Sumerian. He needs more coffee. :]

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 294

You can have multiple else statements that evaluate expressions.

if (averageTotal > 80) {
 console.log("Keep up the good work!");
} else if (averageTotal > 65) {
 console.log("Try harder!");
} else {
 console.log("Stop watching YouTube!");
}

You’ll see the following:

Try harder!

Notice that the else is last. This is acting as a catch-all. If both of the if statements
evaluated to false, then the else clause is evaluated.

Unfortunately, your if code is prone to error. Reorder it to the following:

averageTotal = 90;
if (averageTotal > 65) {
 console.log("Try harder!");
} else if (averageTotal > 80) {
 console.log("Keep up the good work!");
} else {
 console.log("Stop watching YouTube!");
}

Now when you run it, the console produces:

Try harder!

This occurs even though your average is now set to 90, because of the way you
structured the if-block. You should state the try harder condition within a range of
values.

Thankfully, you can create compound expressions. You can add additional
expressions using &&. In shorthand, this means and, as in the coordinating
conjunction.

Alter the first line of the if-statement to this:

if (averageTotal > 65 && averageTotal < 80) {

Here, you are joining two expressions. Both expressions must evaluate to true for
the overall expression to be true.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 295

Now when you save, you get the correct result:

Keep up the good work!

You also have an or operator, which you indicate by using ||. By using an or
operator, this means only one condition must be true for an expression to be true.

Change the first line of the if statement to this:

if (averageTotal > 65 || averageTotal < 80) {

Now when you save, the following prints:

Try harder!

The expression checks to see if the averageTotal is higher than 65. This evaluates
to true. This indicates the entire expression is true. Since the first expression is
true, the second expression isn’t even evaluated. This is known as short-circuiting.

Functions
JavaScript allows you to write functions. A function is just a way to encapsulate code
and then call that code on demand. In your current script, you’ve written some code
to average some quiz scores. You’ve used it once. What if you wanted to use it again?

You could simply copy and paste that previous code, but that’s a bad idea. It creates
needless work. Instead, use a function.

A function takes a name and parameters. Parameters are simply variables that you
pass into the function so you can use them. You can define your own variables in the
function as well.

Add the following:

function averageQuizScores(quizScores) {

}

Here, you have a function named averageQuizScores and it takes in a parameter
named quizScores. The quizScores parameter can be anything. JavaScript is not a
strongly-typed language, so the callee can pass in an array or string.

Now, you'll put your average calculating code in the function and print out the result.
Change the code to use quizScores instead of quizzes.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 296

It should look like the following:

function averageQuizScores(quizScores) {
 var gradeTotal = 0;
 for (var i = 0; i < quizScores.length; i++) {
 gradeTotal += quizScores[i];
 }
 var averageTotal = gradeTotal / quizScores.length;
 console.log("the average is " + averageTotal);
}

Underneath the function, add the following code to call the function:

averageQuizScores(quizzes);

Save the file and you’ll get the following:

the average is 74.71428571428571

Functions can also return values. In the averageQuizScroes function, replace the
log statement with the following:

return averageTotal;

Now, update the call to the function:

console.log(averageQuizScores(quizzes));

This now prints out the following:

74.71428571428571

In JavaScript, functions are considered first-class citizens. This means you can store
functions in variables and pass them to other functions.

var averages = averageQuizScores;
console.log(averages(quizzes));

As you can see functions are pretty cool.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 297

Hoisting variables
One thing JavaScript does differently than other languages is that it hoists variables.
Add this function:

 function averageQuizScoresHoist(quizScores) {
 var gradeTotal = 0;
 for (var i = 0; i < quizScores.length; i++) {
 gradeTotal += quizScores[i];
 var currentScore = quizScores[i];
 }
 console.log("current score: " + currentScore);
 var averageTotal = gradeTotal / quizScores.length;
}

The for loop declares a variable called currentScore. In a typical language, that
variable would only be accessible inside of the for loop.

Add the following after the function and save:

averageQuizScoresHoist(quizzes);

In a typical language, this would produce an error, but with JavaScript, the following
prints:

56

This may be confusing, but it’s working like it’s supposed to. JavaScript employs a
technique called hoisting. JavaScript hoists all of your variables to the top of a
function.

This is how JavaScript sees your function:

 function averageQuizScoresHoist(quizScores) {
 var gradeTotal = 0;
 var currentScore;
 for (var i = 0; i < quizScores.length; i++) {
 gradeTotal += quizScores[i];
 ccurrentScore = quizScores[i];
 }
 console.log("current score: " + currentScore);
 var averageTotal = gradeTotal / quizScores.length;
}

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 298

When you declare a variable with the var keyword in a function, JavaScript’s hoisting
mechanism moves that variable to the top of the function. If you want the variable to
only exist in the for loop, you need to define the variable with let. The let keyword
indicates that the variable will only exist in the current block – that is, between the
current set of braces.

In the for loop, change the currentScore line to the following:

let currentScore = quizScores[i];

Now save. This time, you get an error.

Before moving on to the next section, switch currentScore back to a var:

var currentScore = quizScores[i];

Arrow functions
An arrow function is just a regular function that has undergone a starvation diet.
That is, it does the same thing as a function except it is much slimmer.

There are lots of times in JavaScript that you’ll need a quick and dirty function to get
the job done. Arrow functions are short and concise so you aren’t declaring functions
all over the place.

You can use arrow functions wherever you call regular functions.

Add the following:

var quizAverage = () => {

}

This is the skeleton of an arrow function. It’s the equivalent of:

var quizAverage = function() {

}

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 299

The parenthesis takes in any parameters. In this case, you’ll provide quizScores as
that variable. Update your code, like so:

var quizAverage = (quizScores) => {

}

Next, you’ll provide the function body, which goes after the curly braces. Update your
code so it matches this:

var quizAverage = (quizScores) => {
 var gradeTotal = 0; // 1
 for (var i = 0; i < quizScores.length; i++) {
 gradeTotal += quizScores[i];
 }

 var averageTotal = gradeTotal / quizScores.length;
 return averageTotal;
}

And now, it works just like before. Add the following:

console.log(quizAverage(quizzes));

Now save, and you’ll see the following in the console:

74.71428571428571

Arrow functions can become really concise. Add the following:

var square = (x) => {
 return x * x;
}
console.log(square(10));

Save and view the console. It reads:

100

As there’s only one parameter, you no longer need the parentheses. Also, being
there’s only one line, you don’t need a return statement or even braces.

Update your code to the following:

var square = x => x * x;
console.log(square(10));

When you save now, you’ll get the same result, but the arrow function makes it much
easier to read.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 300

Objects
JavaScript is an object-oriented language. This means you can use objects to group
variables together. You can pass these objects around your code.

There are many ways to create objects in JavaScript, but the easiest way is to use the
object literal. These are two braces against each other: {}

Add the following to your script:

var bestFriend = {};

Right now, your object doesn’t do much. It’d be nice for your object to contain some
properties. These are variables associated with the object.

Update your code:

var bestFriend = {
 firstName: "Jeremy",
 lastName: "Patterson"
}

You’ve defined a very simple object with a firstName and lastName. The object
variables are known as properties. You define them by giving them a name as a
variable, then adding a colon after it. Following the colon, you provide a value. If you
have multiple properties, you separate them with a comma.

To access a value, add the following:

console.log(bestFriend.firstName);

This prints out the following:

Jeremy

As you can see, you access the properties by way of the period. Some properties can
contain other objects. Update the object to the following:

var bestFriend = {
 firstName: "Jeremy",
 lastName: "Patterson",
 address: {
 street: "Main Street",
 number: "26"
 }
}

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 301

Now add the following:

console.log(bestFriend.address.street);

This prints out the following:

Main Street

Objects can also contain functions. This allows your object to act on its own data.
Update your object so it looks like this:

var bestFriend = {
 firstName: "Jeremy",
 lastName: "Patterson",
 address: {
 street: "Main Street",
 number: "26"
 },
 speak: function() {
 console.log("hello, my name is " + this.firstName);
 }
}

You’ll notice that the function refers to its own properties using this. This keyword
stands in place of the current object.

Note: The this keyword can be confusing and complicated, depending on the
context. It changes depending on where the keyword is used. If you’re new to
JavaScript, make sure to look up all the pitfalls you may encounter when using
this.

Now call speak by adding the following code:

bestFriend.speak();

Now, you’ll see the following in the console.

hello, my name is Jeremy

Congratulations! You’re cooking with objects!

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 302

Key points
• Sumerian is a great tool to learn and use the JavaScript language.

• JavaScript is officially named ECMAScript and has no connection to the Java
programming language.

• Variables store data.

• Arrays group related data as one variable.

• Loops repeat instructions or cycle through all the elements in an array.

• Use if statements to perform branching logic.

• Functions encapsulate code and can be called on-demand.

• Arrow functions condense regular functions.

• JavaScript hoists variables to the top of a function.

• Objects group variables and functions.

Where to go from here?
You’ve just scratched the surface of JavaScript. As you can probably tell, the language
goes very deep. What started as a simple language to interact with web pages has
transformed into a tool with a variety of applications.

This chapter has introduced you to JavaScript in the context of Sumerian, but you
can use it for many things like creating games, building web pages and even writing
server applications.

One chapter alone doesn’t do justice to the language. A great place to learn more is
the Kahn Academy. Kahn Academy provides free online video tutorials that will
quickly get you up to speed.

Mozilla – the creator of the Firefox browser – also produces free learning materials.
Check out the Mozilla Developer Network and search for the JavaScript Learning
Path. This is a free online guide that will introduce you to the language from the
ground up.

Amazon Sumerian Chapter 11: Introduction to JavaScript

raywenderlich.com 303

12Chapter 12: The Sumerian
API
By Brian Moakley

When it comes to learning a programming language, oftentimes the language itself is
the easiest part to learn. It’s the application programming interfaces (APIs) that take
the most time to get down. A language uses an API to achieve tasks in the desired
framework.

For example, every browser has an API, which allows JavaScript to dynamically
change a web page. The browser is a collection of multiple APIs. There’s an API to
create 3D graphics called WebGL. This is the framework that Sumerian uses to render
3D objects. WebVR is another API that provides virtual reality on a web page. There
are so many APIs that it could take years to get to know them all.

Sumerian includes its API as well. A major difficulty in learning an API is learning
how to think in that API. Each API is like a fingerprint. While some APIs copy the
methodology of others, at the end of the day, each implementation is unique to the
task at hand.

If you’ve been following this book, then congratulations! You’ve already learned the
hard part: How to think in Sumerian. You’ve learned to pass messages between
objects. You’ve learned to create interactivity by creating behaviors from a series of
states, which are composed of individual actions. This is also how the Sumerian API
works: You need to think in actions.

To get started, you’ll create your own custom actions.

raywenderlich.com 304

Creating custom actions
Throughout this book, you’ve been adding actions to states. These actions have all
been pre-built. To get started with this chapter, you’ll create your very first action.
You’ll then create some interactivity with your ingredients. When the user clicks on
an ingredient, that ingredient will disappear.

Note: If you skipped over the previous chapter and don’t know how to create
custom scripts, head back to Chapter 11, “Introduction to JavaScript” and read
the first section.

Before you start, think about how you’d do the same thing with a behavior. You
might create a behavior that listens to click actions. Then, when the user clicks on
the item, you’d transition to a hide action followed by an emit message.

From the Sumerian dashboard, open the Quickstart scene. In the Assets panel,
switch to the Scripts tab, mouse over the Default Pack and click the + button. Select
Script (Preview).

Rename the script to Ingredients and, in the Inspector panel, click Edit in Text
Editor. Sumerian provides some default code.

Delete the default function.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 305

This leaves you with an import statement, which is responsible for importing the
Sumerian API. The statement imports the framework under the letter s, so whenever
you need to access an object from the framework, you always start with s.

Start by typing the following below import:

export default function IngredientClickAction(ctx) {

}

A lot is going on in this little bit of code. Here’s the breakdown:

• export default: When you write a Sumerian script, you’re creating what’s known
as a module. Sumerian has to import your code into the engine, and you must
define one function as the default export. In this case, it’s your first action. You
must do this once per script. This will be the default action attached to the entity.

• function IngredientClickAction: This is the name of your custom action. It
starts with a capital letter and it’s very clear what it’s supposed to do.

• (ctx): Your action takes only one parameter and this parameter is known as the
context. You can think of the context as the heart of the framework. To do
anything with the framework, you need a context object. The context allows you
to run actions and can also contain data, much like attributes.

At this point, you have an empty action, which doesn’t do much at all. For the demo,
you want it to respond to click actions. Each context has a start() function, which
takes in actions.

Add the following to your action, placing it between the curly braces:

ctx.start();

At this point, you provide your actions. Each action is passed into an array, which
takes two objects. The first is the action type and the second object is the
configuration properties.

To see the available actions, you must check out the documentation, which you can
find here: https://content.sumerian.amazonaws.com/engine/latest/doc/.

This document contains a lot of information, but it has everything you need to know
to be successful with the API. You’re interested in the available action, so click on
module://sumerian-common/api link.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 306

Note: This is a living document with regular updates, so the document will
likely look different when you visit it.

When you expand the common API, you’ll see a list of the core objects. This is where
you can find more information and learn about the various functions available. You’ll
also see action categories. Expand the input category.

Expanding the list provides several actions related to the input. Click on
ClickAction. The documentation will give a brief description of the action. You want
to create a new action, so click on constructor.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 307

A constructor will let you know how to create an action. For instance, a Listen action
requires that you pass a channel into it. In your case, you’re creating a ClickAction.
This action needs to know what happens when the user performs the click.

The constructor lists all the various properties that it will take. You’ll see that it
contains an options.onClick. This takes a function and is optional. The description
reads: Callback invoked when entity is clicked.

This means that when the user clicks the button, the provided function will execute.

Now, you want to add your action. Update your action to the following:

ctx.start(
 [s.input.ClickAction, {}]
);

Here, you’ve defined an array that contains an action and an empty object. The
s.input tells Sumerian where to find the action. The empty object {} is what
contains the options.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 308

Now, update it to the following:

ctx.start(
 [s.input.ClickAction, { onClick: function() {

 }}]
);

Now you’ve added a function to handle the click event. Whenever the user clicks on
an ingredient, this function will be called.

Two things need to happen: The entity needs to disappear and you need to send out
a message. You do this via your context. The parent action contains your context, so
you can just use that.

Update the code to the following:

ctx.start(
 [s.input.ClickAction, { onClick: function() {
 ctx.start(
 [s.entity.HideAction],
 [s.message.SendAction, {
 channel: "ClickedOnIngredient"
 }]
);
 }}]
)

Now, two actions will run once the user clicks on an ingredient. You’ll notice that
HideAction has no options. In this case, you don’t need to provide an additional
object.

SendAction works the same way as it does in a behavior, but it also provides another
option that allows you to pass data. You’ll use this later in the chapter.

Finally, you’ll update your code to use an arrow function instead of a function.
Update ClickAction to the following:

ctx.start(
 [s.input.ClickAction, { onClick: () => {
 ctx.start(
 [s.entity.HideAction],
 [s.message.SendAction, {
 channel: "ClickedOnIngredient"
 }]
);
 }}]
)

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 309

You’ll be using arrow functions throughout the rest of the book.

Now, save your script and switch back to the engine.

In the Entities panel, select the Oil entity. Drag the Ingredients script onto it. To
test this, you’ll need to make a quick alteration to your scene. Select the Default
Camera and in the Inspector panel, check the Main Camera option.

Now, run your scene and click on the oil. It disappears! Voila! You’re a code magician.

Working with entity sets
Congratulations on creating your first custom action. Unfortunately, it’s not very
convenient. It works pretty much as a behavior.

A better approach is to add the action to multiple ingredients at once. You do this by
way of an entity set, which is a collection of entities. You can search through those
entities or even attach actions to them.

You fetch an entity set from the world object. This object is accessible from a
context object. You can get a set via a regular expression, attributes, and tags.

In the Entities panel, select the Oil entity and in the Inspector panel, expand the Oil
component, which is the main component at the top of the list. Expand the Tags
section, located above the Custom Attributes.

Add the tag ingredient and click the + button. Add this tag to the following entities:
Egg 1, Egg 2, Egg 3, Flour Bowl and Water Cup.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 310

Return to editing your Ingredients script. Add the following:

export default function IngredientsSelector(ctx) {

}

Remember, you can only export one action as the default, so change the header of
your IngredientsClickAction to the following:

function IngredientClickAction(ctx) {

Now, to get your ingredient entities. In IngredientsSelector, add the following:

const ingredients = ctx.world.entitiesWithTags("ingredient");

This simple code takes all of your entities and bundles them up as an entity set for
you.

Note: If you’ve worked with sets in other programming languages, you’ll be
happy to know you can perform set operations as well, such as intersect,
union and substract. See the documentation for more details.

Now add the following:

ingredients.maintain(ctx, [IngredientClickAction])

maintain allows you to start actions on the entire set. It will also stop actions when
entities are removed from the set. If you don’t care about actions stopping, you can
use start instead.

Your new action should look like the following:

function IngredientClickAction(ctx) {
 ctx.start(
 [s.input.ClickAction, { onClick: () => {
 ctx.start(
 [s.entity.HideAction],
 [s.message.SendAction, {
 channel: "ClickedOnIngredient"
 }]
)
 }}]
);
}

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 311

export default function IngredientClickAction(ctx) {
 const ingredients =
 ctx.world.entitiesWithTags("ingredient");
 ingredients.maintain(ctx, [IngredientClickAction])
}

Save your script and switch back to the Scene editor. Since you’re batch-updating
your ingredients, you can remove the script from the oil. Keep in mind, you still need
to attach the script to an entity for it to function.

In the Entities panel, select the Oil entity and remove the script component. Select
the Ingredients and drag the Ingredients script to it.

Note: For the script to work, it needs to be attached to any entity. In your
current scene, you attached the script to the Ingredients entity. This entity is
the parent of all the affected entities. Having a script on a parent is
inconsequential to how the script functions. You could just as easily create an
unrelated entity named ScriptManager and add your script to that. It would
work just the same.

Now, run your scene and click on the various ingredients. They all disappear, and it
only required a few lines of code.

Attributes and values
Throughout this book, you’ve been keeping track of certain states with attributes.
You’ve done this by creating attribute actions and then running comparison actions.

When working with the Sumerian API, you can also use values. Values allow you to
save information like you can with attributes, but there are some differences.

First, you can choose to save data on an entity or you can save data to the world. By
saving data to the world, any entity can access the value.

In your current scene, you want to keep track of when the user clicks an ingredient.
When the user has clicked all the ingredients, it’d be nice to see the raw dough in the
bread pan.

To get started, click the Import files from your computer folder in the Assets panel.
In the resources/models folder, select the Dough.FBX file. This is a model of your
raw dough.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 312

Drag the Dough.FBX entity onto the canvas and rename it Raw Dough. Set the
translation to (-10.768, 4.26, -8.631). Set the rotation to (-5.552, -1.505, 7.016). Set
the scale to (1.253, 1.529, 1.396).

In the Assets panel, switch to the Materials tab. Look for the Dough.FBX pack and
select the 12_-_Default. Switch to the Textures tab.

Click the Import files from your computer folder and, in the resources/textures,
import all of the bread textures.

Drag the Bread_Color.png texture to the COLOR (DIFFUSE) category. Drag the
Bread_Normal.png texture to the NORMAL category. Finally, drag the
Bread_Ambient.png texture to the AMBIENT category.

Select the Raw Dough and click Add Component, then add a State Machine. Click
the + button to add a new behavior and name it Raw Dough.

This will create a simple behavior. Name the first state to Listen for Messages and
add two Listen actions.

Set the first channel to ShowRawDough and the other channel to CookingDone.
Add two more states. Name one state Show and the other Hide.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 313

Add a Show action to the Show state and a Hide action to the Hide state. Add
Transition actions to both states.

Drag a transition from the ShowRawDough event to the Show state and then back
to the Raw Dough state. Drag another transition from the ShowRawDough event to
the Hide state and then back to the Raw Dough state.

Your behavior should look like the following:

Now drag the Raw Dough to the Breadpan. Hide the Raw Dough.

This allows your dough to appear and disappear by receiving a message, which
you’ve done throughout the book so far. This is quite useful and, since you’ve done it
so often, it’s a great candidate for a script.

Open your Ingredients script. The first thing you need to do is track the total
ingredients.

In IngredientsSelector, add the following underneath const ingredients =
ctx.world.entitiesWithTags("ingredient");:

ctx.world.value("ingredientCount", ingredients.size);
ctx.world.value("ingredientClicked", 0);

Those two lines set up your values. You’ve assigned them to world, so any script can
access them. If you wanted only the entity to be able to access the values, you could
write: ctx.entity.value instead.

The first line keeps track of the number of ingredients and the second line keeps
track of the number of clicks.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 314

At the top of IngredientClickAction, add the following:

const totalIngredients = ctx.world.value("ingredientCount");
const clickTotal = ctx.world.value("ingredientClicked");

This fetches the value objects that you created in the set-up action and stores them
as variables.

Note: If you are new to JavaScript, the use of const here may be confusing.
After all, when you set a number to const, you can’t change the value.
Remember, an object is a collection of values. By declaring the object as a
const, you can’t change the actual object, but you can still alter the object’s
properties. If you tried something like this: clickedTotal = {};, you’d get an
error.

First, you need to increment the click value. A property named current stores this
value. Inside the ClickAction, add the following above ctx.start():

clickTotal.current += 1;

This increments the click count. Once the click count equals the total amount of
ingredients, then it’s a good time to show the dough.

In your click action, add the following underneath ctx.start():

if (clickTotal.current == totalIngredients.current) {
 ctx.start(
 [s.message.SendAction, { channel: "ShowRawDough" }]
);
}

And that’s it! Run your scene, and click on all the ingredients. When they all
disappear, your raw dough will appear. Magic!

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 315

Values also provide an advantage over attributes that you can monitor when a value
has changed. By using monitor on a value, you can run code every time there’s a
change.

Rewrite IngredientsSelector to do all the hard work:

export default function IngredientsSelector(ctx) {
 const ingredients =
 ctx.world.entitiesWithTags("ingredient");
 ingredients.maintain(ctx, [IngredientClickAction]);

 // 1
 const totalIngredients =
 ctx.world.value("ingredientCount", ingredients.size);
 const clickTotal = ctx.world.value("ingredientClicked", 0);

 // 2
 clickTotal.monitor(ctx, () => {
 if (clickTotal.current == totalIngredients.current) {
 ctx.start(
 [s.message.SendAction, {
 channel: "ShowRawDough"
 }]
);
 }
 });
}

Here’s how it works:

1. In this action, you set up both of the values and keep references to the variables.

2. This sets up the value monitoring by calling monitor. It takes an active context,
after which, you provide a function. This function runs every time the value
changes.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 316

This requires a small change to IngredientsClickAction. Replace
IngredientClickAction with the following:

function IngredientClickAction(ctx) {

 const clickTotal = ctx.world.value("ingredientClicked");
 ctx.start(
 [s.input.ClickAction, { onClick: () => {
 clickTotal.current += 1;
 ctx.start(
 [s.entity.HideAction],
 [s.message.SendAction, {
 channel: "ClickedOnIngredient"
 }]
)
 }}]
)
}

All this does is increment the value. The action is much simpler now.

Signals
One of the drawbacks of using behaviors in the Scene editor is that complexity can
quickly grow out of hand. It’s easy to get lost in a tangled mess of states. Using the
API, you can essentially compartmentalize complexity and have it represented as a
single state.

In this case, you have the user’s click on the ingredients. You’ve already written a
bunch of code to handle that. You’ll wrap that up in action and add it to your
behavior.

You could use a message to signal the end of your action, but you can also use —
drum roll please — signals.

A signal is a way to indicate the completion of a state.

To get started, create a new custom preview script. Rename it Mix Ingredients.
Open the newly-created script in the Text editor.

This is going to be a simple action. It’ll wait until the ShowRawDough message
broadcasts.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 317

Replace the default function with the following:

export default function MixIngredients(ctx) {
 ctx.start(
 [s.message.ReceiveAction, {
 channel: "ShowRawDough" onReceive: () => {

 }
 }]
);
}

This message receives an action, but it doesn’t do anything yet.

Now, you must define your signal. At the time of this writing, Sumerian only supports
onSuccess and onFailure signals, but there’s a plan to support custom signals in
the future.

Implement signals by adding the following above your function:

export const SIGNALS = {
 onSuccess: {
 description: ’success when user adds all ingredients’
 }
}

Here, you define your signal. You must always call your constant SIGNALS; this is
defined by the engine.

To use it, your action must import the options object. This object contains a variety
of possibilities including properties that you set up (which you’ll do in a moment) or
signals.

Alter your function declaration to the following:

export default function MixIngredients(ctx, options) {

Using this object, you can trigger your success signal.

Update the MixIngredients action to call the signal inside ReceiveAction:

export default function MixIngredients(ctx, options) {
 ctx.start(
 [s.message.ReceiveAction, {
 channel: "ShowRawDough", onReceived: () => {
 ctx.signal(options.onSuccess);
 }
 }]

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 318

);
}

Now to use it. Save your script and return to the Scene editor. Open the Bread
Machine Demo. Click Add a new state, name it Mix Ingredients and add an
Execute action to it. Attach the Mix Ingredients script to it.

Drag a transition from the Click Ingredients state to the Mix Ingredients state.
Then drag a transition from the On Mix Ingredients Success event to the Click on
Pan event.

Finally, select the Demo Start Camera and set it as the Main Camera.

Now, run your scene and the demonstration will wait until the user has added all the
ingredients.

Action controllers
There will be times when you have an entity with multiple different actions.
Sometimes, you’ll want to cycle through the actions; other times, you may want to
designate a particular action state. Sumerian comes to the rescue with the concept of
controllers.

Controllers allow you to group actions. After you do that, you switch between the
controller states. You can either run this sequentially, define state names or even
have different states run at the same time.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 319

Sumerian defines several types of controllers. A regular controller allows you to run
one or more actions at the same time. A sequence controller allows you to run
actions in order. The states controller allows you to run one action at a time, in any
order. Finally, you have a control controller that allows you to start and stop actions
independently.

In this case, you’ll be defining animation actions and you’ll cycle between various
states. A sequence controller is a good fit for this purpose.

You want some simple animation, and you’ll use a controller do it. With your scene
open, click the Ingredients entity. In the Inspector panel, find the Script component
and click the + button to add a new script. Make sure to select a Custom (Preview
Format). Rename this new script to Ingredients Animation. Open it in the Text
editor.

You want the ingredients to bounce when a particular message broadcasts. You’ll
handle the message broadcast a little bit later. For now, you need to set up the
animation.

Replace the default action with the following:

export default function IngredientsAnimation(ctx) {
 ctx.start(
 [BounceAction]
);
}

This creates a new action and then calls another action. Later, you’ll call this action
from a ReceiveAction. For now, add the following to create BounceAction:

function BounceAction(ctx) {
 var bounceCount = 0;
 const totalBounces = 2;
}

This defines the length of bounces for the ingredients. Now for the animation. At this
point, you can define a state controller or a sequence controller. With the state
controller, you can arbitrarily jump between states, whereas a sequence runs states
in order.

First, you’ll define a state controller. Add the following underneath the variables.

const controller = ctx.sequence();

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 320

This defines a sequence, which takes a series of actions. Creating a sequence returns
a controller. Here, you store the controller in a variable that you can access later. Add
the following in the sequence():

const controller = ctx.sequence(
 [s.position.TweenMoveAction, {
 seconds: .5,
 relative: true,
 position: [0, 0.10, 0],
 onComplete: () => {
 controller.next;
 }
 }],

This defines a TweenMoveAction. You’ll see that it takes a few parameters. You want
to set the item to move upwards relative to its current position. When the animation
completes, you switch to the next action in the sequence.

Now, add the following for the down state:

[s.position.TweenMoveAction, {
 seconds: .5,
 relative: true,
 position: [0, -0.10, 0],
 onComplete: () => {
 bounceCount += 1;
 }
}]);

This performs another animation, with the difference that it’s moving the
ingredients downwards. When the animation completes, the bounceCount increases.
You’ll add more to this in a moment.

After the controller, add the following:

controller.loop = true;

By setting the controller to loop, you don’t need to move on to the next action. Once
the action completes, the next action will fire.

You only want two bounces. Update the onComplete function in your second tween
action to the following:

if (bounceCount >= totalBounces) {
 controller.loop = false;
}

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 321

Set the Default Camera as the Main Camera. Run the scene. Your ingredients will
bounce two times, then stop. With sequences, you can also restart sequences and do
a variety of other things.

You want the animation to run once a message is received. Update the
IngredientsAnimation action to the following:

ctx.start(
 [s.message.ReceiveAction, {
 channel: "AnimateIngredients", onReceived: (data) => {
 ctx.start([BounceAction])
 }
 }]
);

This creates a Listen action. You set the channel and onReceived handles what
happens when a message is received. You’ll notice that the message is receiving a
data object. With the Sumerian API, you can use messages to pass data to other
entities, which you’ll do in a moment.

For now, save your script and switch back to the Scene editor. Open the Bead
Machine Demo behavior. Select the Click Ingredients action and add an Emit
Message action to it. Set the channel to AnimateIngredients. Now, select the
Demo Start Camera and set it as the Main Camera. Now run your scene and you’ll
see your ingredients animate in time with the demonstration.

Script properties
One of the coolest parts about working with scripts is the ability to integrate them
with the rest of the Scene editor. For instance, when you add an Orbit and Pan
Control script, you’ll see a list of options. This allows you to configure the script
right in the Scene editor, versus switching to the Text editor to make any changes.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 322

These are known as script properties. When defining the property, you must provide
at least a property type, which indicates the actual data type of the property. For
example, if you wanted the user to provide text, the property would be a string type.

You can find the various types available to you in the type section of the
documentation.

You can also set the default value of the property, add a user interface control and
even set the order.

In this case, you’ll use properties to configure your lights. In the current demo, you
emit messages to turn on a light. Using properties, you’ll set the light from a drop-
down instead.

With the Scene editor open, create a new script and name it Lighting Control. Open
the Text editor and delete the default action.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 323

You’ll allow the user to configure two properties: One property will select the light,
while the other sets the state.

First, add the following:

export const PROPERTIES = {

}

The object’s name lets Sumerian know that you’re setting up properties for the
script. Like Signals, you must do this every time you create properties.

Now, between the curly braces, add the property for the light.

light: {
 type: s.type.String,
 control: s.control.Select,
 options:
 ["Console Light", "Done Light", "In Use Light",
 "Open Light", "Start Light"],
 default: 3,
 order:0
},

This code creates a drop-down for the user to select a light. The type sets the value
to be a string (text). The control sets the option to be a drop-down box. The
options provide the name of the light. You’ve set the options to match the entity’s
name, and you’ll use this name in a moment. The default sets the default value of
the drop-down. Finally, order determines the order of the control in the panel.

Now add the following:

active: {
 type: s.type.String,
 control: s.control.Select,
 options: ["On", "Off"],
 order: 1
}

This creates another drop-down, where you can set the light to be either On or Off.

Before you can see the options, you need to define an action to use them. Typically,
you define your actions with a context. To use option values, you’ll need to define
another parameter that stores the options.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 324

Add the following:

export default function LightNotifier(ctx, options) {

}

Now, save your file and return to the Sumerian editor. Open the Bread Machine
Demo behavior.

Select the Start Button Description. Add an Execute Script action and drag your
Lighting Control to it.

Now, you’ll be able to set both the light and its state. Set the Light property to Start
Light and the Action property to On.

Sending data
You’ve created some properties that allow you to configure your lights, but they
don’t do anything.

Currently, the lights have behaviors attached to them. To make your lights work, you
need to do two things: Remove the behaviors and tag the entities as lights.

Select the Console Light entity and remove the State Machine component. Then
add a Light tag to the entity.

Do this to the Done Light, In Use Light, Open Light and Start Light.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 325

You’ve now removed all of the light behaviors. If you run the scene, the lights won’t
activate.

Switch back to your Lighting Control script. You’ll use this script to send data in a
SendAction. In the Light Notifier, add the following:

ctx.start(
 [s.message.SendAction, { channel: "ManageLight", data: {

 }}]
)

Using the SendAction, you send both the channel and some data. The channel is just
some text, just as you’ve used throughout this book. The data is an object. You can
add whatever data you want to it.

In your case, you’ll declare two variables: light and status. You'll set properties
based on options object. The options object contains your predefined values of
light and active.

Add the following to the data object:

light: options.light,
status: options.active

When you’re done, the completed action will look like this:

export default function LightNotifier(ctx, options) {
 ctx.start(
 [s.message.SendAction, {
 channel: "ManageLight", data: {
 light: options.light,
 status: options.active
 }
 }]
);
}

You’ve defined two properties to contain your property data. Now, you need to read
that data. Save and go back to the editor.

Click Create Entity and select the empty Entity. Give it the name Lighting
Manager and drag it into the Default Dynamic Lights.

Next, create a new custom preview script. Rename it Lighting Manager. Add the
script to the Lighting Manager entity.

Open your Lighting Manager script in the Text editor.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 326

This time, you’ll use the default action. Delete everything in the braces.

First, you’ll fetch all of the lights into an entity set by adding the following to the top
of the function:

const lights = ctx.world.entitiesWithTags("Light");

Now, you need to listen for the ManageLight action. Add the following:

ctx.start(
 [s.message.ReceiveAction, {
 channel: "ManageLight", onReceived: (data) => {

 }
 }]
);

The script starts by listening for messages. When it receives a message, it receives
the data object. You can use this object to activate and deactivate the lights.

First, you need to check if you have a valid data object. Add the following:

if (data) {

}

Now, loop through all your lights:

lights.forEach((item) => {

});

A forEach loop iterates through the entire collection with the item variable
referencing the current item in the collection.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 327

Now, add the following in the forEach loop:

if (item.name == data.light) {

}

Each entity has a name, which you set in the inspector. You used the same names in
the property. If the names match, you have the affected light.

Now, add the following in the braces:

if (data.status == "On") {
 item.show();
} else {
 item.hide();
}

If the status is equal to On, then you'll call the show() method which shows the
entity. Otherwise, you'll hide it from view.

Save your file. Open the Bread Machine Demo and replace all your light messages
with the Lighting Control script. Set the correct light and the correct state (on or
off).

Your behavior should look like this:

Things are just getting interesting, and you haven’t touched animation yet. But don’t
worry, that comes next!

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 328

Key points
• Using the Sumerian API, you create your own actions. These actions can call

other actions as well.

• Every action takes a context. The context is a reference to the Sumerian engine.

• Sumerian actions reside in categories. These categories are documented in the
API documentation.

• Each action has its own constructor. When using a Sumerian action, always look up
the constructor requirements.

• Entity sets are groups of entities. You can group entities by assigning tags to
them and calling entitiesWithTags().

• Data can also be saved and retrieved by entity values. Unlike attributes, entity
values can be monitored for changes.

• Signals send messages to states when an action succeeds or fails.

• Controllers provide for action states. You can switch between these states to run
different actions.

• Properties provide for script configuration in a behavior state or in the Inspector
panel.

• Messages sent from actions can contain data that can be accessed from other
scripts.

Where to go from here?
The Sumerian API is expansive, and using it unlocks the power of the engine. Keep in
mind, the API isn’t meant to replace behaviors. The Visual State Machine editor is a
great tool to see the entire structure of your experience. That said, the API allows
you to group actions and extend the engine.

The best place to learn more about the API is in the documentation. The
documentation contains detailed information about each topic with lots of
examples: https://content.sumerian.amazonaws.com/engine/latest/doc/

The documentation contains information about debugging, working with events and
a deep overview of controllers. The documentation also contains a section for those
users coming from the legacy API. By all means, dive deep into the documentation.

Amazon Sumerian Chapter 12: The Sumerian API

raywenderlich.com 329

13Chapter 13: Animation &
Particle Systems
By Brian Moakley

As you’ve seen in this book, adding animation make scenes both interesting and
dynamic. Animation adds life to a scene. It not only captures your user’s attention,
but it also highlights interactive elements.

Sumerian provides several methods to perform animations. You can create a tween
action, you can import animation with the model or you can create your animation
with the timeline component.

In this chapter, you’ll be performing all of these animation types and, in the process,
breathing some life into your scene. After that, you’ll dabble with Sumerian’s particle
system to add some "steamy" effects.

Tweening the night away
So far, you’ve already played around with a bit of animation by attaching tween
actions to entities. You first did this in Chapter 4, "Adding Interactivity with
Behaviors."

The word "tween" is shorthand for between. When creating a tween, you set a start
point and provide an endpoint. You then provide a length of time for the animation
to play.

Using this information, Sumerian generates each frame of animation for the entity.
You can tween movement, scale, rotation and even make entities look at each other.

You’ll get to tweening in a moment, but before you do, you need to cook some bread.
And here you thought only a bread machine could bake bread!

raywenderlich.com 330

Open the Sumerian dashboard and then open your Quickstart project.

In the Assets panel, click on the Import files from your computer folder button.
Navigate to resources and select the Loaf.FBX model. Drag an instance of Loaf.FBX
onto the canvas. It’ll look like a block of Styrofoam.

In the Assets panel, switch to the Materials tab. Find the Loaf.FBX pack and select
the 12_-_Default material. Switch to the Textures tab.

With the Material component in the Inspector, drag the Bread_Color texture to the
COLOR (DIFFUSE) category. Next, drag Bread_Normal to the NORMAL category.
Finally, drag Bread_Ambient to the AMBIENT category.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 331

You now have a nice-looking loaf of cooked bread.

You may have noticed that you used the same texture for both the raw dough and the
cooked dough. Look at the Bread_Color texture and you’ll see that it contains the
imagery for the cooked dough and raw dough.

This is another way to increase the performance of your game. By sharing the same
texture, the scene takes less memory and requires fewer draw calls. This will make
for a better, more efficient scene.

Select the Loaf.FBX entity and rename it to Cooked Bread. Set the translation to
(-10.794, 4.02, -8.6).

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 332

You now have some cooked bread in the bread pan.

Drag the Cooked Bread entity into the Breadpan entity. You’re ready to get
tweening!

Tweening options
You’ve already played with the Tween actions, but so far, you only configured the
options. This section provides an overview of the various options.

With the Cooked Bread entity still selected, click Add Component. Add a State
Machine to it. Click the + button to add a new behavior and name it Cooked Bread.

Rename the first state to Animate Bread. Click Add Action and, in the Animation
category, select the Tween Move action.

By default, all tweening is relative. This means when you provide a movement, you’re
providing the movement in the current entity’s location.

By unchecking the Relative box, you’re tweening to the absolute position according
to the parent entity.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 333

Remember, when you parent one entity to another, the zero position is the location
of the parent entity.

To see this in action, do a little experimentation. First, make sure your tween’s
translation property is set to (0, 0, 0). Next, check the Relative checkbox.

Next, select the Default Camera and set it as the Main Camera. Zoom out so you can
see your scene at a glance.

Now, play your scene. Nothing happens, because you’re translating the bread by zero
according to its relative location.

Now, uncheck the Relative checkbox and play the scene again. This time, the bread
sinks into the counter.

The Breadpan entity is the parent of the Cooked Bread entity. Breadpan’s center
point is lower than Cooked Bread, so the Cooked Bread entity lowers toward the
counter.

Now, drag the Cooked Bread entity out of Breadpan. Do this by dragging the entity
name to the scene name (Quickstart). This time, Cooked Bread has no parent at all.
The zero location points toward the center of the scene.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 334

Run the scene again, and this time, the bread animates to the center of the entire
scene.

As you can see, parents make a big difference, especially when animating.

Drag the Cooked Bread entity back to the Breadpan entity and return to the Animate
Bread state. There’s more to do.

You just learned how to tween move an entity. You can also change the timing of the
animation by altering the Time property.

The tween action contains two other properties, named Easing type and Direction.
These determine how the animation plays out.

By default, a tween animation runs at the same speed from start to finish. This is
called linear animation, and it doesn’t tend to happen in real life. For example, you
may roll a ball fast, but it will eventually slow to a stop. Other objects may gradually
get up to speed then gradually slow down again. By changing the easing, your
animations become more interesting and dynamic.

By selecting an easing type, you tell Sumerian how you want it to apply the velocity.
Here’s an example of a linear animation:

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 335

This shows your entity moving at the same speed over a period of time.

The Direction property lets you indicate where you want to apply the Easing type.
You have three options: In, Out and InOut.

Quadratic easing allows you to slow your animation. For example, you may want your
entity to lose speed as it completes its animation. In this case, you’d set the
Direction to Out. This type of animation would look like the following:

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 336

Quadratic easing that uses InOut looks like this:

Note: You’ll learn the different easing types as you use them. If you want a
handy reference, visit https://easings.net/en, which provides illustrations that
show how the various easing types perform.

Set the easing type to Quadratic and set the Direction to InOut. Set the translation
to (0, 0, 7) and the Time (Seconds) to 3.

You’re ready to present your bread, but it needs some additional setup. Open the
Cooked Bread behavior. Click Add State and name the new state Listen for Cooking
Done. Add a Listen action to it and set the channel to CookingDone. Click Set As
Initial State.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 337

Click Add State again. Name it Prepare to Reveal and add a Show and Listen
action. Then set the Listen Message channel to LidOpened.

Drag a transition from Listen for Cooking Done to Prepare to Reveal. Drag
another transition from Prepare to Reveal to Animate Bread.

The behavior should look like the following:

Finally, in the Entities panel, hide the Cooked Bread entity.

Tween rotating
There are many different types of tweening. One type you’ll frequently use is tween
rotation. For example, in your demo, you want the lid to rotate open and rotate
closed.

Click Create Entity. Select the empty Entity and name it Lid. Drag it into the Bread
Machine entity. Next, drag the Glass_14_-_Default and the Top_14_-_Default entity
into it. Your lid should look like this:

Select the Lid entity and try changing the rotation values. The lid leaves the machine
and rotates in a large circle. When you created the lid entity, its default translation
was set to (0, 0, 0). This is the center point of the rotation, which is the center of the
scene.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 338

Remove the entities from the lid. Set the translation to (0,0, 0). You’ll see the entity
is positioned at the base of the machine.

Using the transform arrows, position the entity in the center of the lid hinge. This is
your rotation point.

Now drag the Glass_14_-_Default and the Top_14_-_Default back into the Lid entity.
Set the Lid entity’s rotation to (0,-180, -90).

This will close your lid. Chances are the lid clips through the rest of the model.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 339

You can use the Transform arrows to position it flush against the machine and then
set the rotation back to (0,-180, 0). Now, you can add your tween.

Click Add Component and select State Machine. Click the + button to add new
behavior. Name the new behavior Lid.

This behavior will have four states: One state listens for messages, two more perform
animations, and the final state sends a notification that the animation is complete.

Select the current state, name it Listen and add two Listen actions. Name one
channel to OpenLid and the other to CloseLid.

Click Add State and name it Open Lid. Add a Tween Rotate and set the rotation to
(0, 0, 90).

Duplicate the state and name it Close Lid. Set the rotation to (0, 0, -90).

Click Add State and name the new state Emit Completed Message. Add an Emit
Message to it and set the channel to LidAnimated.

Finally, drag a transition from the OpenLid event to the Open Lid state. Drag another
transition from the CloseLid event to the Close Lid state. Then, drag a transition
from the Open Lid state to the Emit Completed Message state. Do the same for the
Close Lid. Finally, drag a transition from the Emit Completed Message to the Listen
state.

Your behavior should look like the following:

You’ll integrate this with the demo soon – but first, you’ll dive into other animation
methods.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 340

Using animated models
When you import models into Sumerian, those models may contain their animations.
3D modeling programs contain animating tools. Each animation is stored as a
separate clip.

When creating animations, artists will sometimes rig a model. This means creating
an internal skeleton so that moving one part of the model will affect the "bones" that
connect to other parts.

It’s natural to think of human skeletons, but these rigs can also be for animals or
even inanimate objects.

When you import a model, Sumerian will create separate assets for the model,
skeleton and the actual animation clips. You can use these animation clips within a
behavior, which means you can trigger your animations based on clicks, messages
and so forth.

Click Import Assets and search for the Kyro Toaster. Click Add to add it to your
scene. Set the translation to (-10.436, 3.711, -4.911). Set the rotation to (0, 90, 0).
Set the Scale to (5, 5, 5), then rename it to Toaster.

Congrats! You’ve added a new appliance to your scene.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 341

If you look at the toaster’s Animation component, you’ll notice that you have lots of
different animation clips attached to it.

Animation clips are run on animation layers. Each layer can only play one clip at a
time, but you can provide multiple layers at once.

Play the scene and you’ll see two pieces of bread dropped into the toaster. This is
because the “add_bread” clip is the default animation clip.

Scroll down to the “complete” clip and click Default. After you click this button, it’ll
turn blue, indicating this animation is now the default clip.

The “complete” clip looks similar to “add_bread”, so check the Loop Infinitely
checkbox.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 342

Now when you run the scene, you’ll get dancing bread.

The Time Scale property determines the speed of the animation. A speed of 1 means
that the animation plays at the clip’s animation rate. Anything higher increases the
speed, so a scale of 2 doubles the animation speed. A scale of .5 runs the animation
at half-speed. This works the same in reverse, as you’ll see.

The Transitions property determines how clips will transition into one other. You
can signify the length of the transition and the transition type.

For instance, you may have an animated model waving, then the animation
transitions to another clip of the model scratching their head. Transitions determine
how the animations blend.

By default, animations will blend into each other. This is useful when you have
animations that have similar motions. A SyncFade will try and synchronize the
target animation to the initial animation clip’s start time. Finally, you can provide a
Frozen transition that freezes the starting state at its current position and blends it
into the target position.

The key thing to remember is that these transitions govern blending – they do not
trigger an animation transition. For that, you need a state machine.

With the toaster selected, click Add Component. Add a State Machine component.
Click the + to add a new behavior and name it Toaster.

Don’t worry about naming the states here. You have a number of steps to complete,
now.

• In the first state, add a Click/Tap action. Click Add State and, in the Animation
category, create a Set Animation action.

• Set the animation to add_bread. You’ll notice that you can transition from an
animation completion.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 343

• Duplicate the state. Set the animation to activate. Add a Wait action and set the
Random property to 5.

• Duplicate the state, remove the Wait action and set the animation to complete.

• Duplicate the state one more time. Set the animation to no_bread.

• Starting with State 1, drag transitions to the states in order.

• When making a dragging a transition from a state that has a Wait action, use the
On Wait End event.

• When you reach the last transition, drag a transition back to the first transition.

It should be one circular behavior, like this:

Now, play the scene and tap on the toaster. Now you’ll get a complete animation
cycle that you can restart by tapping it again.

Animating with the timeline component
Sumerian offers a third way of adding animation to your scene and that’s by using
the timeline component. The timeline allows you to animate translation, rotation,
and scaling by using keyframes. Where a tween action allows you to animate to a
certain point, a timeline allows you to animate multiple entities to several points.
The timeline also works well with events and behaviors.

There are two ways to create a timeline: You can click Create Entity and select a
Timeline object, or you can simply add a Timeline component to an existing entity.

There’s a point in the demo where the narration asks the user to click on the bread
pan. When the user clicks on the bread pan, the pan should animate into the bread
machine.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 344

You can add the timeline component to any entity except the entity you plan to
animate. Since you’re animating the bread pan, you can’t add the timeline to it.

First, delete the toaster from your scene. You won’t be toasting bread, you’ll be
baking it.

Now, click Create Entity and select Timeline.

Rename the timeline to Breadpan Timeline. Your new entity comes with a Timeline
component attached to it. The Timeline component allows you to set the duration,
loop the animation and have it play on start.

Click Toggle Timeline.

The Timeline editor is where you design your animation. It works very much like a
video editor. You have a scrubber and a toolbar to play keyframes.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 345

Note: A keyframe marks the start or end of a transition. For instance, if you
create a movement animation, one keyframe designates the start position and
another keyframe designates the end position. The computer will then
generate all the frames between those positions.

To start animating, drag the Breadpan entity into the Entity field in the timeline.
When you drop it, the timeline will populate with the entity.

The timeline shows the translation, Rotation and Scale properties. If you don’t see all
of the properties, scroll down. If you add additional entities, they will stack on top of
each other. It’s also useful to collapse properties that you aren’t using. You won’t be
animating the rotation or scale, so collapse them by pressing the collapse arrows.

The green bars indicate the timespan. This is where you add your keyframes.

The numbers at the top of the timeframe indicate the seconds, and the blue circle is
the scrubber. By moving the scrubber back and forth, you can preview the animation.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 346

Move the scrubber to 0.

With the scrubber at the 0-second mark, click the watch icon that’s to the left of the
Y coordinate. This automatically adds a keyframe on this axis.

Move the scrubber to the 2-second mark. Now, set the Y coordinate to 4.781. This
also automatically adds a keyframe. Your timeline should look like the following:

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 347

Scrub the timeline scrubber. You’ll see the bread pan lift. If you move the scrubber
back and forth, you’ll see the pan raise and fall again.

Now, to add animations for the X and Z coordinates. Enable both of them by clicking
the watch icon next to each one.

Select the X timeline and move the scrubber to the 2-second mark. An easy way to do
this is by manually entering 2 into the seconds' field.

In the X row, click on the green bar to select it. Click Add Keyframe. This adds a
keyframe for the current position, which is your start location.

Do the same for the Z coordinate. Your timeline should look like this:

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 348

In the X, Y and Z rows, add keyframes at the 4-second mark. Set the X value to
-10.478 and the Z value to -6.993. You can click on a keyframe and then enter the
value.

You may have keyframes at the very end of your timeline, which will mess up your
animation. Select each keyframe by clicking on it and then pressing Remove
Keyframe.

Do this for the other keyframe at the 10-second mark, if it’s present.

Move the scrubber to the 6-second mark and add a keyframe in the Y row. Set the
value to 3.7.

Now, you have a complete animation of the bread pan rising off the counter, moving
to the bread machine and lowering into it.

The animation duration is a little too long. In the Inspector panel, change the
Duration to 6. This will remove the extra part of the timeline.

Now, play your scene and you’ll get a smoothly-moving bread pan.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 349

All timelines are linear by default. If you want to use other types of animation,
double-click on a keyframe and you’ll get a pop-up dialog.

At this point, you can change your easing type. You’ll even get a preview of the
animation easing, which is really helpful.

Using the timeline with behaviors
Timelines are useful to encapsulate animation, but they also make it easy to animate
multiple entities at the same time. You can play timeline animation directly from a
behavior.

You’ll do this using messages. First, your timeline is set to play on start. Select the
Breadpan Timeline, and uncheck the Auto Start property.

First, activate your timeline when it receives a message. With the Breadpan Timeline
entity still selected, click Add Component and select State Machine. Next, click the
+ button to add a new behavior. Name it Breadpan Timeline.

Rename your first state to Listen for Click. Add a Listen action to it and have it
listen to the ClickedBreadpan channel.

Click Add State and name your new state to Play Timeline. Click Add Action and,
in the Timeline category, select the Start Timeline action.

Drag a transition from the Listen for Click state to the Play Timeline state.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 350

Your behavior should look like the following:

As you see, it’s not hard to activate the timeline. Now, you need the Breadpan entity
to fire the message.

Select Breadpan and add a State Machine, then create a new behavior. Name it
Breadpan.

Name the first state to Wait for Activation and add a Listen action to it. Have it
listen to the ActivateBreadpan channel.

Add a new state. Name it Click to Animate. Add a Click action to it.

Add a final state and name it Send Animate Message. Add an Emit Message action
and set the message to ClickedBreadpan.

Drag a transition from Wait for Activation to Click to Animate and then from
Click to Animate to Send Animate Message.

Your behavior should look as follows:

Next, you need to integrate your animation into the demo. Open the Bread Machine
Demo and click Add State. Rename it to Activate Breadpan. Click Add Action and
add an Emit Action. Set the channel to ActivateBreadpan.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 351

Drag a transition from the Click on Pan state to the Activate Breadpan state. Your
behavior should look like the following:

The Activate Breadpan state currently doesn’t link to the rest of the states. Don’t
worry about that, you’ll fix it in a moment.

To run the demo, select the Demo Start Camera and set it as the Main Camera.
Now, play your scene.

At this point, you’re stuck looking at the empty counter. Ideally, when the pan
animates far enough, the scene should switch to another camera. Then, the bread
machine’s lid should close.

You use events to do this.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 352

Timeline events
Timeline events work like keyframes, except you don’t animate anything. An event is
just a message that’s broadcast once the animation reaches a specific point in the
animation.

Select the Breadpan Timeline and click Toggle Timeline. If you scroll down the
timeline, you’ll see a section titled Event channels. Click the + button.

This creates your event. Name it SwitchToBreadMachine. Move the scrubber to 3
and click Add Keyframe.

Add another event and name it CloseLid. Move the scrubber to 6 and add a keyframe.
Your channels should look like the following:

Open the Bead Machine Demo behavior and select the Activate Breadpan state.
Add a Listen action to it and set the channel to SwitchToBreadMachine.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 353

Click Add State and name it Switch Camera. Add a Switch Camera action and set
the camera to Bread Machine Camera. Add a Listen action and set the channel to
LidAnimated.

Drag a transition from Activate Breadpan to the Switch Camera state and then
from Switch Camera to Press Start Button and Switch Camera. Finally, select the
Press Start Button and Switch Camera and rename it to Press Start Button.

Your behavior should look like this:

Now, play your scene. Everything plays through. Your buttons work... although when
the lid opens, you get raw dough. Don’t worry, you’ll fix that soon.

There’s also some clipping as the bread machine passes the camera. Select the Bread
Machine Camera and set the Near Clipping Plane to .5. Now everything should run
perfectly. All it needs is a little pizazz.

Sumerian particle systems
Almost every modern 3D engine provides a way to produce particles, and Sumerian is
no exception. Particles are small, 3D objects that render in large quantities. You can
use these systems to create snow, fire, fog and a variety of other cool effects.

For example, when a wizard launches a dazzling fireball at an enemy, what you’re
seeing is several particle systems in motion.

Using particle systems to create a specific effect is both an art and a science. In this
section, you’ll create a small misting effect. When the bread machine opens, a nice
waft of steam will exit the machine.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 354

To get started, click Create Entity and select Particles.

Rename the new entity to Steam. Set the translation to (-10.569, 4.466, -6.944).

When you select a particle system, you’ll see a green wireframe. This wireframe is
the shape of the system.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 355

Particles emit at the bottom of the cone and they’ll expire past the top of the cone.
Set the Default Camera as the Main Camera and your particle system will emit.

The particles are a little too large to look like steam. It’s time to get to work
configuring.

When you examine the Particles component in the Inspector panel, you’ll see that
you have a lot of different options.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 356

Each section in the particle component allows you to customize various aspects of
the particle system. You’ll start at the top and work your way down. This section
won’t cover every single property of the particle emitter, just the ones that you’ll
adjust for your demo.

Note: If you’re interested in learning about all the properties, check out the
Particle System documentation in the Sumerian User Guide. You can access it
here: https://docs.aws.amazon.com/en_pv/sumerian/latest/userguide/entities-
particlesystem.html.

General section
The properties in this section determine the very basic behavior of the emitter. By
default, the emitter is set to Auto Play. This is useful for testing your system.

By default, the particle system will last for 5 seconds. Change the Duration to 2
seconds.

The Prewarm property loads your particles before the system starts to play.
Otherwise, it will take a bit of time for it to start emitting particles. Check the
Prewarm property.

The Loop property is useful for testing. You’ll leave this checked for now, but later,
you’ll uncheck it.

You’ll need lots of particles to simulate your mist. Currently, your system is set to
emit a max of 100 particles. Change Max particles to 1500. This doesn’t affect how
many particles emit; rather, it determines how many particles can be shown at once.

Finally, the Local space simulation property is set to emit particles only inside the
parent entity’s boundaries. Uncheck this property.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 357

If you play the scene, it looks the same.

Emitter shape
The shape determines how the particles are emitted. You’re emitting your particles
from a cone, but other shapes are available. You’re using a wide code, which will emit
particles from the sides of the machine. It’s time to make some adjustments.

Now, you want to change the shape of the cone. First, make sure the particles are set
to emit from its volume. Do this by setting the Emit from property to Volume. This
allows the particles to spawn throughout the cone.

Next, set the Cone radius to 0.3, the Cone angle to 16 and the Cone length to 1.2.

While this won’t change the look of the particles, it will affect the system’s shape.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 358

Over duration properties
This is where things get interesting since this section affects the actual particles.
These are applied with each loop of the animation. You can provide constants, linear
values or random values.

The Emission rate determines how many particles should be emitted per cycle. Set
the value to 200. This causes your bread machine to vomit a pillar of mist.

By default, the steam is moving fast. Set the Start speed to 0.5.

The Start size determines the size of the particles. Instead of using Constant, select
Random Between Two Constants. Set the value between 0.4 or 1.

Next, you want to affect the Start color of the particles. The effect doesn’t need to
be too strong. Set the value to Random Between Two Colors.

For the first color, set the RGBA values to (0.60, 0.60, 0.60, 0.378). The first three
values determine the color, while the last value is transparency.

For the second color, set it to (1.00, 1.00, 1.00, 0.00).

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 359

Finally, set the Start lifetime to 1. This means that each particle will only last one
second.

Over lifetime properties
Over lifetime properties are properties that apply to the entire lifetime of the
particle emitter.

First, you want to add some colors. You’ll change between back and white. Set the
Color to Random Between Two Colors. Leave the first color as-is and set the
second color to 000000.

For the Size property, select Random Between Two Constants and set the values to
0.4 and 1.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 360

For the Rotation speed, select Random Between Two Constants and set the
values to -100 and 100.

Now, run your scene and you’ll see steam emit from the bread machine.

As you can see, you’ve created some simple steam. In the General settings, Uncheck
the loop. When you run it, the steam starts strong, then dissipates. Can you smell the
fresh bread?

Finally, uncheck the particles auto play property. You’ll use the particles on
demand.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 361

Integrating the particles
With your steam ready to go, your next task is to have it play in your scene. Drag
Steam into the Bread Machine.

With Steam still selected, click Add Component. Add a State Machine and create a
new behavior. Name it Steam.

Rename the first state to Listen for Open Lid. Add a Listen action and listen to the
OpenLid channel.

Add a new state. Name it Show Steam. Click Add Action and, in the Misc category,
select the Start Particles action.

Drag a transition from the Listen for Open Lid state to the Play Particle System
state.

Now, to add it all together! Select the Bread Machine Demo behavior and select the
Baking Is Done state. Add an Emit Message action and set the channel to
CookingDone.

This message does a few things. First, it hides the raw dough and then it shows the
cooked bread. This primes the bread to appear. When the user clicks on the open
button, the OpenLid message is sent.

This message starts the particle system, animates the opening of the lid and plays
the final narration.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 362

Run your scene and you should see a loaf of freshly-cooked bread rising out of a
machine.

Key points
• A tween is an animation between two points designated to happen over a

period of time.

• An easing type determines how the speed of the animation plays out over time.

• Some models contain their own animation clips.

• Animation clips can be integrated into behaviors allowing the animations to
play on demand.

• The timeline allows you to develop your own animations inside of the editor.

• Animation timelines can send messages at certain points of the animation.

• A particle system is series of animated particles emitted from a source.

• Particles are manipulated from a variety of properties and can be used to produce
a variety of effects.

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 363

Where to go from here?
Both animation and particle systems can take a static scene and bring it to life. You
can use them to highlight important points or just to make the scene interesting and
dynamic. To learn more about animation, check out this tutorial: https://
docs.sumerian.amazonaws.com/tutorials/create/intermediate/animation-
component-using-fbx/}

You can also learn about particle systems by following this tutorial as well: https://
docs.sumerian.amazonaws.com/tutorials/create/beginner/campfire-particles/

Amazon Sumerian Chapter 13: Animation & Particle Systems

raywenderlich.com 364

14Chapter 14: Incorporating
Web Content
By Brian Moakley

Sumerian is built for modern web technologies using HTML, CSS, and JavaScript.
Using a web-centric engine means it’s very easy to incorporate web-based content.

For example, if you want to highlight a website redesign in your 3D scene, you have a
few interesting options. You can take a screenshot of the website and use it as a
texture. Or, you can embed the site into the actual scene. This means that users will
not only be able to view your site, they’ll also be able to interact with it.

This is very cool, especially when you’re incorporating web content into a 3D space.

Getting started with the HTML entity
When you start your bread machine demo, the user sees a simple start button, but no
other context. They’ll have no idea what to expect from the experience. An
introduction provides a great way to set the user’s expectations of the experience. In
this case, you’ll incorporate a simple video to describe the experience.

There are lots of ways to create videos and lots of different hosting providers. For
this demo, you’ll incorporate an existing video hosted on YouTube.

To get started, open your Quickstart scene. The first thing you need to do is to make
space for the video. You’ll put it at the start of the scene and place the start button
underneath it.

raywenderlich.com 365

In the Entities panel, select the Start Button and change the translation to (5.356,
2.624, -10.931).

This lowers the button, making room for the video.

To add the video, you need to add a special HTML element. Click Create Entity then,
in the Others category, select HTML3D.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 366

Right away, you’ll see a 3D webpage in your scene.

This is a 3D HTML element. You can position the element like any other piece of 3D
geometry. For now, set the element’s translation to (1, 2, 0) to move it out of the way.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 367

Sumerian offers another HTML element as well. Click Create Entity and this time, in
the 2D Shapes category, select </>.

This creates a 2D HTML element. While you can rotate the camera around a 3D
HTML element, a 2D HTML element will always point toward the camera.

The 2D HTML element is great for user interface elements. You’ll be using it for that
purpose in the next section.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 368

Both the 3D and 2D HTML entities have similar properties. The first is that HTML
entities can’t be transparent – transparency renders as black. This means HTML
entities are opaque.

Next, 2D HTML entities will not render in virtual reality. These entities will just
appear as black boxes.

Finally, HTML content integrates with the rest of the web page. This means you can
interact with it using JavaScript and the DOM API. You’ll do this later in the chapter.

For now, delete the 2D HTML element and select the HTML3d Entity. Rename it to
Introduction Video.

When you select the entity, you’ll see that it contains an HTML 3D component. This
component allows you to change the width. You can also open the element in the
Text editor.

Click Open in Editor. Clicking the button opens the same Text editor that you used
to edit JavaScript.

All you need to do now is write some HTML.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 369

Quick web primer
Before you start playing with web content in your scene, it helps to understand how
web content works. If you already have a good understanding, feel free to jump to the
next section.

There are lots of different technologies employed in creating web pages, with entire
books written about each of them. Needless to say, think of this chapter as a very
brief overview.

As mentioned, you build web pages with HTML, CSS, and JavaScript. HTML provides
the structure of the page, CSS determines the look of the page and JavaScript allows
for interactivity.

When building a page, you start with HTML, which is an abbreviation for Hypertext
Markup Language. It defines how you lay your page out.

For comparison, think of a letter. A letter starts with a header section. The header
contains your address, your correspondent’s address, and the date. The letter then
contains a body that’s broken into sections composed of paragraphs. Finally, you
have a closing section.

Web pages use a similar pattern, except that HTML uses tags to separate sections.

In the Text editor, add the following:

<html>
 <head>
 <title>My Web Page</title>
 </head>
 <body>
 <p>This is a web page</p>
 </body>
</htmL>

Here, you’ve made a simple web page that prints out the text: “This is a web page”. It
isn’t the most exciting page, but it’s the foundation of the web.

As you can see, each element is composed of two tags. There is an opening tag () and
a closing tag (). The page contains a title that will appear in the browser bar.

The body of the page contains a simple paragraph that prints text.

You use CSS to style the pages. CSS stands for Cascading Style Sheets. This is a
technology where you declare presentation rules. For instance, you could make a rule
that states: All paragraphs designated as critical will be red and bolded.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 370

In the header, you create a class and then assign rules. Add the following after the
<title></title> tags but still between the <head></head> tags.

<style>
 .critical {
 color:red;
 font-weight:bold;
 }
</style>

This defines a CSS class called critical that makes text appear red and bolded. Each
line contains a key and value, which are defined by CSS and separated by semi-
colons.

You define your class in the HTML style element and you apply it using an HTML
attribute. Update the paragraph tag to the following:

<p class="critical">This is a web page</p>

There are lots of HTML attributes that affect elements in different ways. In this case,
the class attribute is applying your critical rule. You can also apply the style directly
like so:

<p style="color:red;font-weight:bold;">This is a web page</p>

That’s a very brief overview. You’ll learn more about the rest when you need it.

Embedding video content
At this point, you’re ready to embed your video. Now that you know how to edit
HTML, the rest just requires copying and pasting. You'll be copying some HTML code
that embeds a video into a web page. This same code can be used to embed a video
into a Sumerian scene.

Head over to the following URL: https://www.youtube.com/watch?
v=mcFmPonEPZU&feature=youtu.be

On the YouTube page, click Share.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 371

This presents a share dialog with lots of options. Select the Embed option.

This presents another dialog that provides a preview of the video as well as the
HTML it needs to display. Select the HTML code and click COPY.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 372

Return to Sumerian and, with the HTML editor open, delete all of the existing code
and paste the embedded code into it. Click Save and return to your scene.

When you return to the scene, you’ll see your video, but it doesn’t match the height
of the embedded window.

The video matches the width, but the height is a little too much. Thankfully, you can
scale the entity to a smaller height. Set the scale to (1, 0.62, 1). Now set the
translation to (5.365, 5.27, -10.93).

While the video looks great, it’s kind of small.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 373

You can play around with the sizes, but an easier method is to select the entity and,
in the Transform component, check the Uniform Scale option.

In the Scale row, select the X coordinate and scroll up to 5.8. When you finish, you’ll
have a video with the correct translation and scale.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 374

Creating a cooking time counter
Part of the bread machine demo simulates cooking time. At the moment, when the
user starts cooking, the baking immediately ends.

A better experience is to provide a timing countdown. The countdown should
integrate into the bread machine itself. This is a great case for using an HTML 3D
entity.

This feature will contain many different components. First, you’ll have the web
counter. Next, you’ll create a script that will allow the user to set the cooking time.
Finally, you’ll need to count down the remaining seconds and update the timer.

Adding the counter
To get started, click Create Entity and add another HTML 3D entity. Rename this
one to Cook Time Counter. Set the translation to (-10.024, 5.152, -7.01). Set the
rotation to (-80.498, 89.522, 1.014). Finally, set the scale to (0.101, 0.061, 0.455).

Your counter should now look like the following:

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 375

The first thing you need to do is change the background color of the console. Open
the Cook Time Counter entity in the Text editor. Replace the existing code with the
following:

<style>
 body {
 background-color: #d24dff;
 }
</style>

Here, you’ve created a style that applies to the <body> tag. This sets the background
to a darker color. In CSS, you can define your colors in hexadecimal.

If you do a google search for CSS Color Picker, you’ll find a simple tool that shows
the hexadecimal equivalent of any color you select.

Now, add the following:

<p id="timer" style="font-size: 150px; text-
align:center;margin:0;height:100%; width:100%; padding-
top:55px;background-color:#000000; color:#ffffff" >00:10</p>

This creates a paragraph tag using an inline style. First, the tag has an ID, which is
useful when working with JavaScript.

Next, you added a style that set the counter to be the entire size of the web view. It
also uses a large white font so the text is easier to see.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 376

By default, the counter should be empty. In the HTML, replace 00:10 with .
This is a special HTML character for a non-breaking space. This space serves as a
place holder.

You now have an empty counter, ready to go.

Setting the cooking time
By default, the cooking time should be five seconds. You can set this directly into the
scene, but a better option is to allow the user to configure this time from within a
behavior.

Select the Cook Time Counter and click Add Component. Add a Script and click
the + button. Make sure to add a Custom (Preview Format) script.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 377

In the Assets panel, select the Scripts tab and then select the Script script and
rename it to Counter. Open the script in the Text editor.

First, you need to define a property. This will allow the user to set the time amount.

Delete the default function. Add the following:

export const PROPERTIES = {
 countdownAmount: {
 type: s.type.Integer,
 default: 5,
 order: 0
 }
}

This creates countdownAmount, an integer set to a default of five seconds.

Now for the actual function. Add the following:

export default function CountdownTimerAction(ctx, options) {
 var currentTime = options.countdownAmount;
 ctx.start(
 [s.message.ReceiveAction, {
 channel: "StartCooking", onReceived: (data) => {
 // Do nothing ... for now
 }
 }]
);
}

This function first gets countdownAmount and stores it in a variable named
currentTime. Next... the action doesn’t do anything. You’ll write the code for the
receive action in just a bit.

When you select Cook Time Counter, you’ll see that you have a counter that
defaults to five seconds.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 378

At this point, you need to make a slight alteration to the overall demo behavior.
Select the Bread Machine Demo behavior and open it in the State Machine editor.

Select the Start Cooking state and change the Listen channel to CookingDone. And
that’s it! Now you are ready to code.

Writing the countdown code
Next, you’re going to write code that does three different things: First, when the
countdown starts, you’ll turn on the In Use button. Then, you’ll do the actual
countdown. When the countdown ends, you’ll need to turn on the Done light and
send a “cooking complete” message.

First, you’ll turn on the In Use light. Open the Counter script. In
CountdownTimerAction, add the following to the onReceived callback.

ctx.start(
 [s.message.SendAction, {
 channel: "ManageLight",
 data: {
 light: "In Use Light", status: "On"
 }
 }],
);

This sends a message to the Lighting Manager to activate the light for you. Next, you
need to define a countdown action.

Add the following function definition:

function CountdownAction(ctx, timeLeft) {

}

This function is recursive, which means the function will call itself passing in the
remaining time left to count. Once the timeLeft reaches 0, then the function will
end.

Add the following between the braces:

if (timeLeft.count > -1) {
 ctx.start(
 [s.time.WaitAction, {
 waitSeconds: 1, onTimeUp: () => {
 ctx.start([CountdownAction, {
 count: timeLeft.count - 1
 }]);

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 379

 }
 }]
);
}

If the countdown is greater than zero, then the countdown is active. If this is the
case, a WaitAction is called. The wait runs for one second, after which the
CountdownAction runs again, minus one second.

Note: If you don’t decrement the time, then the CountdownAction turns into
an infinite loop.

Now, for the case when the timer expires. Add the else clause to your if statement:

} else {
 ctx.start(
 [s.message.SendAction, {
 channel: "ManageLight",
 data: {
 light: "In Use Light",
 status: "Off"
 }
 }],
 [s.message.SendAction, {
 channel: "ManageLight",
 data: {
 light: "Done Light",
 status: "On"
 }
 }],
 [s.message.SendAction, { channel: "CookingDone" }]
);
}

All this does is send messages. It turns off the In Use light, turns on the Done light
and then lets the bread machine behavior know that the cooking is done.

Your complete action should look like the following:

function CountdownAction(ctx, timeLeft) {
 if (timeLeft.count > -1) {
 ctx.start(
 [s.time.WaitAction, {
 waitSeconds: 1, onTimeUp: () => {
 ctx.start([CountdownAction,
 {
 count: timeLeft.count - 1

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 380

 }
]);
 }
 }]
);
 } else {
 ctx.start(
 [s.message.SendAction, {
 channel: "ManageLight",
 data: {
 light: "In Use Light",
 status: "Off"
 }
 }],
 [s.message.SendAction, {
 channel: "ManageLight",
 data: {
 light: "Done Light",
 status: "On"
 }
 }],
 [s.message.SendAction, {
 channel: "CookingDone"
 }]
);
 }
}

While looking good, you still have more work to do.

Updating the web counter
One of the cool things about using Sumerian is that you can use the Document
Object Model (DOM) to update it. The DOM takes a web page and breaks it down
into a tree structure. Using this tree structure, you can add elements, remove
elements and move things around. In short, you use it to add interactivity to your
page.

To update your page, you need to get the paragraph tag and change its contents. Add
the following underneath CountdownAction:

function updateTime(timeRemaining) {

}

This is just a regular function, you’re not defining an action to run on a context. You
can think of this as a helper function.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 381

To update an element, you need to get a reference to it. Add the following:

const timer = document.getElementById("timer");

Here, you define a variable named timer that stores a reference to an element. You
start by accessing the document object, which represents the current page and
contains the actual structure. By calling getElementById, you’re querying the
document object for an element with an ID of timer. This is the <p> tag you defined
in the Cook Time Counter.

Now, add the following if statements:

if (timer) {
 if (timeRemaining > 9) {

 }
}

The code first checks to see if you have a valid element. If the element is valid, then
you check to see how much time is left. This determines how you’ll format the timer.
In the inner braces, add the following:

timer.innerHTML = = "00:" + timeRemaining;

The innerHTML property allows you to dynamically add HTML to your elements. In
this case, you’re adding the timer. Now, provide an else block:

if (timeRemaining > 9) {
 timer.innerHTML = = "00:" + timeRemaining;
} else {
 timer.innerHTML = = "00:0" + timeRemaining;
}

The else block just adds a zero before the countdown, which makes the countdown
look nice. Your complete function should look like the following:

function updateTime(timeRemaining) {
 const timer = document.getElementById("timer");
 if (timer) {
 if (timeRemaining > 9) {
 timer.innerHTML = "00:" + timeRemaining;
 } else {
 timer.innerHTML = "00:0" + timeRemaining;
 }
 }
}

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 382

Now that you have the helper function setup, you need to add it to
CountdownAction. Add the following after if (timeLeft.count > -1) {:

updateTime(timeLeft.count);

The last thing you need to do is call CountdownTimerAction. Update ctx.start to
the following:

ctx.start(
 [s.message.SendAction, {
 channel: "ManageLight",
 data: {
 light: "In Use Light",
 status: "On"
 }
 }],
 [CountdownAction, { count: currentTime }]
);

Now, run your scene and you’ll get your countdown. What’s nice about this approach
is that you can change the countdown from five seconds to ten seconds and
everything will work as before.

Key points
• An HTML3D entity is used to embed HTML directly into a scene.

• These entities cannot be transparent.

• AN HTML2D entity always faces the camera.

• To embed a YouTube video into a scene, you copy the share code and paste it
into the HTML editor.

• Use the DOM to update your HTML elements.

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 383

Where to go from here?
By embedding web pages into your scene, you can take your scenes to the next level.
You’ve seen how you can add embed videos as well as add additional interactivity.
Thankfully, technologies such as HTML and CSS have a ton of online resources
written about them. One of the best places to learn is the Kahn Academy. Their "Intro
to HTML/CSS" course gives you all the tools you need to build interactive experiences
inside of Sumerian. Best of all, it’s free.

Of course, keep reading. In the next section, you’ll learn about a technology called
Augmented Reality and how you can create these experiences inside of Sumerian.
See you then!

Amazon Sumerian Chapter 14: Incorporating Web Content

raywenderlich.com 384

Section III: Creating an
Augmented Reality Experience

Augmented Reality (AR) is a technology that combines virtual reality with the real
world. While virtual reality aims to create a new world, augmented reality takes the
existing world and projects elements of a virtual world onto it.

For instance, in fighter jets, a pilot’s heads-up display is projected into their helmet
to display incoming threats or important aircraft information. In American football
broadcasts, the field is often annotated with lines to show the first down, the line of
scrimmage and other information. Game developers have also used augmented
reality to turn the world into a virtual playground, where users "virtually" collect
items and "battle" each other in real-world locations.

Sumerian provides all the necessary tools to incorporate AR experiences in your
scenes. In this section, you’ll create a virtual shoe store where you’ll be able to try on
new pairs of shoes without leaving your home. This section is composed of the
following:

Chapter 15: Preparing Your Mobile Development Environment: Creating an AR
experience means running your Sumerian scene on a device. This chapter walks you
through the process of creating a mobile app in iOS and Android.

Chapter 16: Augmented Reality in Sumerian: This chapter introduces you to the
basics of building AR scenes in Sumerian. You’ll add a virtual shoe and have it appear
on demand.

Chapter 17: Fetching Data from Dynamo DB: Here, you’ll start to leverage the
power of AWS. You’ll store information about your shoes outside of Sumerian in a
database and then display that data in your scene. In doing so, you’ll create custom a
user interface to display that information.

Chapter 18: Completing the Augmented Reality App: In this final chapter, you’ll
complete your shoe store by adding additional shoes and allowing users to change a
shoe’s size to match their feet.

raywenderlich.com 385

15Chapter 15: Preparing Your
Mobile Development
Environment
By Gur Raunaq Singh

Augmented Reality is an upcoming technology that lets you use an app to integrate
audio/visual content into the user’s real-world environment. A common example is
Pokémon GO, a hugely popular mobile app that lets you find virtual creatures hidden
in the real world.

In this series of four chapters, you’ll build an augmented reality app that will let you
view three 3D models of shoes in the real world, tap a button to fetch information
about them from a database, and add buttons to manipulate the shoes’ sizes.

You’ll use Amazon Sumerian to build this app. You might expect to use the Unity
game engine instead since it’s one of the most popular ways to build augmented
reality apps.

However, Unity requires a powerful computer to run efficiently, and it has a learning
curve that not everyone wants to tackle. In comparison, Amazon Sumerian provides a
user-friendly web-based interface that allows you to learn about, build and
experiment with AR apps in a fun and easy way.

You’ll see how it works by building this app step-by-step across the next four
chapters. Time to get started!

raywenderlich.com 386

Overview
Before jumping in and start building the app, you need to know about the
components that make up the AR app you’re going to build.

Here’s what the different components do:

• At the bottom layer, you have your hardware: The Android or iOS device. This
section provides a starter project written in the native programming language for
each platform. The starter project contains all the libraries and SDK you’ll need to
build your scene, particularly ARKit for iOS and ARCore for Android.

• Next, you have a mobile app, which can run Sumerian and support the
functionality you need to build augmented reality experiences.

• The Sumerian scene that you’ll build in the next three chapters runs on top of the
mobile app in a web view, just like a website runs on a web browser. You’ll
understand how this works as you build the scene.

• In addition to tracking how and where objects will display in AR, the scene also
communicates with the DynamoDB database, a service from AWS. You’ll learn
about that in Chapter 17, "Fetching Data from DynamoDB."

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 387

You might be wondering why there’s a complete chapter dedicated to setting up your
development environment.

To understand this, you need to know how the apps on your mobile device work.

Creating mobile apps
To build a mobile app, you need an IDE (Integrated Development Environment). You
won’t be able to build a mobile app unless you’ve installed this software on your
computer, along with some additional packages. In this case, the starter project for
this chapter contains a pre-built project that you just have to build and run on your
device.

The software you need to build apps on iOS is called XCode and the one for Android
is called Android Studio. These are both free to download and install.

For iOS devices, you can download Xcode from the Mac App Store: https://
apps.apple.com/us/app/xcode/id497799835?mt=12. You can find Android Studio at
https://developer.android.com/studio.

Both contain additional frameworks. When you finally build and launch the
development environments, you’ll need to download additional components.

Thankfully, to build an augmented reality app with Amazon Sumerian, you don’t
need to know all the components of mobile development for Android or iOS. You just
need to do build the scene in the Sumerian editor, then use the public link of the
scene to build and run an app on your mobile device.

Think of it this way: To view a website, you use a piece of software called a web
browser, like Chrome, Safari, etc. In this case, your Sumerian scene acts as the
website, and the app that you’ll download and build on your mobile device acts as a
special web browser that runs your scene.

The Sumerian environment handles all the hard work of talking to the hardware. You
just need to know enough to publish your scene to your device. Thankfully, this
chapter has you covered.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 388

Importing the augmented reality template
Your first step is to create a published Sumerian scene with a public URL to run on
the app that you’ll install on your mobile device. Here’s how you do it.

Open the Sumerian dashboard.

In the Home section of the Dashboard, find Create a scene from template. This
section contains pre-built templates from the Sumerian team, which already have
some of the entities and scripts you need to build a basic scene.

Since you’ll be making an AR app, select the Augmented Reality template. In the
pop-up window, enter Shoes in AR as the name and click Create.

Once the scene loads, you’ll notice that there are already a few new entities, such as
ARAnchor, which aren’t in an empty Sumerian scene. You’ll learn more about what
these entities are and what they do in the next chapter. For now, all you need is a
published scene with a public link.

To publish the scene, go to the Sumerian editor and, in the top-right corner, click
Publish.

From the drop-down menu, select Create Public Link, read the agreement and click
Publish. It will take a few seconds to complete, then you’ll be able to see the public
link of your scene. To copy the URL, click Copy. You’ll use this link later when you
publish your app.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 389

Setting up your computer
Here’s what you need to do to install the mobile app that will run your Sumerian
scene:

• Download a .zip file containing the starter project with all the necessary files
needed to build the mobile app.

• Download or set up the IDE, depending on whether you’re going to build your app
on Android or iOS.

• Download and install any necessary additional packages.

Follow the instructions in the next subsection if you’re planning to run your app on
an iOS device. You can skip to the subsequent section for instructions on running
your app on an Android device.

Note: The following sections cover Xcode on macOS and Android Studio on
Windows. If you’re using a different setup, you’ll need to research the
requirements for each platform and/or IDE.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 390

Setting up the app on iOS
Before you start setting up, make sure you have the required hardware: A computer
running macOS.

Next, make sure that you have an ARKit-capable iOS device. You can view the list of
compatible devices here: https://developer.apple.com/library/archive/
documentation/DeviceInformation/Reference/iOSDeviceCompatibility/
DeviceCompatibilityMatrix/DeviceCompatibilityMatrix.html.

Note: While macOS does include an iOS simulator, you can only test
augmented reality scenes on an actual device.

Once you’ve prepared the necessary devices, you can start by setting up your macOS
device.

Creating an Apple Developer account
The first step to test on an iOS device is to create an Apple Developer account. If you
already have a developer account, feel free to skip to the next section.

An Apple Developer account is separate from your existing iCloud account; you need
it to build apps that run on an iOS device. You can sign up for free, but you need to
pay an annual fee if you want to publish your app on the Apple App Store. Since this
project will only test and build the app on your iOS device, you don’t need to pay
anything for now.

Go to the Apple Developer website at https://developer.apple.com/programs/enroll/
and click Start Your Enrollment at the bottom of the page. Follow the on-screen
instructions to create a developer account using either your existing Apple ID or a
new one.

Downloading the starter project
Once you have your Apple Developer account ready to go, your next task is to
download the Sumerian project files, which are different from your scene. The scene
contains everything you build using Sumerian and the project files have all the code
that you need for your scene to talk to ARKit.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 391

ARKit is Apple’s augmented reality development platform for iOS mobile devices. It
allows developers to build high-detail AR experiences for iPad and iPhone. The
starter project that you’ll download next contains all the necessary packages that
will communicate with the ARKit SDK on your iOS device.

You can download the AWS Sumerian ARKit starter project page at https://
github.com/aws-samples/amazon-sumerian-arkit-starter-app/tree/
dedf5c85e9e6f117f5b11ca73f1dac70283a8a50.

Download the project as a .zip file by clicking on the green Clone or Download
button. When prompted, select Download ZIP.

Once the download completes, double-click the file to extract its contents to a folder.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 392

Setting up Xcode
It’s all coming together! The next step is to run the Sumerian project on a device.

Download and install the latest version of Xcode from https://apps.apple.com/ca/
app/xcode/id497799835?mt=12 or the App Store on your macOS device.

Note: When you first open Xcode, you may see an Installing Components
window. Make sure you’re connected to the internet so that it can download
and install the necessary files.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 393

Once your download has finished, open Xcode and choose Open from the File menu.
Then navigate to the directory where you downloaded the Sumerian ARKit starter
project and select SumerianARKitStarter.xcodeproj to open it.

There are three key sections of the Xcode editor:

1. Navigator: Use this section to navigate to the different parts of a project.

2. Editor: When you click on a file to select it from the Navigator, its contents will
open in this area so you can edit them.

3. Utility: The Xcode utility area is mainly used for the Inspector pane, which
displays the properties of a selected file.

There is much more to learn about the Xcode editor, but for now, all you need to
know is how to navigate around the project and where to make changes in those
files.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 394

In the Navigator area, select ViewController.swift. This will display the file’s
contents in the editor.

Then, change the value of sceneURL to point to the URL of your published scene,
which you created earlier, and append /?arMode=true to the URL.

The default configuration of the starter project displays digital cubes in the
augmented reality scene, which you don’t need for this project. To disable them,
change the value of createDebugNodes to false.

As you learned earlier, the starter project already contains all the necessary files and
packages to run a Sumerian augmented reality scene. All you had to do was change
the project’s default URL to the public link of your Sumerian scene.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 395

Configuring the starter project
You need to go through three stages to get from writing code to have a running app
on a mobile device:

• Build: During the build stage, the IDE (Xcode, in this case) takes the different files
present in your project and creates from them a single package file called a binary.
This helps secure the app. It also reduces its size by holding only the necessary
files it needs to run.

• Install: Once the build stage completes successfully, you compile the final binary
file from the computer to the mobile device and install it on the device.

• Run: Before you can sideload an app – that is, install it from a source other than
the official App Store – to your device, you need to add your Developer account
needs as a Trusted Developer on your device.

Once you’ve done this, you can install and run the app.

Now, it’s time to start with the build process for your app.

Building your app
Connect your compatible iOS device to your computer and make sure you’ve
unlocked your iOS device’s screen.

You might see a prompt on your device showing Trust this Computer?.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 396

Click Trust and enter your device’s password. Make sure your device’s name is visible
in the Xcode window on your computer.

Before you can install and run the app on your iOS device, you need to sign in with
your developer account. The signature tells the mobile device about the source of the
app you want to install – which is you, in this case.

Signing your app with your developer account
From the menu bar, select Xcode ▸ Preferences, then select the Accounts tab.

Click the + button. From the drop-down menu, select the Apple ID account type and
click Continue. Enter your Apple ID and password to sign in.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 397

If successful, your account will now be visible in the list of Apple IDs in the Accounts
window.

You’ve signed your app now, but it’s still not quite ready to install. You have to
specify some other properties first.

On the top-left side of the Project navigator window, click SumerianARKitStarter
then select the General tab.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 398

In the Identity section of Project Settings, change the Display Name to MyARApp
and change the Bundle Identifier from com.amazon.SumerianARKitStarter to
com.<MY_DOMAIN_NAME>.<MY_SCENE_NAME>.

Your bundle identifier must be unique. Replace <MY_DOMAINB_NAME> and
<MY_SCENE_NAME> with something unique. For example:
com.raywenderlich.sumerianapp.shoes.

Once you register the bundle identifier with your app, no one else can use it. If you
try to use an existing bundle identifier, you’ll get a build error.

Next, in the Signing section, click the drop-down next to Team and select
(Personal Team). The status should change to Waiting to Repair. After a couple of
seconds, the error should resolve. The window should look something like this:

Note: To learn more about signing, visit https://help.apple.com/xcode/mac/
current/#/dev60b6fbbc7.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 399

Building and running your app
Finally, from the menu bar, select Product ▸ Run to build and run.

If the build is successful, Xcode will try to run the app on your iOS device. At this
point, you may encounter an error in your Xcode windows stating Could not launch
"SumerianARKitStarter".

To fix this, open Settings ▸ General ▸ Profiles and Device Management in your
iOS device. In this window, you’ll see an option under DEVELOPER APP with the
Apple ID that you used to sign in.

Tap on that ID and, in the next window, click on the blue text that reads Trust
<your-apple-id>.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 400

Still in the pop-up window, click the red Trust text.

Back in Xcode, start the build and run process again using Product ▸ Run. This time,
the install process will start without any errors and you’ll be able to see the app in
your device’s app drawer. The app should load automatically.

Click OK to allow access to the camera when the app asks for it.

After you give the app permission to use the camera, the Sumerian scene should
continue loading.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 401

Once the scene finishes loading, check if you can see the camera viewfinder on your
device. If so, it means you have successfully built and installed the app on your
device.

You can only see the camera viewfinder at this moment since augmented reality uses
your device’s camera. Since you haven’t added anything to the Sumerian scene, the
camera does nothing at the moment.

Setting up your app on Android
To build the same app on Android, you’ll need an ARCore-compatible device. ARCore
contains all the code necessary for an Android device to create augmented reality
experiences. To see the list of ARCore-supported devices, visit https://
developers.google.com/ar/discover/supported-devices.

The process of running an augmented reality Sumerian scene on Android is the same
as on iOS: You’ll download the starter project, set up and install the IDE — Android
Studio, in this case — and build!

Your first step is to set up Android Studio, which is the official IDE for Google’s
Android operating system. Unlike XCode, which is available only on macOS, you can
download Android Studio for Windows, macOS, and Linux.

Note: The following setup guide is just for Windows. If you are using Android
Studio on a different platform, you may need to perform additional steps. See
the documentation for your setup.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 402

Downloading and setting up Android Studio
Open the official page to download the Android Studio setup file.

Click on Download Android Studio and a pop-up window will open. After reading
the terms and conditions, check the I have read... option and then click on
Download Android Studio.

A file with a .exe extension will start downloading. Once the download completes,
double-click the file to launch it. Follow the setup wizard in Android Studio and
install any SDK packages that it recommends. Once the setup completes, click Finish
to launch Android Studio.

The next window will ask if you want to import previous Android Studio settings.
Select Do not import settings and click OK. While loading, the setup may download
some SDK Tools that the IDE needs, so make sure your system has an active internet
connection.

Finally, the Android Studio Setup Wizard window will open. Click Next.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 403

In Install Type, select Standard and click Next. In the UI Theme, select Darcula
then click Next. The setup will show the list of SDK components that you’re about to
download. Click Finish to download the required components.

Finally, click Finish and the Android Studio welcome screen will open.

Setting up the starter project
Your next task is to download the Sumerian project files, which are different from
your scene. The scene contains everything you build using Sumerian and the project
files have all the code that you need for your scene to talk to ARCore.

Next, open the AWS Sumerian ARCore starter project page at https://github.com/
aws-samples/amazon-sumerian-arcore-starter-app/tree/
01131146b9345c24bad2c3f485df02b776b4dfef.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 404

Download the project as a .zip file by clicking on the green Clone or Download
button. When prompted, select Download ZIP.

Next, select Open an existing Android Studio Project, browse to the directory
where you downloaded the ARCore Starter project and open it in Android Studio.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 405

There are two key sections of the Android Studio IDE:

1. Navigator: Use this section to navigate to the different parts of a project.

2. Editor: When you click on a file to select it from the Navigator, its contents will
open in this area so you can edit them.

There’s much more to learn about the IDE, but for now, all you need to know is how
to navigate around the project and where to make changes in those files.

The mobile app acts as an embedded web browser for the Sumerian augmented
reality scene to load and run on your Android device. This starter project contains all
the necessary files and packages to run a Sumerian AR Scene. All you have to do is
change the default URL set in the project to the public link of your Sumerian scene.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 406

In the Project navigator panel, select the Project view.

Then open MainActivity.java by navigating to app ▸ src ▸ main ▸ java ▸ com ▸
amazon ▸ sumerianarcorestarter ▸ MainActivity.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 407

Change the value of SCENE_URL to point to the URL of your published Sumerian
scene and append /?arMode=true to the URL.

Next, in the body of protected void onResume(), define a variable named config.
Add config.setFocusMode(Config.FocusMode.AUTO); after the variable
declaration.

Save the project using File ▸ Save All.

These are all the changes you need to make in the starter project. However, you still
need to do a few things to prepare your device.

Enable USB debugging
Before you can start the build process and run the app on your Android device, there
are two things you must do: Enable USB debugging and download and set up the
ADB tools for your OS.

USB debugging allows you to perform certain actions on your device through a USB-
connected device which, in this case, would be your computer running Android
Studio.

To enable this feature, you need to access a secret set of options: Android
Developer Options. As the name suggests, these are principally for people who need
additional functions to test software and apps they’re writing for Android devices.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 408

Since you’re building a custom app for your Android device, you need to enable these
options. Otherwise, you won’t be able to install the app unless you publish it in the
Google Play Store.

Open Settings on your device. For devices running Android 8.0 or higher, select
System. Scroll to the bottom and select About phone. Next, scroll to the bottom and
tap Build number seven times.

Click Back to return to the previous screen. Tap on Developer options near the
bottom of the list.

At the top of the Developer options screen, click the toggle button to turn it on. If a
pop-up window opens and asks you to confirm you want to Allow development
settings, click OK.

Finally, scroll down and enable the USB Debugging toggle, then click OK on the
confirmation pop-up window.

Note: These steps should work for the most commonly-available Android
devices on the market. If you can’t enable Developer options with the above
steps, visit the official documentation page to find the right solution for your
device.

Next, you need to make sure that ADB (Android Device Bus) can discover your
Android device through the USB connection.

ADB allows you to do things on an Android device that may not be suitable for
everyday use, yet can improve your developer experience. Examples include
installing apps outside of the Play Store, debugging apps and accessing hidden
features.

In this case, you need to set up the ADB tools so that when you connect your Android
device to your computer with a USB cable, Android Studio can discover your device
and subsequently install the starter project on it.

After you’ve successfully enabled USB Debugging on your Android device, connect it
to your computer with the USB cable.

Open the directory where you installed Android SDK during the Android Studio
setup process, then open platform-tools to find the ADB executable. To open the
directory, press Windows Key + R, then enter cmd and click OK. The windows
command prompt will open.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 409

Next, type cd %HOMEPATH%\AppData\Local\Android\Sdk\platform-tools and
press Enter. The prompt will change the directory to the location of the platform-
tools folder.

Type dir and press Enter to list the files and folders present in the current directory.
You should see adb.exe in the output.

Type adb devices and press Enter. The output shows the list of attached devices,
which should include your device’s ID along with an authorization status.

If it says unauthorized, unlock your Android device. You should see a prompt to
Allow USB Debugging?.

Click OK.

In the Windows command prompt window, type adb devices again. The
unauthorized status should have changed to device.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 410

Building and running your app
Now that you’ve set everything up, it’s time to install the app on your device and run
it.

Switch back to Android Studio.

From the menu bar, select Build ▸ Make Project to start the build process. This
process creates an Android Package file that contains all the necessary files the app
needs to run on a device. You can see the progress in the Build Output panel in the
bottom-left of the window.

When the build output shows Build: completed successfully, select Run ▸ Run
’app’.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 411

That opens the Select Deployment Target window, which will display a list of
connected devices. Your Android device should be one of them.

Select your Android device and click OK. This will generate the APK (Android
Package) file, copy it to your Android device, then install and run it.

Once you’ve installed the app on your phone, it will start and will ask for camera
permissions. Click Allow. Your Sumerian scene should load once the app starts. Make
sure you’ve connected your Android device to the internet.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 412

Once the scene finishes loading, check if you can see the camera viewfinder on your
device. If so, it means you have successfully built and installed the app on your
device.

You can only see the camera viewfinder at this moment since augmented reality uses
your device’s camera. Since you haven’t added anything to the Sumerian scene, the
camera does nothing at the moment.

Note: If you have any issues due to unaccepted licenses, use the official user
guide by Google to troubleshoot the device’s connection issues.

Congratulations!

This was your first look at how to build a mobile app on Android or iOS. You learned
the basics about how a mobile app goes from code on a computer to a functioning
app on a mobile device. You also learned how to run a published Sumerian scene on a
mobile device running iOS or Android.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 413

Key points
• Creating an augmented reality scene requires that you install the scene on a

modern mobile device.

• A Sumerian mobile app embeds your published scene into a web browser.

• You must download the app project files from Github then build them onto the
device.

• iOS scenes require devices capable of running ARKit.

• Android scenes require devices capable of running ARCore.

Where to go from here?
Now that you have a working mobile app on your device, the next step is to start
building your Sumerian scene, which you’ll read all about in the next chapter.

Amazon Sumerian Chapter 15: Preparing Your Mobile Development Environment

raywenderlich.com 414

16Chapter 16: Augmented
Reality in Sumerian
By Gur Raunaq Singh

Now that you have a development environment set up, and a running app on your
mobile device, it’s time to build your scene from the ground up.

For this experience, you'll build a scene that allows you to virtually try on a shoe. You
place a reference image on the floor, point your device at it and a shoe will magically
appear. You can put your foot in the 3D model to get a sense of how it will look.

Later, you'll incorporate several different types of shoes as well as allow the user to
change the size of the shoe. Before you do any of that, you first need to display the
shoe which is what you'll do in this chapter.

Components of the Augmented Reality
template
Log into the Sumerian Dashboard, and open the Shoe in AR scene that you created
in the previous chapter. You’ll notice there are a couple of additional components
present in the scene compared to an entirely new Sumerian scene.

There’s an AR Camera entity present. This is similar to the Default Camera entity
that is present in a basic Sumerian scene except that it has a script named AR
Camera Control attached to it. The primary purpose of this script is to communicate
with the ArSystem.

raywenderlich.com 415

The ArSystem is a key component for building an AR compatible scene in Sumerian.
It processes of all entities that are associated with an ArAnchor component attached
to them. It also enables the use of device-specific augmented reality APIs — ARCore
for Android and ARKit for iOS.

However, to build Augmented Reality apps with Sumerian, you don’t need to know
the nitty-gritty details of the internal workings on all these components. As you keep
adding new features to this project, the details of what that component is and why it
is important will be explained to you as you go. For now, it’s time to start building
the scene, starting with adding the 3D model, modifying its properties and building
the scene to see how it looks in AR.

Importing 3D assets
Since you’ll be adding custom 3D models of shoes that you want to be able to see in
AR, you first need to import them into your scene.

Note: If you are interested in learning more about models in Sumerian, please
read Chapter 9, "Custom Models and Sound."

Click Import Assets to import Shoe1.FBX from the resources folder for this
chapter. When uploading is successful, you’ll see both of these in the Assets panel.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 416

Next, drag the Shoe1 entity onto the ARAnchor entity that already exists in the
Entities panel. The 3D shoe entity should be visible in the editor.

As you can see, the shoe is imported as an entity in your scene. You can pan around
the scene to see it from different sides and different angles. But like all newly
imported models, it’s completely white, lacking any texture.

Within the Entities panel, click the arrow to expand Shoe1.FBX and select its child
entity, Plane004_07_-_Default. With the entity selected, click Material within the
inspector to expand that component.

Click COLOR (DIFFUSE) to expand the options, which you can see on the next page.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 417

Next, click the folder icon next to Texture and select Shoe1-Texture.png to upload
it.

Once the file upload is successful, the texture is applied to the shoe. Your Sumerian
editor window will look something like this:

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 418

Finally, select Shoe1.FBX from the Entities panel. Set the scale to (0.1, 0.1, 0.1).

At this point, you can view the Sumerian object in an AR context. However, the object
will sit stationary at the world’s origin. That is to say, the shoe model would be stuck
at the origin position of your device, and it will look like it’s floating in the air. You
don’t want shoes just floating around in the air in your house, do you?

To see how this would look, republish your Sumerian scene by selecting Publish ▸
Republish.

Notice that you don’t have to build and install the app again on your mobile device.
As you learned in the previous chapter, the mobile app serves as a browser for the
Sumerian scene to load. When you make changes to your Sumerian scene, republish
the scene, wait a couple of seconds and reload the app on your mobile device. Make
sure that you force close the app before you open it again.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 419

Once you have republished the scene, reload the app on your mobile device. If you
move and rotate the device, you should see lines and boxes, something that might
look like the inside of the shoe model.

While this makes for some great abstract art, this is not the desired effect. You need
to reposition the shoe.

Repositioning the Shoe model
To fix your position issue, you’ll add a Script component to your scene that will
handle the repositioning of this shoe in the AR World space.

Positioning the shoe is managed in two different ways. First, the user can point the
device at a real-world surface and then tap on the screen. This repositions the object.
Or the user can point the camera at a particular image that image will anchor the
model.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 420

First, you'll try to the surface detection method. This method is possible by adding a
script to the ARAnchor entity. This anchor uses the Sumerian ArSystem to interact
with the ARKit/ARCore SDK.

Currently, the shoe model is too big, so it’s best to change its scale.

Select Shoe1.FBX from the Entities panel and set the scale to (0.05, 0.05, 0.05) and
the rotation to (0, 180, 0).

Next, you’ll add a script to the ArAnchor entity that will reposition the 3D model
based on-screen tap event.

Select ARAnchor from the Entities panel. In the inspector, click Add Component
and select Script.

Click the + button. From the drop-down menu, select Custom (Preview Format) to
add a custom script. Rename this script to Object_Positioning. The Inspector panel
will look something like this.

Open the Object_Positioning script for editing by clicking the pencil icon on top of
it in the Inspector panel. Replace the contents of the file with the following piece of
code.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 421

Note: The following code uses "the old" API. This is the only way to access the
AR components at the moment.

’use strict’;

function setup(args, ctx) {
 // 1.
 ctx.entity.setComponent(new sumerian.ArAnchorComponent());

 // 2.
 const arSystem = ctx.world.getSystem('ArSystem');
 if (!arSystem) {
 return;
 }

 // 3.
 ctx.performHitTest = function(evt) {

 var pixelRatio =
 ctx.world.sumerianRunner.renderer.devicePixelRatio;

 var normalizedX =
 evt.changedTouches[0].pageX * pixelRatio /
 ctx.viewportWidth;

 var normalizedY =
 evt.changedTouches[0].pageY * pixelRatio /
 ctx.viewportHeight;

 arSystem.hitTest(normalizedX, normalizedY,
 ctx.hitTestCallback);
 };

 // 4.
 ctx.hitTestCallback = function(anchorTransform) {
 if (anchorTransform) {
 arSystem.registerAnchor(anchorTransform,
 ctx.registerAnchorCallback);
 }
 };

 // 5.
 ctx.registerAnchorCallback = function(anchorId) {
 if (anchorId) {
 ctx.entity.getComponent('ArAnchorComponent').anchorId
 = anchorId;
 }
 };

 // 6.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 422

 ctx.domElement.addEventListener('touchend',
 ctx.performHitTest);
}

Here’s how this code works:

1. Create and attach a Sumerian ArAnchorComponent to the current ARAnchor
entity so that the ArSystem is aware of it.

2. Get the ArSystem component using ctx.world.getSystem() and save a
reference to it in the newly created constant named arSystem.

3. Define a performHitTest function. This function gets called when the user taps
the screen. The line after comment // 6. defines this function. It converts the
event’s coordinates into normalized screen coordinates (a value in the range 0.0 -
1.0). Then, it passes these values as parameters to the ArSystem’s hitTest
function, defined below, which asks ARKit whether a surface exists at that
location in the real world.

4. Next, the hitTestCallback function gets called and has the results of the hit
test passed to it. If successful — meaning, a surface was detected at the tap
location — an object of type Transform is returned representing the detected
surface. Then, registerAnchor() of arSystem is called for it to register this
transform as an anchor.

5. registerAnchorCallback() is called with the results of the anchor registration
request, an anchor ID. If successful, the anchorId property of ArAnchor
component is updated, which automatically updates the Transform values of the
entity, essentially moving the shoe model to move to the location of the tap.

6. Finally, ctx.domElement.addEventListener() is called to register an event of
type touchend, which is called when the screen is tapped.

Save the script file, republish the scene and, after waiting for a few seconds, open the
mobile app again.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 423

Once the scene is loaded, point the camera’s viewfinder at a solid, well-lit surface,
such as a tabletop, or floor, and tap the center of the screen. You’ll see the 3D shoe
model reposition to the location where you tapped the screen.

Positioning using image recognition
Another way to provide positioning is through the use of an image. This image is
used as an anchor point in the world.

Companies have made great use of this approach. For example, one newspaper
showed video footage of events when users viewed the paper with the newspaper's
app. The app recognized the trigger images and projected video footage on top of
them, creating an interactive experience.

In this section, you’ll be changing the contents of the Object_Positioning script so
that the shoe will reposition in AR when the camera viewfinder points to a specific
image, which is referred to from this point as the target-image. This is known as
augmented reality with image recognition.

From this point, the rest of the app will be built using this image recognition
approach. This approach is better for building this particular app as you’ll
understand in the subsequent chapters.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 424

Time to get started. Open the Object_Positioning script in the Text editor and
replace the contents of the file with the following code:

’use strict’;

function setup(args, ctx) {
 // 1.
 ctx.entity.setComponent(new sumerian.ArAnchorComponent());

 // 2.
 const arSystem = ctx.world.getSystem('ArSystem');
 if (!arSystem) {
 return;
 }
 // 3.
 ctx.imageAnchorCallback = function(anchorId) {
 if (anchorId) {
 ctx.entity.getComponent('ArAnchorComponent')
 .anchorId = anchorId;
 ctx.entity.show();
 }
 };

 // 4.
 const imageName = 'SumerianAnchorImage';

 // 5.
 arSystem.registerImage(imageName, ctx.imageAnchorCallback);
}

Here's the code breakdown:

1. A Sumerian ArAnchor component is attached to the current ArAnchor entity so
that the ArSystem is aware of it.

2. Similarly, a reference to the the ArSystem component is set in constant variable
arSystem in using the ctx.world.getSystem() method.

3. The registerAnchorCallback function is called with the results of the anchor
registration request, an anchor ID. If successful, the anchorId property of the
ArAnchor component is updated when the entity is detected. When the image is
detected in the real world, ctx.entity.show() will be called and the ARAnchor
entity will be visible again, and so will its child objects, the shoe.

4. A variable of type constant is defined, and a string value SumerianAnchorImage
is set. This would be the exact name of the target image — the image on top of
which the 3D Model will reposition — that you will define while setting up the
mobile app later on in this tutorial.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 425

5. Finally, registerImage() of ArSystem is called which registers a to-be-detected
image in the environment in a Sumerian scene.

Switch back to the Scene editor and in the Entities panel, hide the ARAnchor entity
by choosing the eye icon to the left ARAnchor. The shoe 3D model should not be
visible now.

You’re doing this because when your scene loads, the shoe will be hidden by default.
Only when you point the camera viewfinder on the target image will the shoe be
visible and positioned on top of the image.

Save the scene and republish it. Now that you have changed the Object_Positioning
script, you need to set the target image on top of which the shoe model will
reposition.

Proceed to either the Android or iOS sections depending on your platform of choice.

Adding an anchor image in Android
Open the amazon-sumerian-arcore-starter-app you downloaded and set up in the
previous chapter in Android Studio.

In the Project navigator panel select the Project view.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 426

From the Project navigator window, select the assets folder by navigating to app ▸
src ▸ main ▸ assets.

Right-click on it and, from the drop-down menu, click on Reveal in Finder (macOS)
or Show in Explorer (Windows) option to open the directory.

There should only be a SumerianAnchorImage.png image file in this folder.

Replace this image with SumerianAnchorImage.png from the resources folder
from that are part of the assets for this chapter.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 427

Next, open the MainActivity.java file by navigating to app ▸ src ▸ main ▸ java ▸
com ▸ amazon ▸ sumerianarcorestarter ▸ MainActivity and change the value of
IMAGE_WIDTH_IN_METERS to the width, in meters, of your custom image in the real
world.

Taking the example of an A4 size sheet of paper, set the value to (float)0.20.

Finally, save the project by selecting File ▸ Save All and then build and rerun the
project by connecting your Android device to your computer and selecting Run ▸
Run in Android Studio.

Notice you are building and installing this project again because, in addition to the
changes in the Sumerian scene, you’ve also made changes in the contents of the
mobile app itself. Such as replacing the SumerianAnchorImage.png file with your
own.

Adding an anchor image in iOS
Open the amazon-sumerian-arkit-starter-app you downloaded and set up in the
previous chapter in Xcode.

In Xcode’s Project navigator, select Assets.xcassets. Next, click the AR Resources
folder to expand its contents. You should be able to see that an image
SumerianAnchorImage already exists.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 428

Right-click on SumerianAnchorImage, and click Remove Selected Items to delete
it. The window should show "No AR Items...".

From the resources folder containing the assets for this project, drag and drop
SumerianAnchorImage.png into the Xcode window.

Next, you need to set the real-world dimension for the target image. Using an A4-
sized sheet of paper as an example, set the dimension to 20x20 cm.

In the Xcode window, select the target image and click the Attribute Inspector
button. Set Units to Centimeters and then set both height and width to 20.

Running the app on a device
Now you're ready. You set the anchor image and you put the code in place to
recognize it and display the shoe on it. Connect your iOS device to your computer
and, run your app.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 429

Once the Sumerian Scene has loaded on your mobile device, the camera viewfinder
will open. You’ll notice that no matter where you point your camera, you cannot see
the shoe 3D model.

Point your camera viewfinder on a copy of the target image that you set in this
chapter.

Note: If the shoe 3D model does not appear on top of the image, or appears
only temporarily, completely close the app on your iOS device and open it
again. Also, make sure your device is connected to the internet.

It’s best to take a colored print out of that image and point your camera at it. You
should see the shoe on top of it.

You can try moving either the image or your mobile device from different angles,
making sure it is still pointed at the image, to see the shoe from varying angles and
distances.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 430

Key points
• To create an AR scene in Sumerian, you must use the AR project template.

• The ArSystem manages all the components in an AR scene.

• The ArSystem processes all the entities with an ArAnchor component attached to
them.

• Models can positioned in AR using surface detection or image recognition.

• Anchor images must be added to the app project.

Where to go from here?
Congratulations!

This was a first look at how to build a simple augmented reality scene with Sumerian.
In this chapter, you learned about the basic components of the Sumerian Augmented
Reality template, how to import 3D assets, and how to build and run the app on your
mobile device.

You also learned how to use image recognition. If you’d like, you can try setting your
custom image — it can be anything you want — and set it as the target image for the
app. You can even experiment with how changing the value of the image width in the
project properties affects the size of the shoe model in AR.

In the next chapter, you’ll learn about the basics of databases and how to use the
Amazon DynamoDB service within your Sumerian scene.

Amazon Sumerian Chapter 16: Augmented Reality in Sumerian

raywenderlich.com 431

17Chapter 17: Fetching Data
from DynamoDB
By Gur Raunaq Singh

Your virtual shoe store is coming together. You've added a shoe and provided an
anchor image for your shoe to appear. Unfortunately, there's no information about
the shoe. You can add all that information inside of the scene, but this adds
unnecessary work.

Think about it. Imagine you were having a sale and you wanted to discount your
shoes by ten percent. This change requires you to load up the Sumerian scene and
then search for all the prices. This means searching in your canvas as well as
checking all your behaviors. For small scenes, this may not take much time but for
larger scenes with dozens of behaviors containing hundreds of states, this is a
process fraught with error.

A better approach is to maintain that information outside of the scene. That way,
instead of modifying your Sumerian scene to apply a discount, you can just update
the price from a web page. AWS contains a great tool to use. It's called DynamoDB
and in this chapter, you'll put it to work.

Introduction to databases
DynamoDB is a database provided by AWS. The term database is used to describe an
organized collection of data. This is where you can store all your records about your
shoes.

In the digital world, it is simply a location where data is stored in the form of one or
more numbers of files in a structured way. A common way to store data is in the form
of a table.

raywenderlich.com 432

For example, a spreadsheet document is one large table, with rows and columns,
where the column defines the characteristics of a data point, and a row defines a
record of data. A database can have hundreds or even thousands of tables and are
usually related to each other in some way.

The main benefit of storing data this way is that you can query (lookup) the data fast,
or connect data from two or more different tables to each other. For example, if you
have a database of sales information, you could do relatively simple things such as
find out how much money you were taking in each day, or track your inventory of any
given product, so you know when to buy more.

An example of a non-digital database can be a filing cabinet, which can be used to
store massive amounts of information in an organized, methodical manner. Since
several databases can connect, think of them as a series of filing cabinets right next
to each other. When you go to look up some information, you can find it easily and
quickly, as well as information pointing to other files that may be used in reference.

Once you have data stored in a database, you need a way to interact with the data —
fetch data, add data, remove data, etc. — in an efficient way. This is known as a
Database Management System (DBMS).

For this app, you’ll use Amazon DynamoDB, a fully-managed database management
service that will allow you to interact with the information about the different
models of shoes that you’ll be adding in your augmented reality app.

Before you access DynamoDB from within Sumerian, you’ll need to create a set of
credentials within your AWS Account. Mainly, you have to:

• Set up an AWS Cognito Identity and get it’s Identity Pool ID.

• Create corresponding IAM Roles.

• Attach access policies to the IAM Role.

You’ll start by setting up AWS Cognito.

Getting started with Cognito
Amazon Cognito is an AWS product that controls user authentication and access for
mobile applications on internet-connected devices. The service saves and
synchronizes end-user data, which enables the developer to build the app instead of
the back-end infrastructure.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 433

Since you want users other than yourself to be able to get shoe details from
DynamoDB with your Sumerian AR app, you need to set up AWS Cognito. Perform
the following steps to create an AWS Cognito Identity pool.

Open the Amazon Cognito page located at https://console.aws.amazon.com/cognito/
home and enter the credentials for your AWS account. Once signed in, you should be
redirected to the Amazon Cognito service page. Click Manage Identity Pools.

The Getting started wizard should open, allowing you to create a new identity pool.
You can also open the wizard directly using the following link: https://us-
east-2.console.aws.amazon.com/cognito/create.

For the Identity pool name, enter Shoes_in_AR. Place a checkmark in the box next to
Enable access to unauthenticated identities. With this option enabled, all users
will have access to the app without having to log into AWS.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 434

Finally, click Create Pool.

On the next page, you’ll be asked to assign Identity and Access Management
(IAM) roles. In review. An AWS IAM role is an IAM identity that you can create in
your account that has specific permissions. To refresh yourself about IAM roles,
check out Chapter 1, "Getting Started with Amazon Sumerian."

Click View Details to see the complete details about the created IAM roles. Click
Allow.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 435

Once the IAM roles complete, you should be redirected to a page displaying the AWS
Credentials.

Copy the Identity pool ID, in red text, and save it someplace safe as this is the
unique ID you’ll be using in your Sumerian scene later.

Attaching policies to IAM roles
IAM roles are a secure way to grant permissions to entities that you trust.

Once you have created IAM roles, you need to attach certain policies to them for
them to access a particular AWS Service. Since you’ll be storing and fetching data
from a DynamoDB table, you’ll need to attach specific policies so that your app can
read data from DynamoDB.

To start, open the AWS IAM Roles page located at https://console.aws.amazon.com/
iam/home. Based on your AWS usage, you may or may not see some items in the
table on the page.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 436

In the table, you might see a long list of roles, a description, and their respective
trusted entities. In the search box just above the table, enter Shoes_in_AR, which is
the AWS Cognito ID pool name that you created in the previous subsection.

You should be able to see two role names in the table.

Here, you only need to attach policies to the Cognito Unauth Role since you want
to allow unauthenticated access to your app so that the DynamoDB table can be
queried.

In the filtered list, click Cognito_Shoes_in_ARUnauth_Role to see a summary of the
role.

On the Summary page, click Attach policies.

You should be redirected to a page in which you’ll see a list of policies that you can
attach to your IAM role. In the search box, enter dynamodb. You should see a list of
policies related to the DynamoDB Service on AWS.

In the list of policies, place a checkmark in the box for
AmazonDynamoDBReadOnlyAccess and click Attach Policy. Since you only want
to be able to read data from DynamoDB table, you only need to attach this policy.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 437

You should be redirected to the Summary page with a notification of successful
policy addition. You should also be able to see the attached policy in the Permission
policies list.

And that’s it. Now you’ll be able to fetch data from DyanamoDB Tables in your
Sumerian AR Scene.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 438

Setting up DynamoDB and adding data
With your IAM all configured to use DynamoDB, you are now ready to dive into it!

Open the AWS DynamoDB console located at https://console.aws.amazon.com/
dynamodb/home and click Create table.

Enter shoes for the Table name, and for the Primary key, enter shoe_id. A primary
key is a column used to identify a row of data and it is meant to be unique.

For example, you may contain a table that represents a person. The table may
contain fields such as first name, last name, address and so forth. All these fields may
be duplicated. For instance, there are multiple people named John Smith.

You could use a social security number as a primary key but that's sensitive data. A
better approach is to create an id field that increments with each person added to the
database. This lets you know that the John Smith with an id of 10 is different from
the John Smith with an id of 32.

Finally, select number from the drop-down.

In the Table settings section, ensure the Use default settings option is checked.
Once you have everything set, click Create.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 439

It should take a few seconds, after which your table will generate. Once done, click
the Items tab. You should see an empty table.

Click Create Item. The Create item window should open.

There are two ways to add data to the table. The first way involves using the
interactive menu options by clicking on the + button.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 440

The second way is by organizing your data in a JavaScript Object Notation (JSON)
format and pasting it in the window with the text option selected.

You’ll be using JSON to add data to the table. All this means is that you'll be
expressing your data with JavaScript objects. This is the same JavaScript that you've
used throughout this book.

If you need a refresher, refer back to Chapter 11, "Introduction to JavaScript."

Switch the drop-down selection on the top-left of the Create item from Tree to Text.
Now, replace the text inside of the box with the following:

{
 "shoe_id": 1,
 "shoe_type": "Sneaker",
 "shoe_color": "Black-Orange",
 "shoe_price" : 39.99
}

This JSON simply defines an object with some values. An object is created by using
the curly-braces {}. Inside the object, you defined four properties. A property must
have a name and a value. This name and value combination is separated by the
colon. Properties are separated by commas.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 441

Note: If you want to play around with JSON, head over to https://
jsonlint.com/.

Click Save to add the item to the table. You should be able to see that there is now
one item on the table.

Similarly, add two more items by repeating the above steps.

{
 "shoe_id": 2,
 "shoe_type": "Formal",
 "shoe_color": "Brown",
 "shoe_price" : 49.99
}

{
 "shoe_id": 3,
 "shoe_type": "Sports",
 "shoe_color": "Grey",
 "shoe_price" : 79.99
}

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 442

The table should look like this:

And that’s it!

With the Cognito ID pool, IAM roles and shoe table set up, it’s time to move on to the
Sumerian scene and learn how to fetch the data so you can display it in your app.

Fetching data from DynamoDB and
displaying it
Before writing the code to fetch data and display it on the screen, here’s an overview
of the different components you’ll be adding the flow of data between them.

First, you'll create an HTML button. When the user clicks the button, Sumerian will
ask DynamoDB for the shoe information. It will get this information based on the
shoe_id.

When DynamoDB finds the information, it will send the information back to
Sumerian. Once Sumerian receives the information, it will show the information to
the end-user. It will do this using an HTML entity.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 443

Creating the button HTML entity
Perform the following steps to create a 2D HTML entity, in which the contents of
data fetched from the DynamoDB table will display.

Open up your Sumerian scene. Click Create Entity, and add an HTML Entity.
Rename the entity to Scene_UI.

Next, drag the Scene_UI entity into the ARAnchor entity, making it a child of
ARAnchor.

Your Entities panel should look like this:

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 444

Click the eye icon next to ARAnchor to enable its visibility. The HTML entity and the
3D shoe model from the previous chapter should be visible now.

With the Scene_UI entity selected, look at the Inspector panel. Expand the HTML
component and disable Move with Transform by removing the checkbox. When you
check this checkbox, the element moves to the upper left corner of the canvas.

This removes the HTML element from the 3D space of the scene. Changing the
position won't affect the element at all. Instead, you place the element using
traditional CSS properties.

This allows you to create user interface elements that remain fixed in the same
position regardless of where the camera is pointed.

Click Open in Editor to edit the contents of the HTML entity.

Replace the existing HTML code with the following:

<style>

 #myContainer {
 width: 100vw;
 height: 100vh;

 }

 .shoe-info-p {
 font-size: 18px;
 padding: 5px;
 border-radius: 3px;
 margin: 0;
 font-family: calibri;
 font-weight: bold;
 }

 .shoe-info-bg-div{
 background-color:white;
 margin-left: 15px;
 margin-top: 15px;
 border-style: solid;
 border-width: thin;
 border-radius: 5px;
 max-width: 200px;
 }

</style>

<div id="myContainer">

 <!-- Defining a main div of class "shoe-info-bg-div" -->

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 445

 <div class="shoe-info-bg-div">
 <h2 class="shoe-info-p">
 Shoe Info</p>

 <!-- 3. Defining entities of type span. -->

 Type : </p>
 Price : </p>
 Color : </p>

 </h2>
 </div>

<div>

This HTML code creates a simple user interface. However, notice the three
elements with ids shoe_type, shoe_price and shoe_color. By adding ids to these
spans, you’ll be able to populate each one using the data from the DynamoDB table
you created earlier.

Click Save to save the file. At this point, you should have an HTML entity in the
scene.

Next, you need to add a button that, when clicked by the user will trigger an event
that will fetch data from the DynamoDB table and display in the 2D HTML entity
defined in the previous section.

Open the Scene_UI entity in script editor and add the following code snippet in the
body of the <style> ... </style> tag.

.shoe-button-style{
 position: absolute;
 left: 5%;
 bottom: 10%;

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 446

 background: transparent;
 border:none;

}

.shoe-button-img{
 max-width:100px;
}

The body of <style> should look something like this:

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 447

Next, add the following code snippet in the body of the <div
id="myContainer"> ... </div> tag:

<!-- Adding button to get information for Shoe with id="1" from
DynamoDB -->
<div class="shoe1-button-div">
 <button class="shoe-button-style" id="shoe1button">

 </button>
</div>

This is an HTML code snippet adding a <button> of class shoe-button-style and id
shoe1button. The id tag can be used to uniquely identify an HTML entity, which
you’ll see in the upcoming sections.

Notice that in the tag, the value of data-id is empty.

All assets in a Sumerian scene can be uniquely identified and references by a data-id.
Here, you will set an image to act as the button in your Sumerian.

Save the script and go back to the scene editor. The button you just added is missing.
That’s because the data-id value is empty. So, how do you get id?

When using an image as part of your HTML code, you need to upload the image.
Once successfully uploaded, a data-id generates for that image which you can use in
your scene.

Once again, open the Scene_UI entity in the Text editor, and click Browse. Select the
shoe1.jpg image from the resources folder for this project to add it to the project.

Once the image is uploaded, an HTML element of type should be added at the
bottom of the script. It would look something like this:

Finally, copy the value of the data-id tag from the line that was added to the script
when you uploaded shoe1.jpg and paste it next in the body of the element
from the above code snippet.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 448

Then, delete the line that was added automatically when you uploaded shoe1.jpg.
The body of <div id="myContainer"> should now look something like this:

Finally, save the script and go back to the scene editor. You’ll notice that a button is
now present:

Now that you have added a trigger to fetch data from the DynamoDB table, the
Button element and a way to display the contents in the Sumerian scene, it’s time to
write the script that will execute all of this.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 449

Connecting Sumerian with DynamoDB
To connect to and make use of other AWS Services, you need to provide the Cognito
pool ID to your Sumerian Project. In the Entities panel, select the top-level entity,
Shoes in AR.

Now, in the inspector, expand the AWS Configuration component, and paste the
Cognito Pool ID you saved earlier. It should look something like this:

Now that you can access AWS services from within your Sumerian app, the next step
is to write the script to query the data from the DynamoDB table and display it
within the Sumerian scene.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 450

Creating a script to fetch data
Create an empty entity and name it Scripts. Then, add a new Custom (Preview
Format) script and name it to SceneManagerScript. Drag the Scripts entity into the
ARAnchor entity to make it a child.

Open the SceneManagerScript script in the text editor, and replace the contents
with the following piece of code:

import {DomEventAction} from ’module://sumerian-common/api/dom’;

This is another way to import the Sumerian API. You can import the entire
framework, or you can import just a part of it. In this case, you import just the parts
that deal with the Document Object Model.

Now to add the initial action.

export default function SceneManagerHandlerAction(ctx) {
 ctx.start(
 [AddEventListenerToShoeButtons, {shoeID: 1}]
);
}

The SceneManagerHandlerAction functions calls the
AddEventListenerToShoeButtons action. Doing so, it passes the ’shoe_id’ into it.
The shoe_id is passed in a plain old JavaScript object.

Now create the AddEventListenerToShoeButtons action.

function AddEventListenerToShoeButtons(ctx, {shoeID}) {

This creates function header. Notice the {shoeID}. This is a feature of the JavaScript
language called a destructuring assignment. It assigns a value of the object to a
shoeID variable.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 451

Complete the method so it looks like the following:

function AddEventListenerToShoeButtons(ctx, {shoeID}) {
 ctx.start(
 [DomEventAction, {
 eventName: "mousedown",
 querySelector: ’#shoe’ + shoeID + ’button’,
 onEvent: () => {
 getShoeData(shoeID);
 }
 }]
);
}

This creates a new DomEventAction object. It listens for a mouse-click event. The
query selector determines when the mouse click event will fire. In this case, it fires
when a shoe button is clicked. When it does fire, it calls getShoeData(), passing in
the shoeID.

Now comes the time where you connect to DynamoDB. Add the following function:

function getShoeData(shoeID){
 var ddb = new AWS.DynamoDB();
}

This defines the function, taking in a shoeID. The first thing you do in the function is
to get an instance of the DynamoDB.

var params = {
 Key : { shoe_id : { N : shoeID.toString() } },
 TableName : ’shoes’
};

You use params to tell DynamoDB what values you'd like to retrieve. First, the Key
sets the key you are searching, passing in your shoeID. Being your shoeID is a
number, you call toString() to convert it into text.

Next, you set the TableName for the search.

The only thing left to do is to query DynamoDB. Add the following:

ddb.getItem(params, function(err, data) {

});

getItem performs the actual query. It takes your params object and a function. This
function is called when your query completes. Notice it provides two variables: err
and data.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 452

The err variable contains any errors that may have been returned. The data variable
holds your returned data.

Now add the following inside getItem():

if (err){
 console.log(err, err.stack);
} else {

}

This checks to see if an error is returned. If this is the case, it prints the error to the
console.

Add the following to the else clause:

document.getElementById(’shoe_type’).innerHTML =
 data.Item.shoe_type.S;

document.getElementById(’shoe_price’).innerHTML =
 data.Item.shoe_color.S;

document.getElementById(’shoe_color’).innerHTML =
 data.Item.shoe_price.N;

If the query is successful, data is populated with keys and values. The keys are the
column names and the values are the actual data.

To set the respective value, a reference to the HTML entities is get by calling the
document.getElementById() method and the inner HTML contents are replaced by
the respective corresponding value.

Setting the value is done by accessing the column name followed by the attribute
type. The N indicates a number and the S indicates a string (text).

Here's the complete script:

import {DomEventAction} from ’module://sumerian-common/api/dom’;

export default function SceneManagerHandlerAction(ctx) {
 ctx.start(
 [AddEventListenerToShoeButtons, {shoeID: 1}]
);
}

function AddEventListenerToShoeButtons(ctx, {shoeID}){
 ctx.start(
 [DomEventAction, {
 eventName: "mousedown",

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 453

 querySelector: ’#shoe’ + shoeID + ’button’,
 onEvent: () => {
 getShoeData(shoeID);
 }
 }]
);
}

function getShoeData(shoeID) {
 var ddb = new AWS.DynamoDB();
 var params = {
 Key : { shoe_id : { N : shoeID.toString() }},
 TableName: ’shoes’
 };
 ddb.getItem(params, function(err, data) {
 if (err){
 console.log(err, err.stack);
 } else {
 document.getElementById(’shoe_type’).innerHTML =
 data.Item.shoe_type.S;
 document.getElementById(’shoe_price’).innerHTML =
 data.Item.shoe_color.S;
 document.getElementById(’shoe_color’).innerHTML =
 data.Item.shoe_price.N;
 }
 });
}

Save the script and go back to the scene editor. Hide the ARAnchor entity using the
hide/show toggle button. It looks like an eye.

Finally, re-publish the scene by clicking Publish ▸ Republish and open the mobile
app on your Android or iOS device.

Once the scene is loaded, point the camera viewfinder at the AR target image. Both
the shoe 3D model and the UI elements should be visible. Finally, click the Shoe 1
button, wait for a few seconds and voila!

The details of the shoe should be updated on the UI box in the top-left corner of your
screen, which you can see on the next page.

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 454

Key points
• A database is an organized collection of data.

• DynamoDB is online accessible that allows you to save data in JSON format.

• A primary key is a unique column in your data.

• To access DynamoDB in your scene, you need to create a Cognito identity pool
and attach the necessary permissions to your IAM role.

• Reading and writing data is handled by JavasScript in your scene.

Where to go from here?
DynamoDB is a powerful tool provided by AWS. In this example, you added data to
the database and read it back in your scene. That said, DynamoDB is a two-way
street. This means you can write to it from Sumerian and read data back from it.
Using just a little code, you can create a complete chat room, save user registration
data and anything else that you need to persist data.

To learn more about DynamoDB, check out the official site for documentation and
tutorials. You can find it here: https://aws.amazon.com/dynamodb/

Amazon Sumerian Chapter 17: Fetching Data from DynamoDB

raywenderlich.com 455

18Chapter 18: Completing the
Augmented Reality App
By Gur Raunaq Singh

Your shoe store is almost done. With all the shoe data contained in a database, you
can easily update information about the shoes without having to touch the scenes.
To finish your store, you need to add more shoes. Your store also needs a way for the
user to change the shoe sizes. After all, not everyone has the same sized foot. Adding
these improvements employs everything you've learned so far in this section.

Time to get started.

Adding more shoes to the project
In Chapter 16, “Augmented Reality in Sumerian,” you added a 3D model of a single
shoe to your project. Now, you’ll add more shoes to your project. This will give it
some variety and show how you use DynamoDB to store and fetch data from multiple
items of the same type. You could add any number of shoes to a project like this, but
for the sake of simplicity, you’ll only add two more models now.

The process of importing shoes and adding textures is similar to what you learned in
the previous chapters. Here’s a quick recap of how to do it.

Open the Sumerian scene and click Import Assets. Then, click Browse and select
Shoe2.FBX and Shoe3.FBX from the resources folder to import the shoe 3D Models
into your Sumerian scene.

raywenderlich.com 456

Once you’ve successfully uploaded the models, you’ll see them as items in the Assets
panel.

Next, create three empty entity objects and rename them to Shoe1, Shoe2 and
Shoe3, then drag them into the ARAnchor entity to make them its children. At this
point, your Entities panel should look like this:

Drag the Shoe2.FBX and Shoe3.FBX 3D models from the Assets panel into the
Entities panel. You can see the newly-added shoe models in the editor window.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 457

Next, drag these entities into the ARAnchor entity to make them its children.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 458

Finally, you need to apply the appropriate textures to each shoe entity. Select the
child object of Shoe2.FBX named Shoe2_Right_19_-_Default and expand it by
clicking the Material component in the inspector. Then, click the COLOR
(DIFFUSE) property to expand it, click the folder icon next to Texture and select
Shoe2-Texture.png to upload it. Once the upload finishes, Sumerian will apply the
texture. You can see the results in the editor.

The shoes look weird right now because they overlap each other, but don’t worry
about that at the moment. You’ll fix that later.

Repeat the same steps for Shoe3.FBX by selecting its child object, named Shoe3-
Right_01_-_Default, and selecting Shoe3-Texture.png from the resources folder.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 459

For your next step, you’ll set the Transform properties of Shoe2.FBX and Shoe3.FBX
to the same values as Shoe1.FBX:

• Translation: (0, 0, 0)

• Rotation: (0, 180, 0)

• Scale: (0.05, 0.05, 0.05)

You want to set all of the entities’ Transform values this way so they always appear
in the center of the augmented reality target image when the user views them
through the mobile app.

Next, drag the Shoe2.FBX and Shoe3.FBX entities into their respective empty
entities: Shoe1.FBX to Shoe1, Shoe2.FBX to Shoe2 and Shoe3.FBX to Shoe3.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 460

Now, create another empty entity, rename it Shoe_Entities, and drag the parent shoe
entities you made in the previous step into this entity to make them its children.
Completely expanded, your Entities panel should look like this:

It’s good practice to organize the entities this way, but it also makes it easy to
interact with the entities. You’ll use it when you write scripts to change Transform
properties when you change shoe sizes and also to set only one entity to be visible
when you add more shoe buttons.

Speaking of which, it’s time to add those buttons now.

Adding 2D HTML buttons for new shoes
In the previous chapter, you added a button in the Sumerian scene which fetched the
data for Shoe ID: 1 from the DynamoDB table when the user clicked it. Now that
you’ve imported two more 3D shoe models into your scene, you need to add the
corresponding buttons for them.

Get started by opening the Scene_UI script in the Text editor.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 461

Similar to the previous chapter, you need to add the HTML code for the buttons in
the body of <div id="myContainer"> and their corresponding CSS code in the body
of <style>.

Add the following code in the body of <style> after .shoe1-button-style{ ... }:

.shoe2-button-style {
 position: absolute;
 left: 20%;
 bottom: 10%;
 background: transparent;
 border:none;
}

.shoe3-button-style{
 position: absolute;
 left: 35%;
 bottom: 10%;
 background: transparent;
 border:none;
}

Here’s how the body of <style> should look:

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 462

Next, add the following code snippet inside the body of <div id="myContainer">,
after the ending div tag of <div class="shoe1-button-div">:

<div>
 <button class="shoe2-button-style" id="shoe2button">

 </button>
</div>

<div>
 <button class="shoe3-button-style" id="shoe3button">

 </button>
</div>

Here’s how it should look:

Notice the data-id elements are empty because you haven’t added the image files
for the two new shoe buttons to the project. It’s time to do that now.

In the Text editor window, click Browse to upload shoe2.jpg and shoe3.jpg from the
resources folder. This will add an with the corresponding data-id to the end
of the code file. You’ll see a preview in the Images panel.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 463

Copy the respective data-id from the you added when you uploaded and
paste it in the data-id tag in the <div> tags you added in the previous step.

Finally, delete the tags at the bottom of the file and save the file.

You should be able to see three buttons in the Scene editor window, which you can
see on the next page.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 464

Now that you’ve added the code to display the buttons for Shoe2 and Shoe3, it’s time
to write the code that will make them work when the user clicks them.

Adding functionality to the shoe buttons
You’ve added the HTML buttons, but you still need to add the logic in your scripts to
make them function as expected.

First, you need to duplicate the Shoe1 button, which fetches the data from the
DynamoDB table and displays it when the user clicks it.

Start by opening the SceneManagerScript script in the Text editor.

In the previous chapter, you added an event listener by calling
AddEventListenerToShoeButtons() in ctx.start() of
SceneManagerHandlerAction().

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 465

These buttons work similarly. They will get data from the DynamoDB table to return
the shoe-id. To enable this, all you need to do is add two more actions, one for each
new shoe-id.

Add the following lines of code in the body of ctx.start(), making sure that each
function call is comma-separated:

[AddEventListenerToShoeButtons, {shoeID: 2}]
[AddEventListenerToShoeButtons, {shoeID: 3}]

It should look like this.

Save the script and return to Sumerian, then click the Play button to play the scene.

Click any of the three shoe buttons. You’ll notice that it will fetch the data of the
corresponding shoe-id from the DynamoDB table and display it on the shoe
infobox.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 466

For example, if you click the Shoe3 button, Sumerian will fetch the data of shoe-id:
3 and put it on the Shoe-UI box.

Now that you’ve added the buttons to fetch the correct shoe-id, all that’s left to do
is write the functionality to display only one shoe at a time.

To achieve this, you’ll add code that will first disable the visibility of all three shoe
entities, and then display only the button whose ID is passed to it as a parameter.

First, add the following code at the end of SceneManagerScript:

function makeShoeVisible(ctx, shoeID){

 // 1. Get a reference to each shoe entity
 const shoe1 = ctx.world.entitiesWithNames("Shoe1").single();
 const shoe2 = ctx.world.entitiesWithNames("Shoe2").single();
 const shoe3 = ctx.world.entitiesWithNames("Shoe3").single();

 // 2. Hide all three shoe entities
 shoe1.hide();
 shoe2.hide();
 shoe3.hide();

 // 3. Show the shoe entity of shoe-id only
 const shoe_to_show = ctx.world.entitiesWithNames("Shoe" +
 shoeID).single();
 shoe_to_show.show();
}

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 467

Here’s a brief explanation of the above code:

1. To hide an entity from the Sumerian scene, you first need to get a reference to it.
ctx.world.entitiesWithNames("Shoe1").single() searches for the entity
with the name “Shoe1” in the Sumerian scene and returns a reference to it, which
you store in the variable shoe1. Similarly, you store references to entities “Shoe2”
and “Shoe3” in variables shoe2 and shoe3.

2. To keep the logic simple and the code clean, you disable the visibility of all three
shoe entities in the Sumerian scene. You do this using hide().

3. Finally, you store a reference to "Shoe" + shoeID in shoe_to_show. You’ll pas
shoeID to the function as a parameter. Then you call show() to show the
corresponding entity in the scene.

For example, if the value of shoeID is 2, variable shoe_to_show stores a reference to
the entity named Shoe2 and then calls show() on it, making it visible in the
Sumerian scene.

SceneManagerScript should look like this:

Now, you need a call to this function within the script. The ideal place for it would be
in the body of onEvent of function AddEventListenerToShoeButtons. This way,
when the user clicks any of the shoe buttons, Sumerian will not only fetch the data
from DynamoDB, but also set the corresponding shoe entity to visible.

Add the following line of code in the body of onEvent in
AddEventListenerToShoeButtons:

// Set visible the corresponding shoe
makeShoeVisible(ctx, shoeID);

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 468

The body of AddEventListenerToShoeButtons should look like this:

Go ahead and test this. Back in the Scene editor, make sure the ARAnchor entity is
not visible. Also, click the eye button to hide both Shoe2 and Shoe3. By default, only
the first shoe entity will be visible in the camera viewfinder. Make sure the Entities
panel looks like this:

Time to test.

Re-publish the scene, then load the mobile app on your Android or iOS device. You
now see three shoe buttons. Clicking them will display each shoe and its
information.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 469

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 470

Now, take a printout of the augmented reality target image, point the camera
viewfinder at it and put your foot in the center of the sheet to see how the shoe looks
on your feet.

However, shoes come in a range of sizes and no shoe fits two different people the
same way. Therefore, in the next and final section, you’ll add buttons to set the size
of the Shoe models in AR.

Changing shoe sizes
The idea behind modifying the shoe size is simple: Changing an entity’s Scale makes
it look bigger or smaller in AR.

Building this functionality is similar to what you did when you added buttons that
fetched data from DynamoDB. You need to:

• Write the HTML and CSS to display the buttons for the different sizes.

• Add event listeners, which execute a function when a user clicks a particular
button.

• Write a function that changes the scale of an entity.

• Add a UI component to display the current shoe size.

You’ll add four buttons to the scene, one each for setting the shoe size to 7, 8, 9 and
10. Later on, you can experiment by adding or removing buttons from the scene, but
for the sake of simplicity, four sizes are enough for now.

Open Scene_UI in the Text editor.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 471

Add the following code in the body of <style>, which defines the style properties of
the buttons:

.shoe-size-button-image{
 width:100%;
 max-width:50px;
 background-color: white
}

.shoe-size-button-div {
 background: none;
 border: none;
 position: absolute;
 right: 60px;
 padding: 15px;
}

It should look something like this:

Then, add the following code in the body of <div id="myContainer">, which is the
HTML code for the buttons themselves:

<button class="shoe-size-button-div" id="shoesize7button"
style="bottom: 80px;">

</button>

<button class="shoe-size-button-div" id="shoesize8button"
style="bottom: 130px;">

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 472

</button>

<button class="shoe-size-button-div" id="shoesize9button"
style="bottom: 180px;">

</button>

<button class="shoe-size-button-div" id="shoesize10button"
style="bottom: 230px;">

</button>

Now, it should look like this:

Notice that the value of data-id is empty because you haven’t uploaded images for
these buttons, which you need to do separately. Note that the key difference is
style="bottom: <number> px;", which you define in the body of the <button>
definition. This makes the buttons display in increasing height from the bottom.

Upload the shoe button images files: ShoeSize7.jpg, ShoeSize8.jpg, ShoeSize9.jpg
and ShoeSize10.jpg. You’ll find them in the resources folder.

Once uploaded, copy the value of data-id from the added to the respective
data-id in the definition of . Then,
delete the tag that you added after the upload.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 473

Finally, save the file and switch back the Scene editor. With the ARAnchor entity set
to visible, the buttons should look like this in the editor:

At this point, if you click these new buttons, nothing happens since you haven’t
added an event listener for them. Before doing that, you’ll add another UI element
that displays the current shoe size and changes as the user clicks the different shoe
size buttons.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 474

Adding a shoe size indicator
Open Scene_UI in the Text editor and add the following code in the body of <style>,
which defines the style properties of the current shoe size box:

.shoe-size-current-div {
 font-size: 18px;
 padding: 10px;
 border-radius: 3px;
 margin: 0;
 font-family: calibri;
 font-weight: bold;
 bottom: 5%;
 right: 5%;
 position: fixed;
 background-color:white;
 border-style: solid;
 border-width: thin;
 border-radius: 5px;
}

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 475

Then, add the following code in the body of <div id="myContainer">, which is the
HTML code for the shoe size div:

<div>
 <h2 class="shoe-size-current-div">
 Shoe Size : 7
 </h2>
</div>

The body of Scene_UI file should look like this:

This code is pretty straightforward. All it contains is the text displaying Shoe Size :
and then a element. A function in SceneHandlerScrip updates the current
shoe size value and changes the text inside to match.

Save the file. Your Scene editor should look like this:

Finally, all that’s left to do is to add Event Listeners for the buttons, then execute the
required function.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 476

Adding functionality for shoe size buttons
Open SceneHandlerScript and add the following function after the definition of
AddEventListenerToShoeButtons():

// Adding Event Listeners for Shoe Size buttons
function AddEventListenerToShoeSizeButtons(ctx,
 {shoe_size, scale_value}) {

 ctx.start(
 [DomEventAction, {
 eventName: "mousedown",
 querySelector: '#shoesize' + shoe_size + 'button',
 onEvent: () => {

 // Get a reference to Shoe_Entities
 const shoe_entities = ctx.world
 .entitiesWithNames("Shoe_Entities").single()
;

 // Set the Scale
 shoe_entities.scale
 .setDirect(scale_value, scale_value,
 scale_value);

 // Change the value on the Shoe Size UI
 document.getElementById('current_shoe_size')
 .innerHTML = shoe_size;
 }
 }]
)
}

The body of SceneHandlerScript should look like this:

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 477

Take a look at what this function does:

• ctx.start() calls DomEventAction(), which adds an event listener to a given
query selector. This is similar to AddEventListenerToShoeButtons() that you
added previously, which handled the button click event for shoe buttons.

• The function requires two inputs: shoe_size and scale_value. You use the
shoe_size parameter to define the complete querySelector argument, for
example, if shoe_size is 7, then the value of querySelector will be
shoesize7button. This is the value of the button with id : shoesize7button
and the data-id of image 7.jpg in the Scene_UI file.

• Secondly, scale_value contains the value to which you’ll set the Scale of the
Shoe_Entities. Since Shoe_Entities is the parent of all the entities containing the
shoe 3D models, you only need to change its Scale. Changing the Scale of a parent
entity will make a proportional change in all its child entities. In this case, that’s
all three entities containing the shoe 3D models.

• Then, in the body of onEvent(), you store a reference to Shoe_Entities in the
shoe_entities variable. Then the Scale value is set using scale.setDirect(),
which takes three values, one for each axis: X, Y and Z.

• Finally, you set the value of to indicate the
current value of shoe_size.

Now that you’ve added the key function, all that’s left to do is add an EventListener
for all four buttons.

Add the following lines of code in the body of ctx.start() in the body of
SceneManagerHandlerAction(), making sure that each function call is comma-
separated:

[AddEventListenerToShoeSizeButtons, {
 shoe_size: 7, scale_value: 1.0}]
[AddEventListenerToShoeSizeButtons, {
 shoe_size: 8, scale_value: 1.2}]
[AddEventListenerToShoeSizeButtons, {
 shoe_size: 9, scale_value: 1.4}]
[AddEventListenerToShoeSizeButtons, {
 shoe_size: 10, scale_value: 1.6}]

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 478

It should look like this:

Notice that you should put a comma after an item in ctx.start() only if there’s
another item next to it.

Also, the values of scale_value that correspond to each shoe_size are just a
sample of calibrated values for this particular app. Feel free to experiment and try
different models of shoes and to adjust the values of scale_value on your own.

Save the script and return to the Scene editor. Then, make sure you’ve disabled
ARAnchor’s visibility by clicking the eye icon next to the ARAnchor entity in the
Entities panel. Republish the scene.

Finally, load the mobile app on your Android or iOS device and point the camera
viewfinder at the AR Target Image. Voila!

Try switching between any of the three types of shoes and see how their information
updates in the top-left UI box. Then tap on any of the shoe size buttons to change
the size, and see the change reflected in the UI Box at the bottom-right of your
screen.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 479

Key points
• The basics of augmented reality and the components used to build an AR Scene in

Sumerian.

• How to set up your computer and build a simple mobile app on Android or iOS.

• The basics of a database including how to set one up and how to use Amazon
DynamoDB.

• How to add 2D HTML elements to display information and buttons to interact with
different components of a Sumerian scene.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 480

Where to go from here?
Congratulations! You just created a complete mobile augmented reality app using
Amazon Sumerian. You've created a way to try on shoes without leaving your house.
In the process, you learned the following:

With the knowledge you’ve gained, play around with the different components of
this project. Keep experimenting and learning more things! But now's not the time to
stop reading. In the next section, you'll continue to leverage AWS by creating a
virtual travel agent that can talk with the end-user.

Amazon Sumerian Chapter 18: Completing the Augmented Reality App

raywenderlich.com 481

Section IV: Creating a Virtual
Travel Agent

There are many 3D engines on the market that allow you to create experiences
similar to Sumerian’s. However, these engines are usually aimed at professional
developers; they can take years to truly master.

Sumerian allows you to get up speed rapidly. You can even do everything in your web
browser — and that’s not all. Sumerian offers a feature out of the box that would take
months of development time with another engine: The ability to create a host.

A host is a virtual person that provides a "human" touch to your scene. Hosts speak,
perform gestures and, with a little AWS magic, even chat with the end-user.

You can use hosts for a variety of purposes such as walking a user through a
registration form or acting as a virtual tour guide for a real art gallery like the Getty
Museum.

In this next project, you’ll create a virtual travel agent. This travel agent will ask you
questions that you can verbally answer. In doing so, you’ll see how AWS can
turbocharge an experience.

These chapters cover the basics of creating a virtual travel agent:

Chapter 19: Basics of a Sumerian Host: This chapter introduces you to the host
and shows how easy it is to add one to your scene.

Chapter 20: Speech in Amazon Sumerian: You’ll learn how to leverage Amazon
Lex to provide the "brains" behind your host.

Chapter 21: Audio Input & Lex: Once you get your host talking, you’ll naturally
want users to respond. This chapter covers the basics of recording voice input. Your
host will use this input to respond to the user.

Chapter 22: Integrating Amazon Lambda with Lex: In this final chapter, you’ll
leverage AWS Lambda to query a database and return a list of "must visit" places for a
particular city.

raywenderlich.com 482

19Chapter 19: Basics of a
Sumerian Host
By Gur Raunaq Singh

In this series of four chapters, you’ll build a virtual travel agent using Amazon Lex
and some other tools provided by AWS. The bot will serve as the brain to an Amazon
Sumerian Host, which is a Sumerian asset that has built-in animation, speech, and
behavior. You’ll use the host to engage users in conversation and convey information
through voice-based interactions.

This is the fourth and final project that you’ll build in this book. It will show you how
you can combine various services from the AWS suite to create truly unique
experiences.

Creating a Cognito ID Pool ID
Your first step will be to set up your Cognito Pool ID so that your Sumerian scene will
have access to the AWS Services, Polly and Lex. You’ll need these services to enable
spoken interactions between your Sumerian Host and your users. Because hosts have
integral components that use these services by default, you’ll need to have a Cognito
Pool Identity before you go any further.

Launch CloudFormation by heading to this link: http://bit.ly/aws-polly-lex

CloudFormation, which is part of the AWS suite, provides a common language that
lets you describe and provision the infrastructure resources in your cloud
environment. With just a simple text file, you can set up all of the resources your
apps need across all regions and accounts. Best of all, it’s both automated and secure.

In this case, you’ll use a template to let the Sumerian Host use the services you need:
Polly and Lex. This template has been provided by the Sumerian team.

raywenderlich.com 483

On the CloudFormation Stack Setup page, set the stack name to
"SumerianLexPollyStack", check the** "I acknowledge that AWS..."** box and click
the Create Stack button. This will start the stack creation.

On the next page, you’ll see the CloudFormation Stack for your AWS Account. The
Status will be CREATE_IN_PROGRESS. Refresh the page every few seconds. After some
time, the Status will change to CREATE_COMPLETE.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 484

On the same page, click the Outputs tab. You’ll see a key: CognitoIdentityPoolID
and its corresponding value. This is the Cognito Pool ID that you’ll use in the next
section. Store it someplace safe.

Now that you have the Cognito Pool ID, it’s time to start building the scene.

Getting started with Sumerian Hosts
With your Cognito Pool ID setup, your next task is to create a Sumerian scene. Open
the Sumerian Dashboard, create a new scene and name it TravelPlannerBot.

Once the scene is completely loaded, select the parent entity of the scene, which, in
this case, is "TravelPlannerBot". Then, from the Inspector panel, click to expand
AWS Configuration and paste the Cognito Identity Pool ID from the previous
section.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 485

To add a Sumerian Host to your scene, click the Import Assets button. In the Search
Sumerian box, type Host. You’ll see a few Sumerian Hosts, such as Jay, Wes, Fiona,
etc. in a variety of clothing types such as a hoodie, a t-shirt and so on.

To import a host, select the one you want and click the Add button on the bottom-
right side of the window. Import Luke Hoodie for this tutorial.

Once imported, you’ll see the Luke Hoodie entity, which has a Hexagon icon, in the
Assets panel. Drag and drop the asset into the Entities panel to import it into your
scene. You can now see the host component has imported and is visible in the scene
editor window.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 486

Key components of Sumerian Hosts
Now that you’ve imported a Sumerian Host into your scene, it’s time to take a look at
its key components. These components give the host the ability to speak and to look
more lifelike.

Points of Interest
One of the key characteristics of a Sumerian Host is the Point of Interest. As the
name suggests, you use this feature to define a static or a dynamic point of interest
for the Sumerian Host. In other words, you define the entity in the scene that the
host will look at.

With the Sumerian Host selected in the Entities panel, select the Host property in
the Inspector panel.

Click the Play button to play the scene and pan around the host to look at it from
different heights and angles. You’ll notice that it doesn’t do anything. It just stands
still, always looking straight ahead, doing the idle breathing animation. This doesn’t
look very engaging for your users.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 487

The host looks this way because when you import a host in your scene, the Point of
Interest is set to None. To change it, go to the Inspector panel, select the drop-down
menu in the Point of Interest and set it to Look At Entity. You’ll notice that this
adds an additional property called Target Entity.

In the Entities panel, expand Default Dynamic Lights. Then drag and drop Rim –
Directional from the Entities panel to the Target Entity box in the Inspector panel.

Play the scene again.

You’ll notice that the Host is now looking upwards, towards the Position of the Rim
– Directional light. Pan around the scene to look at it from different positions and
you’ll see that the host will keep looking at only the light entity. This is one example
of how you can set the Point of Interest of a Sumerian Host.

However, the Sumerian Host can also adapt to a Target Entity that changes position
throughout a scene, and animate accordingly. To demonstrate this, drag and drop the
Default Camera from the Entities panel onto the Target Entity box in the Inspector
panel and Play the Scene again.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 488

If you pan around the scene now, you’ll notice that the host is looking at the Default
Camera, which means that it always seems to be looking right at you. Notice the
changes in the eyes and the posture of the host’s whole upper body. If you pan
quickly to the left or right, notice that the eyes move first and the rest of the face
follows. This makes the host look like an actual person.

But just changing where the host looks won’t make a satisfying interaction for the
user. So next, take a look at another way of animating the host.

Making your host speak with Amazon
Polly
One of the best features of a Sumerian Host is that you can give it something to say
in text form and it’s able to recite that speech out loud to the user. You even have
several different voices to choose from.

Sumerian Hosts can speak out loud thanks to Amazon Polly, a text-to-speech
service from AWS. Because Sumerian integrates with Amazon Polly, you can use
some of the voices and capabilities of Polly directly within the Sumerian Editor.

Note: Amazon Polly is a standalone service. That means it’s not limited to
Sumerian scenes, you can use it with any other apps you build as well.

To get started with Amazon Polly, open the official page – https://aws.amazon.com/
polly/. Then click on the Get Started button and log in to your AWS Console. If
you’ve already logged in, you’ll be redirected to the Amazon Polly dashboard.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 489

For this tutorial, you only need to understand Amazon Polly’s text-to-speech
capabilities.

On the dashboard, there are a couple of key features of interest:

• Plain Text: This is an input box that lets you experiment with how Polly processes
a given sentence.

• Language and Region: You have 28 different languages and regions to choose
from. For this tutorial, you’ll only use English, US.

• Voice: You can also choose from several male and female options for the output
speech.

To test it out, type the following sentence into the Plain Text text box:

Hey there! My name is Luke and I will be your host for this evening!

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 490

Then select the voice Matthew, Male and click the Listen to speech button. Make
sure you haven’t muted the speaker volume on your computer.

After you click on the Listen to speech button, Amazon Polly converts the input text
into a speech and plays it back to you. Try using different combinations of input
sentences and voices to learn more about the different variations available.

Now that you’re familiar with some of the components of the Amazon Polly service,
it’s time to learn how to use them within a Sumerian Scene.

Sumerian’s Host Voice component
In Sumerian, select the Host entity from the Entities panel. Then, from the Inspector
panel, click to expand the Speech component.

You’ll notice that, similar to the Amazon Polly dashboard, there’s also a Voice drop-
down menu, where you can choose the voice of your Sumerian Host. Even though
Luke is the Sumerian Host, you can choose from several voices for him.

Click the Voice drop-down to see the options you can choose. For this tutorial, select
Russell.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 491

Next, click to expand Speech Files. You’ll notice that it has a sub-property, Drop
Speech File, which means that you need to create and set a speech file as the input
text that Amazon Polly will convert into speech. To create a speech file, click the +
button next to the Drop Speech File box.

Clicking on the + button will create a new speech file named Speech, then open it in
the Sumerian editor. Rename the file to Host Greeting Speech by clicking the pencil
icon. Next, in the Documents panel in the editor, add the following lines in the
speech file:

Hey there!

My name is Luke and I will be your host for this evening!

Save the file and go back to the Sumerian editor. Within the Speech component,
you’ll see that your speech file is attached to the Sumerian Host.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 492

Click the Play button to play the scene.

You’ll notice that the host doesn’t start speaking yet. That’s because you haven’t
attached a state machine to the host to trigger the speech. By default, the host does
not know when or how it’s supposed to start speaking.

To fix that, select the host entity, and add a State Machine component to it. Then
click the + button next to the Drop Behavior box to add a behavior. Rename the
behavior to Host.

In the state machine editor panel, you’ll notice that a default state named State 1 is
already present. Whenever you’re using AWS Services within your Sumerian scene,
it’s a best practice to initialize those services by executing the AWS SDK Ready
action.

To do that, rename State 1 to SDK Ready State by clicking the state to select it and
setting its name from the Inspector panel.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 493

Then, click the Add Action button, select AWS SDK Ready and click the Add button
to add the action to the state. Now, as soon as the scene starts, this default state will
execute and the AWS SDK will initialize.

Next, you need to add the state that triggers the host to start the speech.

Click the Add State button to add another state and rename it to Start Greeting
Speech.

Then, click Add Action and add the Start Speech action. From the Inspector panel,
click the Select Speech drop-down menu and select Host Greeting Speech. Finally,
add a transition from SDK Ready to Start Speech.

To make sure it works, play the scene. Once the scene is completely loaded, the
Sumerian Host should start the speech. If you don’t hear anything, make sure you
haven’t muted your computer’s audio output.

Isn’t that awesome!? You don’t need anything more than a simple text file for your
host to be able to speak.

But note that the host is standing completely still while speaking, which isn’t very
lifelike. To improve that, you’ll use gestures to improve the overall experience of a
host. Take a look at how you add these gestures in the next section.

Adding gestures and lip-sync
A Sumerian Host has several pre-built animations, called gestures, which trigger
while the host is speaking. You add gestures to your hosts by adding HTML tags to
your speech file.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 494

You can tweak some key sub-properties of the Sumerian Host’s speech components,
so the host looks lifelike while speaking:

• Lip-sync: As the name suggests, the host animations will lip-sync while speaking.

• Gestures: A host can perform a variety of gestures while speaking. For example, if
given an input sentence like: “Hey! My name is Luke and I am a Sumerian Host...”,
the host will do a ‘Wave’ gesture when saying the ‘Hey!’ part of the speech.

• Gesture Hold time and Min Gesture Period: These allow you to fine-tune the
gestures of the host.

Play the scene. Notice that currently, the host just stands in its idle animation. Only
the mouth moves when it speaks, which makes your host look robotic. By adding
gestures, you’ll make your hosts look more natural when they speak.

Open the Host Greeting Speech file and add the following line at the beginning of
the file.

<mark name="gesture:wave"/>

It should look something like this.

Save the file and head back to the scene editor.

From the Entities panel, select the host named Luke Hoodie. Then, from the
Inspector, click to expand the Host property. The default value of Gesture Hold
Time is 10 seconds, which is way too long when you want the host to perform
multiple gestures during the speech. Therefore, set its value to 1, and play the scene.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 495

You’ll notice that the host performs a wave gesture at the beginning of the speech.
After about a second, the animation ends and the host continues the speech in its
idle animation state.

That’s not ideal. Manually adding tags gestures is cumbersome, and you might have
to spend a lot of time experimenting with the speech file to get it right. To make your
life easier, Sumerian comes with a built-in function to add gestures for a selected
speech file.

Select the host and, from the Inspector panel, click to expand the Speech
component. You’ll notice several options on the Host Greeting Speech property.
Click the button next to the pencil icon to auto-generate gestures for your speech

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 496

file.

You’ll notice that this button is grayed-out by default, meaning that you can’t use it.
If you hover your mouse pointer over it, you’ll see a pop-up message saying: "A
gesture map must be created before gesture marks can be generated." This is telling
you that you need you to make a gesture map file to be able to auto-generate
gestures for the speech file.

A gesture map is a document that maps gestures to words using the Sumerian
engine. When you mark up a speech file, the editor uses this mapping file to
determine which gestures to add where. Sumerian comes with a premade gesture
map for you to use in your scene.

With the host entity selected, select the Speech component from the Inspector panel
to expand it. Then, click the + button next to the Drop Gesture Map box to add the
DefaultGestureMap file. The gesture map file opens in the text editor window and is
set as the gesture map file in the Inspector window.

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 497

This gesture map file indicates which words in your speech will trigger which
gestures and adds the gesture tag around the piece of speech.

From the Inspector panel, click the Auto Generate Gesture marks button and open
the Host Greeting Speech file in the text editor. You’ll notice that the file now
contains gesture marks based on the contents of the speech file.

Play the scene again. You’ll notice that the Sumerian Host now makes three different
types of gestures while speaking.

Adding pauses to your host’s speech
At this point, the host performs more than one animation, but it still doesn’t look
very natural. This is primarily because, in the real world, people take pauses between
sentences. By default, the host runs quickly through the speech.

To improve the quality of your Sumerian Host’s speech, you’ll add an HTML tag
called "break time". As the name suggests, you use this tag to add a small pause, or
break, between animations when the host is speaking.

Take a look at how this works:

Replace the contents of Host Greeting Speech with the following text:

<speak>
 <mark name="gesture:wave"/>Hey there!
 <break time="0.8s"/>
 <mark name="gesture:self"/>
 My name is Luke and
 <mark name="gesture:self"/>
 I will be
 <mark name="gesture:you"/>
 your host for this evening!
 <break time="0.8s"/>
 <mark name="gesture:generic_c"/>
 Nice to meet you!
</speak>

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 498

Save the file and play the scene again. You’ll notice that the host performs gestures
as expected, but also takes a break between sentences, as set in the speech file. This
makes its behavior more realistic and lifelike.

Key points
• To integrate services like Polly into your scene, you need to create a Cognito Pool

ID.

• A Sumerian host is imported as an asset and can be dragged into your scene like
any other entity.

• Speech files are scripts spoken by the host.

• Gestures can be included in the speech file.

• The AWS SDK must be loaded before the host can speak.

• A gesture map can be used to automatically add gestures.

Where to go from here?
With only a few mouse clicks and a voice line script, you now have a host integrated
into your scene. This host provides a human touch to your scene and using AWS, can
interact with the end-user.

Hosts can be used for a whole range for purposes such as providing narration about a
scene, walking an end-user through a registration process or even acting as real-time
tech support regarding various issues.

If you are interested in learning more about hosts, check out this tutorial on hosts
here: https://docs.sumerian.amazonaws.com/tutorials/create/beginner/host-speech-
component/

Amazon Sumerian Chapter 19: Basics of a Sumerian Host

raywenderlich.com 499

20Chapter 20: Speech in
Amazon Sumerian
By Gur Raunaq Singh

In the previous chapter, you learned about the basics of a Sumerian Host, what its
various properties do and how to use them in a scene.

Additionally, you learned how to set up a CloudFormation stack and get a Cognito
Pool ID so you can make use of Amazon Polly and Lex services in your scene. Finally,
you learned how to use a speech file, generate gestures for it and make the host
speak the contents of the file out loud.

In this chapter, you’ll get to know the Amazon Lex service, which allows you to add
highly engaging user experiences and lifelike conversational interactions to your
apps. You’ll use this service to build a conversational interface, which will work as
the brain of the Sumerian Host.

Amazon Lex
Amazon Lex is a service that builds conversational interfaces into your apps using
voice and text. Amazon Lex uses the advanced, deep learning functionality of
automatic speech recognition (ASR) to convert speech to text and natural
language understanding (NLU) to recognize the intent of the text. These power the
engaging user experiences and lifelike conversation that you’ll add to your Sumerian
Host.

In simple terms, you’ll use Amazon Lex in your Travel Planner app to make your host
smart. For example, when a host asks you a question, you can answer by speaking
into your computer’s microphone. The Sumerian scene will send your words to the
Lex bot, which will try to understand what you said.

raywenderlich.com 500

The Lex bot will then return a reply, which the Sumerian Host will speak back to you.

Creating a Lex bot
Open the Amazon Lex home page at https://us-east-1.console.aws.amazon.com/lex/
home, and sign in to the AWS Console.

If you’ve created bots before, you’ll see a list of the bots associated with your AWS
account. In this case, click Create. If you’ve never created a bot with your AWS
account, the create page will open by default.

By default, Amazon Lex provides some sample bot templates for you to use. For this
project, you want to create your custom questions, so select Custom bot.

Set the bot name to MyTravelPlannerBot. Output voice selects which voice the bot
will use. Since your bot will work through your Sumerian Host, which has its voice set
within the Sumerian editor, it doesn’t matter which Output voice option you choose
here. Just select any option from the drop-down menu.

Next, you set a session timeout parameter. This is the maximum time the bot’s
session lasts. Since Amazon Lex stores contextual information while in use, like
"What was the last question asked within this session?", the session timeout value is
important. For this project, set it to 1 min.

Amazon Sumerian Chapter 20: Speech in Amazon Sumerian

raywenderlich.com 501

Finally, select the No option from COPPA and click Create.

Creating an intent
Now that you’ve created a bot, you need to give it an intent. An intent represents an
action that the user wants to perform.

Your bot will support one or more related intents. For example, say you want a bot
that orders pizza and drinks. You’d create a bot named "Order Food" that has two
intents: Select Drink and Select Pizza.

Note: To learn more about the internal functioning of Amazon Lex, visit
https://docs.aws.amazon.com/lex/latest/dg/how-it-works.html.

For your Travel Planner bot, you only need one intent that will ask the user a few
questions and then present a list of must-visit places based on the user’s responses.

Amazon Sumerian Chapter 20: Speech in Amazon Sumerian

raywenderlich.com 502

But for now, you only need to try out a simple intent. Click Create Intent and then,
from the Create Intent pop-up menu, select Create intent.

Next, name the intent MustVisitPlaces and click Add.

Once you’ve created and named your intent, you’ll continue to the Lex intent editor
page, where you’ll manage your Lex bot intent. Here’s an overview of the key
components of this page:

• Sample utterances: This component holds the phrases that the end-user uses to
invoke a specific intent. For example, if you have two intents in your Lex bot, the
sample utterance: "Order a pizza" would invoke the OrderPizza intent. If the
sample utterance is "Order drink", it invokes the "OrderDrink" intent.

• Lambda initialization and validation: Use this option to validate the user input
using the AWS Lambda Service. You’ll learn more about Amazon Lambda in
Chapter 21, "Integrating Amazon Lambda with Lex."

• Slots: These gather information from the user that the bot needs to complete the
intent. For example, if you intend to order pizza, you need to ask the user for the
pizza type, size, and quantity to place the right order.

Amazon Sumerian Chapter 20: Speech in Amazon Sumerian

raywenderlich.com 503

• Confirmation prompt: Once you’ve gathered the data for all the slots, you use
this optional component to ask the user to confirm before executing the next steps
in the intent.

• Fulfillment: This component contains the business logic required to fulfill the
user’s intent. Once all the required data is gathered from the user, it’s sent to an
AWS Lambda function as an input. This input contains your business logic and the
output is returned to Lex bot.

• Response: This contains the messages to close the intent or invoke another one.
For example, when the bot has successfully placed an order, it returns a response
to let the user know.

Now that you have a basic idea of what an intent’s components do, you can start
building.

Creating a sample intent
To try out how intents work, you’ll now build a simple intent that the user can invoke
with several sample utterances. It then returns a simple response to the user.

You’ll test it in the Lex console in this chapter, then learn how to integrate it with
your Sumerian scene later.

Start by adding some sample utterances to your bot. As you saw earlier, these are the
input phrases that invoke this intent. Since you’re building a Travel Planner bot, add
some common utterances the user might use to start the intent.

Add the following lines as sample utterances. Enter the phrase into the input text
box, and click the + button or press Enter to add it:

Plan a vacation.

I want to travel.

I want to go on a vacation.

Amazon Sumerian Chapter 20: Speech in Amazon Sumerian

raywenderlich.com 504

Next, add a response that the intent returns after registering one of the sample
utterances. Click Response, then click Add Message and enter the following line:

Thanks for using Amazon Lex! Hope you’re having fun.

Press Enter to save it.

Click Add Message again and add this line:

Hey! This is an automated response from a Lex bot. Thanks for using
our services.

Finally, click Save Intent.

Testing your intent
Before you can test whether an intent works properly within the console or through
an external app like your Sumerian scene, you need to build and publish the intent.

In the top-right corner of this console window, click Build to build this bot so you
can test it. From the pop-up, click Build and the build process will start.

Amazon Sumerian Chapter 20: Speech in Amazon Sumerian

raywenderlich.com 505

Once the build process completes, you’ll see a confirmation message.

Time to test!

Click Test Chatbot to the right of the Publish button. Type one of the sample
utterances and press Enter. You’ll receive one of the response messages that you set
earlier.

Amazon Sumerian Chapter 20: Speech in Amazon Sumerian

raywenderlich.com 506

If you get a response from the Lex bot, your bot built successfully and works as
expected!

As you read earlier, Lex can process input in the form of Voice as well as Text. So this
time, try how voice input works.

Click the Microphone button next to the chat input box, speak one of the sample
utterances into your computer’s microphone, then click the Microphone again to
stop recording.

Note: If your browser prompts you for permission to use your microphone,
click Allow.

Amazon Sumerian Chapter 20: Speech in Amazon Sumerian

raywenderlich.com 507

Finally, try any random input phrase that is not one of your sample utterances. You’ll
see that the Lex bot is unable to process your input.

Now that you know how to edit the properties of an intent, build it and test it within
the console. It’s ready for you to use it in your Sumerian scene.

Click Publish in the top-right corner of the editor window.

Amazon Sumerian Chapter 20: Speech in Amazon Sumerian

raywenderlich.com 508

You’ll see a pop-up window asking you to create an alias. Every time you make a
change in your Lex bot, it creates a new version. All the previous ones are still
available to use, in case you want to revert to an older version. An alias is simply a
string that points to the current version of your Lex bot.

Since you’re publishing your bot for the first time, enter TravelPlannerBotAlias and
click Publish.

Once the bot publishes successfully, you’ll see the confirmation prompt:

And that’s it! The Lex bot is now ready for you to use it within the Sumerian scene.

Key points
• Amazon Lex is a service that allows you to build conversational interfaces.

• Lex works through intents that represents an action the user wants to perform.

• Lex uses Amazon Lambda to perform user validation.

• When Lex completes its transaction, a response is sent back to the user.

Amazon Sumerian Chapter 20: Speech in Amazon Sumerian

raywenderlich.com 509

• You must build your bot to test.

• Lex voice options are overridden by Sumerian voice options.

• Every change creates a new version of your Lex bot.

Where to go from here?
Congratulations, reader! You’ve completed a quick run-through of the basics of the
Amazon Lex service. If you are interested in learning more about Lex and diving
deeper into its configuration options, you can some documentation over here:

https://docs.aws.amazon.com/lex/latest/dg/getting-started.html

In the next chapter, you’ll add the ability to record audio from within the Sumerian
scene, send it to the Lex bot as input and present the return Lex repose to the user.
Later in the book, you’ll learn more about the other components of Amazon Lex and
you’ll set up slots, which will allow your bot to gather key information to create a
simple travel plan.

Amazon Sumerian Chapter 20: Speech in Amazon Sumerian

raywenderlich.com 510

21Chapter 21: Audio Input &
Lex
By Gur Raunaq Singh

In the previous chapter, you learned about the basics of the Amazon Lex service, how
to create a Lex bot with some sample utterances and responses, and how to build,
test and publish that bot. You tested the Lex bot intent, and you learned that the bot
can accept both text and voice input.

Voice is the primary way of interacting with a chatbot. If you’ve used a popular
chatbot service, like Amazon Alexa, you know the chatbot usually needs some
information from you before it can help you. For example, if you ask, "Will it rain
today?" the bot needs to know your location to give you the right answer.

In this chapter, you’ll create a simple conversational bot. You’ll add the ability to
record voice input to your Sumerian scene and you’ll add state machine behaviors
that send the recorded voice input to the Lex bot for processing, then return a
response to the user.

Recording audio input
Most chatbots have an always-on listening capability. They always listen for the user
to speak a trigger word that tells the bot to start a conversation with the user.

For your app, however, you’ll implement a manual trigger so the user can toggle the
audio recording on or off. The simplest way to do this is to have a button that the
user can press to interact with the bot by starting and stopping the voice recording.

Your first step is to add the Record button. This will be a 2D HTML entity.

raywenderlich.com 511

Adding a record button
Open the TravelPlannerBot scene.

Click Create Entity and select HTML Entity. Rename this new entity to
Microphone.

Open the HTML entity in the text editor and replace the contents of the file with the
following:

<style>
 #uiContainer {
 width: 100vw;
 height: 100vh;
 }

 .alignBottomCenter {
 position: absolute;
 right: 20%;
 bottom: 20%;

 }
 button.noBackground {
 background: none;
 border: none;
 }

 .buttonimage{
 width:100%;
 max-width:100px;
 }
</style>

<div id="uiContainer">
 <button id="record_button" class="noBackground
 alignBottomCenter">

 <img src="https://i.imgur.com/MiBi5AC.png"
 class="buttonimage">

 </button>
</div>

The contents of <style> define the properties of the Microphone button. Then, you
define a <div> tag with id="uiContainer" and set a button tag. You set
"noBackground" so the button’s default background is fully transparent. Since the
button has no text, it will appear as if there’s no button at all.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 512

Finally, you set a span with id = "record_button_span". You might remember
from the previous project in the book that other parts of the program can modify the
contents of a tag via script execution. You used this capability, for example,
to dynamically set the value of the current shoe size in a of a specific ID.
Similarly, a script will modify the contents of this span.

By default, the with id = "record_button_span" contains an tag
containing an image of a microphone. Later on, you’ll add code to the image of this
button to indicate when the Microphone button is active. This will show the user
whether audio is being recorded or not.

Toggling the Microphone button
Select the Microphone entity and add a Script component to it. Rename the script
to RecordButtonController, then open it in the Text editor and replace the contents
with the following:

Note: The following code is using Sumerian's old API.

'use strict';

function setup(args, ctx) {

 // 1.
 function set_record_on() {
 document.getElementById('record_button_span')
 .innerHTML = '<img src="https://i.imgur.com/Kwea78Q.png"
 class="buttonimage">';
 }

 function set_record_off(){
 document.getElementById('record_button_span')
 .innerHTML = '<img src="https://i.imgur.com/MiBi5AC.png"
 class="buttonimage">';
 }

 // 2.
 sumerian.SystemBus.addListener('record_on', set_record_on);
 sumerian.SystemBus.addListener('record_off',
 set_record_off);
}

// 3.
var parameters = [
{

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 513

 type: 'entity',
 key: 'record_button',
 name: 'record_button'
}];

Here’s an explanation of the above code:

1. The functions set_record_on() and set_record_off() respectively set in
innerHTML of the tag in the HTML entity Microphone.

2. Once you’ve added the functions, you need a way to execute them. A simple way
is to create event listeners with state machine behaviors to trigger them, which
is what you’ve done here. You’ll create the state machine for these event listeners
later.

3. Outside the function’s scope, you define the var parameters, which a list of
expected variables that you can set in the Sumerian editor without needing
methods like world.GetEntities(). You’ll set the value of the variable
record_button when you create the state machine.

Save the file and head back to the Sumerian editor.

If you play the scene and click on the Microphone button, nothing will happen.
That’s because you don’t have a state machine behavior to register the click event
yet. You’ll add that state in the next section.

Setting up the Dialogue component
Before adding the new states and actions to the Host behavior, you’ll need to be
familiar with the Dialogue component of a Sumerian Host.

Select your host, Luke Hoodie, and add a Dialogue component from the Inspector
panel. The Dialogue component assigns an Amazon Lex chatbot to an entity. You can
use this component to let your Sumerian Host converse with a user, collect
information and perform actions.

To use Amazon Lex during playback, the scene needs the AWS credentials from your
Amazon Cognito Identity. If you already set up and added a Cognito ID at the
beginning of Chapter 18, "Basics of a Sumerian Host," you don’t need to repeat this
step.

From the Inspector panel, you’ll notice that the Dialogue component has two
properties: Bot Name and Alias.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 514

Set the Name property to the name of the Lex bot you created in the previous
section, MyTravelPlannerBot, and the alias property to the alias you set while
publishing the bot, TravelPlannerBotAlias.

Now that you’ve added a Dialogue component and set its properties, you’ll need a
state machine behavior to let the user interact with the bot. Here’s an overview of
the flow of the scene:

Now, it’s time to start adding actions to the state machine. Select the Host behavior
from the Assets panel to edit its properties.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 515

Recording microphone audio
At this point, the behavior already contains two states: AWS SDK Ready and the Start
Greeting Speech state. Once the greeting speech ends, the bot transitions to a state
that the user can trigger by clicking on the Microphone button. You’re going to add
that behavior now.

Click Add State and rename the new state to Mic Button Click. Then, from the
Inspector panel, click Add Action and add a DOM Event Listen Action.

Set Event name to mousedown and Query Selector to #record_button. Finally, add
a transition from Start Greeting Speech to the Mic Button Click state.

The DOM Event Listen Action listens multiple times a second for certain actions
within a Sumerian scene. Clicking anywhere within the scene window triggers a
mousedown event, and the DOM Event Listen Action figures out whether the user
clicked on any HTML entity.

The Query Selector tells the Sumerian engine the id of the HTML element that the
user clicked – in this case, the Record Button with id = record_button – and triggers
this event in the state machine behavior.

If the user accidentally clicks the button more than once, you don’t want it to trigger
multiple button clicks. To avoid this, your next step is to add a small delay.

Add another state, rename it to Small Delay and add a Wait action to it. From the
Inspector panel, set Wait Time (Seconds) to 0.1, then create a transition from the
Mic Button Click state to this new state.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 516

Next, you need to add a state that will emit a message to the channel #record_on.
This will switch the microphone image to indicate that audio has started and the
user can speak. Once you’ve added the functionality to switch the mic image, you’ll
add the state that will start the audio recording. Remember that you added an Event
Listener when you added the RecordButtonController script in the previous section.

Add another state, rename it to Set Mic Image = ON and add the Emit Message and
Transition actions to it. Then, from the Inspector panel, set Channel to record_on.

Finally, create a transition from the Small Delay state to this state.

Finally, you need to add the state that will start the audio recording. Add another
state to the behavior, rename it Start Recording and add the Start Microphone
Recording action to it. Then add a transition from Set Mic Image = ON to this state.
Once this state activates, the Sumerian scene starts recording the audio input from
the computer’s microphone and the user can interact with the chatbot.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 517

Once the recording starts, the user should be able to stop it again. Since clicking the
Mic button starts the audio recording, clicking it again should stop the recording.
Once audio recording stops, Sumerian sends the audio to the Lex bot and the
Sumerian Host will recite the response it gets in return.

To achieve this, your next step is to add a set of states that perform the opposite
actions to turning the microphone on.

Sending recorded audio to Lex
Select the Start Recording state that you added in the previous step and add a DOM
Event Listen action to it. Then, set Event Name to mousedown and Query
Selector to #record_button. This means that once the state machine reaches the
Start Recording state, a click on the Microphone button, registered using the DOM
Event listen action, will stop the recording and transition to the next state.

Next, you need to add another delay to the behavior, after a button click. Add a state
and rename it Small Delay. Then add a Wait action to it and set the Time (Seconds)
property to 0.1. Finally, create a transition to it from the Start Recording state.

Next, as you did before, you need to add a state that will change the image of the
Microphone button to indicate that clicking the Microphone button stopped the
audio recording. Add a state and rename it Set Mic Image = OFF. Then, add the
Emit Message and Transition actions to it and set Channel to record_off. Create a
transition to this state from the Small Delay state.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 518

Finally, you need to stop the audio recording. Add another state, rename it Stop
Recording and add the Stop Microphone Recording action to it. Then create a
transition to it from the Set Mic Image = OFF state.

Once the microphone recording stops, you need to send its content to the Lex bot as
input.

Add a new state, rename it Send Audio to Lex and add the Send Audio Input to
Dialogue Bot action to it. Finally, create a transition to this state from the Stop
Recording state.

Once the state machine reaches this state, Sumerian sends the microphone audio
recording to the Lex bot for processing.

Note that there are three possible states that this state can transition into: On
Response Ready, On Processing Error and On Lex Configuration Error. For now,
you’ll be adding a state for the first case, where Lex successfully receives the audio
input and returns a response.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 519

Add a new state, rename it Lex Response output and add the Start Speech action
to it. You convert the response from the Lex bot to audio by enabling the Use Lex
Response of the Start Speech action. Finally, create a transition to this state from
the Send Audio to Lex state.

Time to test!

Testing your dialogue
Make sure the state machine behavior is selected and visible, then click the Play
button to play the scene.

A green outline will appear around a state, signifying it is the active state. At the
start of the scene, the default state, SDK Ready State, executes. Once it finishes, it
transitions to the Start Greeting Speech state and the host gives the greeting
speech. Once the greeting speech completes, it transitions to the Mic Button Click
state, which waits for the user to click the Microphone button to transition to its
next state.

Click the Microphone button in the scene window. Notice that the image of the
button changes to signify that the microphone audio has started recording and that
clicking on the Microphone button again will stop the recording. While the
Microphone button is on, speak one of the sample utterances into your computer’s
microphone.

Once you’re done, click the Microphone button again and the image of the button
will change, indicating that the recording has stopped. The audio is then sent to the
Lex bot for processing. The transitions from one state to another reflect this
behavior.

If the host replies with one of the response messages you set in the Lex bot intent,
congratulations! Everything works, and you’ve successfully integrated the Lex bot
within your Sumerian scene.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 520

Transitioning to another intent
Currently, the state machine behavior is linear – it performs actions one after
another, then ends when it reaches the final state. However, you want users to be
able to ask your chatbot multiple questions without interruption. To handle that, you
need to create a cycle of state transitions.

To start, add a transition from the Lex Response Output state to the Mic Button
Click state.

This way, once the Sumerian scene has received the Lex response and the host has
replied to the user, you’ll be able to continue the conversation by clicking the
Microphone button again without having to restart the Sumerian scene.

Play the scene again.

When you speak the sample utterance, the Lex bot responds as expected. But notice
that after the Sumerian host gives the Lex bot response, the active state is reset to
the Mic Button Click state, and you can ask the bot as many questions as you desire.

Awesome! Isn’t it?

Now that you’ve created the state machine behavior to use a Lex bot within your
Sumerian scene, it’s time to complete the bot itself. By the time you’re done, it will
be able to have a complete conversation with the user, asking them some required
questions and responding with a list of places to visit for a given city.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 521

Completing the Lex bot
Navigate to the Amazon Lex homepage and open the MyTravelPlannerBot bot that
you created earlier.

Since you’ve already added sample utterances to the bot, the next step is to fill in
some slots for this intent. As you might remember from the previous chapter, you use
slots to gather the data from the user that the bot needs to complete the intent.

One piece of information that this intent absolutely needs is the name of the city
that the user wants to visit, so you’ll add a slot to ask the user for that city. Then
you’ll add a few more slots to create a friendlier conversation for the user.

An important thing to note is that, for this project, you’ll assume that the users are
U.S. citizens when you build the components of this bot since Amazon Lex primarily
supports data that’s uniquely for the US. You can experiment with Lex’s other
properties after you complete this project.

So now, go ahead and add your slots.

Adding slots to your Lex bot
When the user triggers an intent with a sample utterance, the bot will ask the user
additional questions in the order that the slots were entered. The first piece of
information you need is the user’s name, so you’ll put that question in your first slot.

Enter the following data in the Slots table:

• Name: USERNAME

• Slot type: AMAZON.US_FIRST_NAME

• Prompt: Hey there! What is your name?

Finally, click the + button to add the slot.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 522

Here’s what each property of a slot signifies:

• Prompt: Contains the phrase that the bot speaks when this particular slot
activates.

• Slot type: Defines the type of value that the bot expects from the user, which in
this case is AMAZON.US_FIRST_NAME.

• Name: Defines the name of the variable that stores the input value from the user.
For example, if the user answers that his name is "Michael," the word Michael will
be stored in the variable {USERNAME}. You can use this variable to make the bot
more unique and personalized.

The next step in pulling all that together is to use that slot to personalize the
conversation.

Personalizing your slots
Create another slot with the following data:

• Name: CITY

• Slot type: AMAZON.US_CITY

• Prompt: Hey {USERNAME}! Nice to meet you. Which city are you planning to
visit?

Enable the Required property of the newly-added slot.

After asking the user for their name, the next question is which city in the United
States they’re planning to visit. In this case, the slot type is AMAZON.US_CITY and
the Name is CITY.

Notice {USERNAME} in the Prompt phrase. Here, you’re using the name that you
stored in USERNAME to personalize your bot’s response. So your bot addresses the user
by name when asking its second question, much as a real person might.

Try it out to see how it works right now.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 523

Click Build on the top-right side of the screen and wait for the build process to
complete. Then, click Test Chatbot and start a conversation with the bot, starting
with a sample utterance and answering the bot’s follow-up questions.

Awesome, isn’t it?

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 524

Adding your final slot
Finally, add one more slot asking the number of days the user is planning for the
vacation.

• Name: DAYS

• Slot type: AMAZON.NUMBER

• Prompt: And how many days are you planning to travel for?

That’s all the information you need to gather from the user.

Now, you need to add a confirmation prompt. This will give the user a chance to
verify that they want to proceed or to cancel the conversation. If they confirm, the
bot will execute business logic based on the input it gathered.

Expand the Confirmation prompt section and check the Confirmation prompt
checkbox.

In the Confirm property, you provide a spoken message that indicates that the bot
should move on to the Fulfillment state. You’ll want an affirmative phrase such as
"Yes", "yeah sure", "go ahead" or something similar. If the user replies with "No," the
intent will send the Cancel phrase instead.

Add the following phrase for Confirm: "All right. I have all the information I need. Do
you want me to go ahead and find some must-visit places at your destination?"

Then, add the following phrase for Cancel: "All right. I have canceled planning the
vacation."

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 525

Time to test!

Click Build then click Test Bot. If you converse with the bot and answer affirmatively
at the end, the bot responds with one of the confirm phrases. Otherwise, it responds
with the cancel phrase.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 526

Remember that Amazon Lex is a completely standalone service which you can use by
itself or together with other AWS Services to create uniques apps. Since you’ve tested
that this intent is working as expected within the Lex editor, you know it will work in
Sumerian without having to make any additional changes to the Sumerian scene
itself!

Here’s how.

Integrating your bot into your Sumerian
scene
Within the Lex editor, click Publish, select the TravelPlannerBotAlias and click
Publish.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 527

Then, head back to the Sumerian scene and, without making any changes, play the
scene and converse with the Sumerian Host the same way you did within the Lex
editor. Here’s an example:

• Host (starts greeting speech): Hey there! My name is Luke and I will be your host
for this evening! Nice to meet you!

• You: Plan a vacation.

• Host: Hey there! What is your name?

• You: Michael.

• Host: Hey Michael! Nice to meet you. Which city are you planning to visit?

• You: Seattle.

• Host: And how many days are you planning to travel for?

• You: Five.

• Host: All right. I have all the information I need. Do you want me to go ahead and
find some must-visit places at your destination?

• You: Sure, go ahead.

• Host: Thanks for using Amazon Lex! Hope you’re having fun.

Next, start the conversation again from the beginning and, when asked for a
confirmation, answer, "No." Now, the host replies with the cancel message you set in
the Lex editor.

Awesome, isn’t it?

As mentioned earlier, you don’t have to make changes in your Sumerian scene to
implement the Lex bot, since Lex is a separate entity. You can modify it without
having to change the scene itself. This flexibility allows you to make a Sumerian
scene once, then work separately on the Lex bot, making your Sumerian project
better and better.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 528

Key points
• A dialogue component is a required component for your host to interact with the

end-user.

• You must send the microphone data to Lex for the user to talk to the bot.

• A Lex slot allows you to ask additional questions to the bot.

• Lex slots provide a wide range of data types.

• Once you build your bot, you can test it in the AWS web page.

Where to go from here?
As you can, integrating a Lex bot can provide another way for the end-user to
interact with your scene. To learn about Lex and hosts, check out this tutorial:
https://docs.sumerian.amazonaws.com/tutorials/create/beginner/dialogue-
component/

In the last and final chapter of this book, you’ll learn about the Amazon Lambda
service, how to set it up, and how to use it to fulfill your Lex bot’s intent.

Amazon Sumerian Chapter 21: Audio Input & Lex

raywenderlich.com 529

22Chapter 22: Integrating
Amazon Lambda with Lex
By Gur Raunaq Singh

Congratulations, you’ve reached the final chapter in this series on making a virtual
travel agent using Sumerian Hosts. So far, the Lex bot collects some valuable
information from the user, but all it can do afterward is to return a message and end
the conversation. That isn’t very useful in itself. Most chatbots, whether on websites
or in an Amazon Echo device, help you accomplish a specific goal – placing an order,
providing information or playing some music, for example.

This project’s goal is to help the user plan a trip. Once you have the information from
the end-user, you'll need to get the information. This is done with the help of AWS
Lambda, which is a serverless computing platform that’s part of Amazon Web
Services (AWS). This online service runs code in response to events. It automatically
manages the computing resources that the code requires, freeing you from having to
set up your infrastructure or buy servers.

You’ll code the business logic to complete your intent within Lambda’s online
console by creating a Lambda function. This will take the data your Lex bot gathers
as input – in this case, the user’s name, city and vacation length – and return a list of
must-visit places for that particular city.

In this demo, you'll return a list of three predefined places. In a real-world
application, you could use AWS to make an API call to a mapping service that could
retrieve this information for you.

raywenderlich.com 530

Here’s an overview of how the Lex bot returns a customized destination list for the
user.

The Lex bot first processes all the slots, then it moves on to Fulfillment. There, you
select the AWS Lambda Function and select the name of the Lambda function you
need from the drop-down menu.

The Lambda function then queries a DynamoDB Table that you’ll create and, if the
city is present, returns a message containing three must-visit places to Lex. If the
city is not present, it returns a failure message.

Now that you have a broad understanding of why AWS Lambda is important and how
you’ll be using it as part of this project, it’s time to get started!

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 531

Setting up a DynamoDB table
Before setting up the AWS Lambda service, you’ll create a DynamoDB table with
some data that the Lambda function will query. You learned about the basics of
DynamoDB in Chapter 17, "Fetching Data from DynamoDB," so you’ll skip right to
creating the table and adding its data.

Open the AWS Lambda homepage at https://aws.amazon.com/dynamodb/ and click
Get started with AWS DynamoDB. Once you reach the dashboard, click Create
table.

Set the table name to MustVisitPlacesByCity and the primary key to city. Finally,
click Create to create the table.

Once the table is ready, you’ll end up on the Overview tab, where you can see the
table’s properties.

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 532

You’ll start by adding data to the table. Switch to the Items tab, and then click
Create item. Then, from the Create item pop-up window, select Text and paste the
following text in the body of the window. When you’re done, click Save to add the
item to the table.

{
 "city": "seattle",
 "p1": "Space Needle",
 "p2": "Amazon Sumerian Group",
 "p3": "Seattle Aquarium"
}

Here you defined a row for Kansas City. Repeat the above steps to add two more
items to the table with the following data:

{
 "city": "miami",
 "p1": "Wynwood Walls",
 "p2": "Calle Ocho Walk of Fame",
 "p3": "Jungle Island"
}

{
 "city": "boston",
 "p1": "Fenway Park",
 "p2": "George's Island",
 "p3": "Mueseum of Science"
}

You should be able to see the three items on your table.

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 533

Note: After the Lex bot asks the user for the city they’re visiting, it processes
the answer and stores the city name in a lowercase string with underscores
replacing the spaces between the words. For example, it stores "Washington"
as "washington" and "New York" as "new_york."

So in your database, you store the values for city using the same convention.
Also note that you can add more items to the table to have as many cities as
you want, each following that convention.

And that’s all you need to do in this section.

Now that you’ve set up a DynamoDB table containing information about a small
number of cities, along with three must-visit places for each one, it’s time to start
building the AWS Lambda function that will query data from this table.

Setting up AWS Lambda
With a DynamoDB table ready to use, it’s time to create an AWS Lambda function.

Open the AWS Lambda homepage: https://aws.amazon.com/lambda/ and click Get
started with AWS Lambda.

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 534

You'll see the AWS Lambda console. From the left-side menu, click Functions. This is
where you see all your Lambda functions and their properties. Click Create Function
to get started.

On the Create function page, you can choose from three different options:

• Author from scratch: This is a very simple template to help you get started.
You’ll choose this option for this project.

• Use a blueprint: This lets you build a Lambda function from pre-made sample
code that’s available for use with the Lambda console.

• Browse serverless app repository: Select this to choose from a list of Lambda
apps to use from the AWS Serverless Application Repository.

Since this chapter gives you the code for the Lambda function, select Author from
scratch.

Next, you’ll provide some basic information for your Lambda function.

For Function name, enter TravelPlannerBotLambda. Then set Runtime to
Python 3.8 from the drop-down menu.

Note: Lambda gives you the option to write code for your functions in several
different programming languages: Python, Java, Ruby, etc. You can select the
runtime of your choice when you write your Lambda function, but this project
provides you with a Lambda function written in Python. Therefore, you need
to set the runtime to Python 3.8.

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 535

In addition to this, your Lambda function needs some basic configuration and
permissions to query the DynamoDB service.

Configuring your Lambda function
Click Choose or create an execution role. By default, a newly-created Lambda
function comes with a new IAM role with basic permissions.

Next, select Create a new role from AWS policy templates. Set the Role name to
DynamoDBAccessForLambda and for your Policy Template, select DynamoDB
Simple microservice permissions from the drop-down. Finally, click Create
function.

It will take a few seconds to create your Lambda function. Afterward, you’ll return to
the Configuration page.

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 536

This page contains all of the properties of your Lambda function. To learn more
about each section of this page, read the Developer Guide for AWS Lambda: https://
docs.aws.amazon.com/lambda/latest/dg/resource-model.html.

For this project, you only need to know about the Function code section. AWS
Lambda provides you with a complete coding environment right within your web
browser. This lets you write, test and deploy code without having to set up custom
tools and software on your computer.

Entering your Lambda function’s code
By default, lambda_function.py opens in the code editor with some sample code.

Writing custom code for a Lambda function is out of the scope of this book, so we’ve
provided you with the code you need to execute the business logic of this Lambda
function: Taking input from the Lex bot, checking if the city is present in the
DynamoDB table and returning a response to the Lex bot. If you’re familiar with the
Python programming language, take a look at the comments within the code to
understand what it does.

For more about writing code for a Lambda function, check out the official
documentation: https://docs.aws.amazon.com/lambda/latest/dg/code-editor.html.

Note: The following code is written in a language called Python. Python is out
of scope for this book, but it's an excellent beginner-friendly language that can
be used in a variety of platforms. If you are interested in learning more about
Python and how to get started with it, head over to: https://www.python.org

For now, replace the contents of the file lambda_function.py with the following
code. Be sure to copy the code exactly as you see it as Python is very strict when it
comes to spaces, tabs and carriage returns.

from __future__ import print_function
import json
import boto3
from boto3.dynamodb.conditions import Key, Attr

dynamodb = boto3.resource('dynamodb')

Getting a reference to the table
table = dynamodb.Table('MustVisitPlacesByCity')

def lambda_handler(event, context):

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 537

 city = event['currentIntent']['slots']['CITY']

 # Response of the query from dynamodb table
 response = table.query(KeyConditionExpression=
 Key('city').eq(city))

 # Converting city name to title case
 city_name = (city.replace('_', ' ')).title()

 if(len(response['Items']) > 0):
 # If the city name is present in the dynamodb table
 i = response['Items'][0]
 msg = "Some of the must visit places in {} are {},
 {} and {}.".format(city_name, i['p1'], i['p2'],
 i['p3'])
 else:
 # city name not present, return error
 msg = "Sorry, I was unable to find a travel plan
 for {} at this point of time.".format(city_name)

 # creating the message object
 message = { 'content' : msg, 'contentType' : 'PlainText' }

 # creating the Dialogue Action object for Lex
 dialogAction = {'type' : 'Close', 'fulfillmentState' :
 'Fulfilled', 'message' : message }

 # final object to be sent to Lex
 final_response = { 'dialogAction' : dialogAction }

 return (final_response)

When done, click Save in the upper-right hand corner of the window.

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 538

Before your Lambda function will work properly, you need to attach the
AmazonDynamoDBReadOnlyAccess policy to the IAM Role associated with it. Scroll
down to the Execution role section on this page.

Click the View the DynamoDBAccessForLambda role link to open the properties
of this IAM role. On the Summary page, you’ll see the policies attached to this role.
Click Attach Policies.

Then, enter dynamodb in the search box to filter the policies. From that list, select
AmazonDynamoDBReadOnlyAccess and click Attach Policy. You’ll continue to
the IAM Role Summary page, where you can see the newly-attached policy.

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 539

That’s all the configuration you need to do for your Lambda function to query the
MustVisitPlacesByCity DynamoDB table. So click the Save button in your Lambda
console and, from the Actions drop-down menu, click Publish new version. A pop-
up window will open. Click Publish to publish your Lambda bot.

Adding your Lambda function to your Lex bot
To make sure your Lambda function is working properly, you need to connect it to
your Lex bot. Here’s how you do that.

Open the Amazon Lex editor for MyTravelPlannerBot, click to expand the
Fulfillment section, then, select AWS Lambda function. From the drop-down,
select the TravelPlannerBotLambda Lambda function and an Add permission to
Lambda Function pop-up will open. Click OK.

You’ve now set up your Lambda function so that your Lex bot can use it to fulfill your
user’s intent.

Note: As with intents, you can set versions, or aliases, for your Lambda
functions, then revert to an older version if something doesn’t work. By
default, you’ll use the latest version of your Lambda function.

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 540

And that’s it. Time to test!

Testing your Lambda function
Now that you’ve set up your Lambda function, it’s time to test if everything works
properly.

Click Build to rebuild the Lex bot. Once the build process is complete, click Test bot
and try a conversation with the bot, giving it one of the city names from the
DynamoDB table. Here’s what an example conversation looks like.

If you had a conversation similar to this, the bot returns three must-visit places for
your city. Congratulations, you’ve successfully built your Lex bot!

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 541

As expected, if you enter a city that is not added to the DynamoDB table, the Lambda
function will return the following message:

Finally, test it out within your Sumerian scene. Before heading back to the Sumerian
editor, publish the changes made to the Lex bot. Click Publish in the top-right of the
Lex editor window, select TravelPlannerBotAlias and click Publish.

Once the publishing process is complete, head back to the Sumerian scene without
making any changes to the scene itself. Play the scene and have a similar
conversation with the Sumerian Host, specifying a city you know is part of the
DynamoDB table. If all goes right, the host will give you a list of must-visit places for
your city.

As you learned in the previous chapter, Amazon Lex is a separate, standalone service,
which you can modify separately from the Sumerian scene. The state machine
behavior that you built within the Sumerian scene is robust enough to create a
channel of communication between the user, the Sumerian Host, and the Lex bot.

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 542

You also saw how Amazon Lambda can like glue between the various services.

Finishing touches
The Sumerian scene works perfectly well as it is right now, but it might be a little
confusing for the end-users. So now, you’ll make one more change to the scene that
will improve the overall app experience.

Explaining what your host does
Start by modifying the greeting speech of the Sumerian Host. Open the Host
Greeting Speech file and replace the contents of the file with the following:

<speak>
 <mark name="gesture:wave"/>
 Hi there!
 <mark name="gesture:self"/>
 My name is Luke and
 <mark name="gesture:self"/>
 I am a Sumerian Host.
 <mark name="gesture:self"/>
 I will be
 <mark name="gesture:you"/>
 your
 <mark name="gesture:movement"/>
 Travel Planner for today.
 <mark name="gesture:self"/>
 I am going to ask
 <mark name="gesture:you"/>
 you some simple questions and
 <mark name="gesture:self"/>
 I will try to come
 <mark name="gesture:one"/>
 up with some must-visit places for you to visit on
 <mark name="gesture:you"/>
 your vacation.Tap the Microphone button
 <mark name="gesture:one"/>
 once to start speaking. Then, tap it
 <mark name="gesture:one"/>
 once more to stop recording.
 <mark name="gesture:generic_a"/>
 Let's get started.
 <mark name="gesture:generic_c"/>
</speak>

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 543

In addition to the Sumerian Host introducing himself, he will also tell the user a
little bit about how to interact with him, i.e., how to tap on the Microphone button
to activate it.

Click Save. And that’s it! It’s time to click the Play button and start conversing with
the Sumerian Host.

When asked, say the name of one of the cities set in the DynamoDB table, give the
number of days that you want to travel, and confirm that you want the host to
proceed with your request. In the end, the host should reply with some must-visit
places in the city that you’re visiting.

Key points
• Lambda is a serverless platform that allows us to respond to events.

• A Lambda function is the business logic that you use to complete Lex intent.

• Lambda functions work for other services as well.

• Functions are written in Python.

Where to go from here?
Congratulations! You’ve successfully built a virtual travel agent using Amazon
Sumerian Hosts. With a complete project at your disposal, you can try experimenting
to improve upon this project:

• Add more cities to the DynamoDB table.

• Add more slots to the Lex bot intent, gathering more useful information from the
user.

• Add a Lambda function that also returns the weather details for a given city.

Using Sumerian in concert with the rest of AWS allows you to create truly unique and
powerful experiences. Have fun!

Amazon Sumerian Chapter 22: Integrating Amazon Lambda with Lex

raywenderlich.com 544

CConclusion

We hope this book has helped you get up to speed with Sumerian! This is a flexible
engine that allows you to create unique experiences for a variety of applications.

Part of the fun of creating experiences is sharing them. If you created an experience,
head on over to the Amazon Slack channel (http://amazonsumerian.slack.com).
Paste a link to your experience in the Showcase Channel and show off your work.

If you have any questions or comments as you continue to use Git, please stop by our
forums at forums.raywenderlich.com/c/books/amazon-sumerian-by-tutorials.

Thank you for reading our book. We hope you make some amazing experiences.

– The Amazon Sumerian by Tutorials Team

raywenderlich.com 545

	About the Cover
	About the Authors
	About the Editor
	About the Artists

	What You Need
	Book License
	Project Files & Forum
	Foreword
	Introduction
	Chapter 1: Getting Started with Amazon Sumerian
	Creating an AWS Account
	Creating an IAM account
	Key points
	Where to go from here?

	Chapter 2: Building the Escape Room
	Launching Sumerian
	Using the Sumerian editor
	Configuring Firefox
	Navigating the Canvas
	Creating a secret door
	Challenges
	Key points
	Where to go from here?

	Chapter 3: Entities & Materials
	Diving deeper into entities
	Components
	Getting in sync
	Parenting entities
	Adjusting the Lights
	Using materials
	Adding models
	Challenge
	Key points
	Where to go from here?

	Chapter 4: Adding Interactivity with Behaviors
	Setting up the Player Camera
	Adding interactivity
	Sending messages
	Light switch puzzle
	Revealing the next clue
	Key points
	Where to go from here?

	Chapter 5: Attributes & Branching Logic
	Setting up the puzzle pieces
	Building logic with attributes
	Building a branching behavior
	Using multiple clues
	Challenge
	Key points
	Where to go from here?

	Chapter 6: Physics
	Setting up the third puzzle
	Using Rigid Bodies
	Adding colliders
	Adding velocity
	Listening for collisions
	Escaping the escape room
	Key points
	Where to go from here?

	Chapter 7: Virtual Reality
	Configuring Sumerian to use VR
	Setting up a tethered headset
	Setting up an untethered headset
	Using the VR Asset Pack
	Teleporting and movement
	Grabbing entities
	Activating the escape room
	Challenge
	Key points
	Where to go from here?

	Chapter 8: Post Effects & Publishing Your Scene
	Saving snapshots
	Adjust scene settings
	Configuring the environment settings
	Post effects
	Document settings
	Publishing
	Key points
	Where to go from here?

	Chapter 9: Custom Models & Sound
	Setting up a Sumerian project
	Setting up the scene
	Tiling textures
	Importing and adding models
	Texturing your models
	Adding sound
	Adding the rest of the sounds
	Key points
	Where to go from here?

	Chapter 10: Lights, Camera, Action
	Working with cameras
	Projecting your frustum
	Working with 2D
	Setting up cameras
	Switching between cameras
	Lights!
	Lighting callouts
	Integrating the lights
	ACTION!
	Key points
	Where to go from here?

	Chapter 11: Introduction to JavaScript
	Getting started
	Java vs. JavaScript
	Your first script
	JavaScript variables
	Arrays
	Looping through values
	Branching logic
	Functions
	Hoisting variables
	Arrow functions
	Objects
	Key points
	Where to go from here?

	Chapter 12: The Sumerian API
	Creating custom actions
	Working with entity sets
	Attributes and values
	Signals
	Action controllers
	Script properties
	Sending data
	Key points
	Where to go from here?

	Chapter 13: Animation & Particle Systems
	Tweening the night away
	Tweening options
	Tween rotating
	Using animated models
	Animating with the timeline component
	Using the timeline with behaviors
	Timeline events
	Sumerian particle systems
	Integrating the particles
	Key points
	Where to go from here?

	Chapter 14: Incorporating Web Content
	Getting started with the HTML entity
	Quick web primer
	Embedding video content
	Creating a cooking time counter
	Key points
	Where to go from here?

	Chapter 15: Preparing Your Mobile Development Environment
	Overview
	Creating mobile apps
	Importing the augmented reality template
	Setting up your computer
	Setting up the app on iOS
	Setting up your app on Android
	Key points
	Where to go from here?

	Chapter 16: Augmented Reality in Sumerian
	Components of the Augmented Reality template
	Importing 3D assets
	Repositioning the Shoe model
	Positioning using image recognition
	Adding an anchor image in Android
	Adding an anchor image in iOS
	Running the app on a device
	Key points
	Where to go from here?

	Chapter 17: Fetching Data from DynamoDB
	Introduction to databases
	Getting started with Cognito
	Setting up DynamoDB and adding data
	Fetching data from DynamoDB and displaying it
	Connecting Sumerian with DynamoDB
	Key points
	Where to go from here?

	Chapter 18: Completing the Augmented Reality App
	Adding more shoes to the project
	Adding 2D HTML buttons for new shoes
	Adding functionality to the shoe buttons
	Changing shoe sizes
	Key points
	Where to go from here?

	Chapter 19: Basics of a Sumerian Host
	Creating a Cognito ID Pool ID
	Getting started with Sumerian Hosts
	Key components of Sumerian Hosts
	Making your host speak with Amazon Polly
	Key points
	Where to go from here?

	Chapter 20: Speech in Amazon Sumerian
	Amazon Lex
	Creating a Lex bot
	Creating an intent
	Creating a sample intent
	Key points
	Where to go from here?

	Chapter 21: Audio Input & Lex
	Recording audio input
	Setting up the Dialogue component
	Completing the Lex bot
	Integrating your bot into your Sumerian scene
	Key points
	Where to go from here?

	Chapter 22: Integrating Amazon Lambda with Lex
	Setting up a DynamoDB table
	Setting up AWS Lambda
	Testing your Lambda function
	Finishing touches
	Key points
	Where to go from here?

	Conclusion

